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Abstract 

In state-space models there are so-called state variables which are latent variables 

through which time is channelled. Furthermore, there are input and output varia¬ 

bles. In this paper we discuss state-space models in which all variables are categori¬ 

cal. We assume a first order Markov model for the state variables, although 

extension to higher order models is simple. Furthermore, we assume time homoge¬ 

neity of the transition probabilities. These models can be conceived as extensions of 

latent class models with the grouping variable depending on time. This approach can 

be important in experimental designs, in which, after some period, different groups 

of persons get different treatments. The multivariate statistical distribution we 

assume is the (product-) multinomial distribution. Estimation of the model parame¬ 

ters will be carried out by the so-called EM algorithm. A real data example will be 

discussed. 
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State-space models for categorical variables 

1. Introduction 

In the case the state and output variables are categorical and there are no input 

variables, we are dealing with models as discussed by Poulsen (1982), Langeheme 

(1988), van de Pol and Langeheine (1989) and Langeheine and van de Pol (1990). 

These models are called Latent Markov (LM) models. An estimation procedure of 

the parameters in these models, the EM algorithm, was given by van de Pol and de 

Leeuw (1986). 

A restriction we make in this paper, in comparison to the work of Langeheine 

and van de Pol, is that we do not discuss mixed Markov models. In these models 

several latent Markov chains are defined. Although this extension is interesting and 

may improve the fit of the model considerable, it also may introduce identification 

problems of the model parameters. Because the main issue of this paper is the role 

of the input variables, we leave the extension to mixed Markov models to the future. 

The LM models are closely related to latent class models. These latter models 

have their origin in the fifties (see Lazarsfeld (1950)) and a general framework of 

these models was given by Lazarsfeld and Henry (1968). The main breakthroughs of 

the latent class model was in the seventies, see the work of Goodman (1974a, 

1974b) and Haberman (1979). A very interesting and informative paper on the 

recent developments and prospects for the future is Clogg (1993). The main issue 

for our state-space model in comparison to the latent class models are the latent class 

models for multiple groups. In these models the whole population is divided in 

several subpopulations, where each subpopulation may have different model 

parameters. In such a setup it is possible to test wether some parameters are 

invariant or not over the several groups. This approach is analogously to the 

simultaneous factor analysis in several groups of Joreskog (1971) and, for categori¬ 

cal variables, to the simultaneous analysis of several subpopulations (see Clogg and 

Goodman, 1984, 1985, 1986, and Hagenaars, 1990). The groups might correspond 

to, e.g., gender or different time periods. However, in latent class models and also 

in the latent Markov models of van de Pol and Langeheine, the samples do not 
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change over time. In the model we propose here, the input may be dependent of 

time, i.e. after some period some sub-samples may have different treatments (input). 

This approach can be important in experimental designs, in which, after some 

period, different groups of persons get different treatments. 

Obviously, our state-space model is a generalization of latent class models for 

just one time point. For instance, Dayton and Macready (1988a,b) formulate latent 

class models with concomittant variables. These concommittant variables, or 

covariates, may be categorical (grouping variables) or continuous. Other papers 

related to these latent class models with covariates are DeSarbo and Wedel (1994), 

Formann (1992), and van der Heijden and Dessens (1994). Although, in this paper 

we discuss categorical variables, only, their models are a special case of the model 

we propose here, because we have more than one time point. In a future paper we 

will include ordered categorical and continous variables. 

Almost at the end of Clogg (1993) we find the following quote: "Another very 

fruitful avenue of research only touched on in the above review is formulating 

LCM’s (latent class models) for dynamic processes. The work by Langeheine and 

van de Pol (1990) on latent Markov models represents this new development very 

well, and much more can be done". It is our claim that we have done a step forward 

on this avenue. 

In section two of this paper we will formulate our model in detail. An EM estimator 

of the model parameters will be derived in the next section. Finally we will discuss 

an empirical example. 

2. Formulation of the model 

Define y, as an output variable at time point f, x, as an input variables at time point 

t, and z, as a latent state variable at time point t. The input variable is a fixed 

variable, whereas the other variables are random variables. We start with one input 

and one output variable. In figure 1 an example of the state-space model for 4 time 

points, from t-2 to t+1, is given. We see in this figure that the time is channelled 
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only through the state variables z. Furthermore, there are no direct effects from the 

input variables, x, on the output variables y. In some formulations of the state space 

model there is a state variable, called z0, which influences z,. So z, is influenced by 

the first input variable x;, and a previous state variable which is completely unknown 

because it has no input and output variable. Although this state variable z0 may be 

important, we assume, just as Langeheine and van de Pol do, that is an empty set. 

The letters F, G and H are matrices which will contain model parameters. For 

instance, matrix F will contain the transition parameters of the state variables from 

time point t-J to r. Remark that the matrices F, G, and // do not depend on time. 

This means that we assume that the model parameters are invariant over time. This 

assumption is not crucial for our discussion of the model and can be easily relaxed. 

In figure 1 there is only one input and output variable at each time point. This can 

be generalized easily to more input and output variables. Because all variables are 

categorical and because the input variables are exogeneous fixed variables, it is 
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sufficient to create one new input variable as the Cartesian product of all input 

variables. For the output variables, such a trick is not possible, because the output 

variables are non-fixed endogeneous variables. In figure 2 we see a method for 

dealing with 2 output variables at each time point. At each time point we have two 

state variables (in general, as much as there are output variables (indicators) at each 

time point). These state variables are equal to each other for each time point. This 

can be formulated by restricting the transition matrix between the state variables at 

each time point to the identity matrix. Furthermore, each output variable is an 

indicator of one state variable. So in general, the case of multiple indicators is a 

restricted case of the case with just one output variable for each time point and so it 

is not necessary to discuss the case with multiple indicators in detail. Note that by 

this formulation the number of output variables may be different from the actual 

number of state variables. 

Figure 2 
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We first derive for three time points the joint probability of the state variables 

and the output variables conditional the input variables. This joint probability is a 

crucial part of the complete likelihood function which is needed for the EM algo¬ 

rithm in this paper. 
Let 7 be the set consisting of all variables, i.e. the input, output, and state 

variables, then the joint probability of these variables can be written as 

P[J\ = P\y,.y2.y^i,z2,z3,x„x2,x3] 

— P\y3\yi>y2>ZPZ2’Z3’Xl>X2>X3\ P\yi'y2-Zl-Z2’Z3’Xl’X2’X3\- 

The output variable depends on the latent variable only, so the first term in (1) can 

be written as Pty^lzJ. Now (1) can be written as 

P[J] = P[yj|zj PlZily^z^x^Xj] P\y„y2'ZpZ2’xi’x2-x3V (2) 

The state variable at time point t depends only directly on the state variables at time 

point t-1 and the input variables at time point t. It depends indirectly, i.e. through 

the state variables at time point t-1, on all previous state and input variables. So the 

second term in (2) can be written as P[zJ|z2»xJ- Now define 

2, = P[y,|z,l Pfelz^x,], then we have 

P[J] = Qs Pb’i-ypZpZ^pX^]. (3) 

In the same way we can continue to elaborate the second term in (3). This gives 

P[7] = Q; /1y2 ly1,x2,x3] l3[y ,,Zi,Z2,xp 

= a PtVzIzJ Pb’,.z„Z2,x„x2,x3\ 

= Q3 P\y2\z2] PlZj|y;,z„Jc„x2,j:J PtypZpXpXvX,] 
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= Q, P\y2\Zi\ P\z2\z„x2] P\yjiZjrX],X2iXj\ 

= Q3Q2 Ply^.x^.x,]. 

Repeating this process for y, and z, gives the result 

P[J] = QAQAxj.x^}. (4) 

From (4) it follows for the joint distribution of the output and state variables, 

conditional the input variables 

P\yi.y2>y,>z„z2,z3\x„x2,x3} = q,q2q3 . 

Obviously, the generalization to T time points becomes 

T 

= II pty,|z,] f’tz, Iz, 
r=l 

(5) 

where _y, z and x are vectors with elements y„ z, and xt, for r= 1,..., T. 

Special case I: no input variables 

Because our model, in which there are input variables, is closely related to the 

model without input variables, we briefly discuss this latter model first and at the 

same time some notation will be introduced. 

With no input variables all x vectors can be eliminated in (5). This gives 
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T 

/’Ly-z]=n ^ u< j > 
r=l 

(6) 

This defines the dynamic factor analysis, but now for categorical variables, only (see 

Molenaar (1985)). We start with the simple case for f=3, again. According to (6) 

we can write 

P\y,=i, y2=j. y3=k’ z;=a> Z2=P- zj=tJ = 

^=0;] P[y;=i|z,=a] P[Z2=&\zI = a\ 

x P\y2=1^2=^ P[z3=y\z2=P] P\y3=k\z3=y]. 

Assume the state variables have r categories, and define F, as the (r x r) transition 

matrix of the state variables of time t-1 to time point t. Furthermore assume 

stationarity, then it holds F, = F. So, for instance, we can write 

P[z2 = 0\z,= a] =fpa. 

Obviously, it holds 

£4, = 1 

The conditional probabilities of the output variables given a latent state at time point 

t, are collected in a (£ x r) matrix H„ where k is the number of categories of 

variable y. Again, we assume a stationary proces, which means that it holds FI, = H. 

So we can write, for instance, 

P\y,= i|Z/ = a] = K 
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Furthermore 

k 

T h. = l 
/ -j la 

It follows 

Plyi=‘, y2=j, y3=k- z,=a, z2=$, z3=y] = ^ V 

where ^ is the proportion of subjects in category a of the first state variable. 

Obviously, it holds 

Define now the sample size n and the probability 0afSyljk of a respondent being in cell 

(a, |3, 7, i, j, k). Then under the multinomial distribution n6a^t are the expected 

frequencies. So, the logarithm of the complete likelihood function, i.e. for all output 

and state variables, can be written as 

lnL(y,z;CO=EE«^Tyt lnK K 4, hjffy0 /tj, 
a0y Ijk 

where t/ is a vector consisting of all unknown parameters, i.e. r parameters [ia, kr 

parameters and r1 parameters/^,,. Note that the 0’s play the role of the observati¬ 

ons, although they are unknown because the z variables are not observed. This 

principle of unobserved observations play a crucial role in the EM algorithm, to be 

discussed later on. 

For several subpopulations the logarithm of the complete likelihood function can be 

written as 
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lnL(y,z;l/)=£ InUy^U,)* 
s 

~ ^ ^s^aPyijkj ^iaj fpa\j fyfl-J ^ ’ 
J aPy ijk 

(7) 

where 5=1,...,5 is the index for subpopulation s. Note that all parameters are now 

defined for each subpopulation. 

Special case II: input variables 

We start with the simple case for T=2>, again. According to (6) we can write 

P\y,=i, y2=J. y3=k’ Z,=a, z2=P, z3=y\ x,=a, x2=b, x3=c] 

= P[z;=a|x;=a] Pb',=i|z;=a] P[z2=0\z,=ct, x2=b] 

x P[y2=j\z2=P] PlZj=y\z2=P, x3=c\ P[y3=k\zs=y]- 

Obviously, it follows 

> y2=j>y2=k< z,=a, 22=0,23=7]= 
(8) 

'EP'.bc P[yri’yi=j’y3=k’zi=a’z2=P<zry\xra,x2=b,x3=c), 
abc 

where pahc is the proportion of sample elements with input scores a, b, c on time 

points 1, 2 and 3, respectively. Formula (8) can be written as 

P\yx=i ,y2=j ^^^,=02,^ ,z3=y]= 

^ j Pabc Pcc.a kia fQcc.b kjpfyfl\c kky" 
abc 

So the logarithm of the complete likelihood function can be written as 
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lnL(A;,;y,z;t/)=£ pabcY, E n(,a^,abMK.a Kf^.b KU.c \T). (9) 
abc a(Jy ijk 

where 0„i,.rl]t: „hc is the probability of a respondent with input scores a, b and c on time 

1, 2 and 3, respectively, being in cell (a, (3, y, i, j, k). 

Let us compare this likelihood function with the likelihood function in the case 

of no input variables and several subpopulations, see equation (7). Suppose all the 

input scores are equal for all time points, and suppose this score is "s", then it holds 

a=b=c=s, and pabcn = psn = nr Furthermore, in the case of no input variables, 

suppose that the factor loadings in matrix II are invariant the subpopulations, i.e. 

hia.s = hut, then the likelihood functions in Case I and II are equal. This showes that 

the case with no input variables and with subpopulations is a special case of the 

general case with input variables if the factor loadings are invariant over the 

subpopulations. 

3. EM algorithm in the state space model 

In this section we discuss how to estimate the model parameters in the general 

model. We will assune that for all modes stationarity holds, i.e. we assume F, = F, 

G, = G, and H, = H In the EM algorithm two steps are defined: the E (Expectati¬ 

on) - step and the M (Maximization) - step. 

E-step: 

In the E-step the expectation of the sufficient statistics of the complete multinomial 

distribution, conditional the observed frequencies and the model parameters is 

formulated. Define 

^abyijk;(ibc = Fa;a kiaf(la;b kjpfyp;c 

then the conditional expectation of the sufficient statistics can be written as 

^ti(3yijk;iibc (Pijkabc^ C + + + \jk;ab<I ^rttiyi]k:abc' 
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where p^abc are observed proportions denoting the proportions of subjects in 

category i, j, and k of the three output variables with, at the same time input scores 

a, b, and c on the three input variables. Furthermore, the " + "’s in C+ ++^0^denotes 

the summation over the indices a, and 7. See for analogous formulations in the 

latent Markov model van de Pol and de Leeuw (1986). 

M-step: 

In the M-step the logarithm of the complete likekelihood function (9) is maximized 

as a function of the unknown parameters. For instance, for estimating \ia:a, we 

define 

L * = lnL(x,y,z;I7) - ^(^^-1), 
a 

where m is a Lagrange multiplier and the side condition is 

E = 1 

The derivative of L* with respect to fia:a is 

(10) 

Equating this derivative equal to zero and summing over a, gives 

E^cEE"0, = mE ^a.a = m- 
be aPy ijk a 

Now substimting m into (10) gives 
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^a.a 
y~! Pabc EE ^ ^ a0yijk\abc 
be (Jy ijk 

Y,PabcY,'Ln6< 
be aPy ijk 

ctQyijk.abc 

In shorter notation this can be written as 

a,a 

E Pabcea 
be 

E PcJ. 

*;abc 

+ ;abc 

In an analogous way we can estimate and assuming stationarity. This gives 

/ j r ahe [ a + +i + +;abc +a + + i+\abc + a + +i;abc\ 

K = 
Y P . \6 , + 6 „ + 6 j’ / j ‘ ahe [ a + + + + +\abc +a + + + +,abc ++ot + + +;aocj 

J Pa,b 
Pabc^aP + + + +;abc + E Pabc9 + aP + + +-,a> 

ac ab 

E Pabc8 a + ** + *-,abc + E p«bce ♦ a ♦ + + +\a, 

So the EM algorithm runs as follows: first define some start values of the unknown 

parameters; then compute 6^^ by the E-step; find new estimates for na.a, hm, and 

as given in the M-step. Repeat the whole procedure as many times as necessary 

for reaching convergence. 

4. An empirical example 

This section will apply the introduced method on panel-data intended to market 

research. These data are put available by the research instimte AGB (located in 

Dongen, The Netherlands) and contain about 300 panel-members (=households). 

During a year the purchasing-behaviour with respect to several margarine brands is 

every four months registered for each panel-member. Of each panel-member is 
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known for each timeperiod, among others, the district (two categories) and further¬ 

more whether several margarine brands have been bought (two categories per brand: 

no purchase or purchase). We have restricted our analysis to the two brands with the 

largest market-shares (together about 45%). 

The authors research questions are: 

- To which extent do the two individual brands have the same buyers? 

- What is the size of the brand loyalty for each brand? 

- Is the factor District of importance in the first two questions? 

In our analysis we consider a state space model with three time points of measuring 

(T=3) and at each time point: two output variables (=indicators; the purchase of 

brand A and the purchase of brand B), one input variable (= District) and one state 

variable. All the variables are categorical with two categories. The transition matrix 

F of the state variables and the matrix H, with the conditional probabilities of the 

output variables given a latent state, have dimension (2x2). 

To answer the first research question we will use the relation between the 

output variables and the state variables, i.e. the matrix H. Question two can be 

answered by means of the dynamic part of the model (= the transition matrix F). 

For the last research question the explanatory categorical input variable District can 

be used. 

We create an observed frequency table of size 23 * 23 * 23, which will be used to fit 

our state space model. A PC-program using Pascal 7.0 is written to obtain EM- 

estimates. To be sure that the model is identified we have to investigate whether the 

corresponding information matrix is of full rank (i.e. none of the eigenvalues of the 

information matrix is zero). It turned out that the identification of the considered 

model was guaranteed for our data. 

In order to test the model against the data one may look at the loglikelihood ratio 

statistic (twice the difference between the loglikelihood of the data and the model). 

This loglikelihood ratio statistic (G2) is asymptotically chi-quare distributed with 
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degrees of freedom equal to the number of different response patterns of the 

observed input and output variables, minus the number of independent model para¬ 

meters. However, the number of cells in the observed frequency table is 512 with 

most of the cells equal to zero, while the number of independent parameters is 10. 

Using such a large number of degrees of freedom every model will fit certainly. 

Furthermore the sparseness of our frequency table makes this test very difficult 

(Haberman, 1977). 

Nevertheless, it is also possible to compare the fit of two nested models by 

calculating two times the difference in the loglikelihood ratio statistics of the two 

nested models and using the difference in the number of independent parameters as 

the number of degrees of freedom. Therefore in this empirical example we also fit, 

apart from the already mentioned state space model with input variable District 

(model M4), some more restrictive models. 

- a latent class or latent Markov model without latent change across time 

and without an input variable (Mj); 

- a latent class or latent Markov model without latent change across time 

and with the input variable District (M2); 

- a state space model without input (M3; a latent Markov model); 

Table 1 gives for model M2, M3 and M4 the G2-difference with a more restrictive 

model (respectively model M,, Mj and M2). 

Of course, the most restrictive model Mt has the largest value for G2. When 

we introduce the input variable District (model M2) the fit will increase significantly. 

Furthermore model M3 and M4 are the dynamic versions of model Mi and M2. The 

former models fit significantly better than the latter. So, the dynamic aspect of our 

model may not be dropped. 

The EM-algorithm we use can be programmed easily, iterations are computationally 

attractive, and convergence is ensured. Otherwise, it may converge to a local 

maximum of the likelihood function. We should use different starting values for the 

unknown parameters to increase confidence that the maximum found is indeed the 

global maximum. In our empirical analysis we indeed used several different starting 

values, which all converged to the same end values. 
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Another general handicap of the EM-algorithm is, that it often requires many 

iterations. In our empirical example we were not confronted with this problem. We 

needed, apart from the different startings values for the parameters, at most about a 

hundred iterations. 

Table 2 presents the estimates of the unknown parameters H, F and ft of our model 

M4. The factor loadings (matrix H for brand A and B) indicate that latent class 0 

corresponds with no purchase of brand B, while brand A will be bought with 

probability 0.72. For latent class 1 there will be no purchase of brand A and a 

possible purchase of brand B (probability 0.53). We see that latent class 0 is the 

purchase of brand A and latent class 1 is the purchase of brand B. Additionally the 

two brands have totally different buyers. 

The transition matrix F indicates the change (or stability) between successive 

time points. For district 2, the transition matrix between two sequential time points 

is equal to the unity matrix. This indicates that the degree of brand loyalty for each 

of the two brands is high. In district 1 there is more change and the two brands have 

a smaller degree of loyalty. The values of the transition coefficients (in matrix F) 

show that between two successive time periods the state can go from 0 to 1 with 

probability 0.09. A state-change in the opposite direction has a probability of 0.03. 

Therefore the number of buyers of product A will decrease, while the number of 

buyers of product B will increase slightly with time. 

Furthermore, the matrix ft indicates that district 1 contains more buyers of 

product B and less buyers of product A than district 2. 

Once the EM estimates of the model parameters have been computed their variances 

may be found from the information matrix. This is the inverse of the matrix of 

second order derivatives of the loglikelihood function toward all independent 

parameters. Fortunately, the second order derivatives of the multivariate loglikeli¬ 

hood function (see formula (9)) result in rather simple expressions. In our example 

the variances of the parameter estimates are very small. All the empirical variances 

are smaller than 0.01. 
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From our investigations it follows that the state space model for categorical data can 

answer the research questions of our empirical example. Furthermore the EM-algo- 

rithm is computationally easy and works rather quickly. 

In our model we assume that the transition matrix and the factor loading 

matrices do not depend on time. Maybe we can get a significantly better model fit 

by relaxing this assumption (see Fahrmeir and Kaufmann (1987) which deal with 

regression models for non-stationary categorical time series). For instance, in the 

field of marketing research temporary advertising campagnes could be modelled 

better. However, if we allow for both F and H to change it may be very difficult to 

interprete results. 
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Table 1, The fit of the models 

model G2 compared G2- df 
to difference 

M,, no dyn., no input 126.8 - - - 
M2, no dyn., D as input 123.1 M! 3.7 1 
M3, dyn., no input 119.8 M, 7.0 2 
M4, dyn., D as input 113.0 M2 10.1 4 
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Table 2, The parameter estimates H, F and n 

Separate factor loading matrices H (parameters hia) for brand A and B: 

no purchase brand A purchase brand A 
state category 0 0.28 0.72 
state category 1 0.97 0.03 

no purchase brand B purchase brand B 
state category 0 1.00 0 
state category 1 0.47 0.53 

Separate transition matrices F (parameters/SJ for district 1 and district 2: 

district 1 
state category 0 state category 1 

state category 0 0.91 0.09 
state category 1 0.03 0.97 

district 2 

state category 0 
state category 1 

state category 0 
1.00 
0 

state category 1 
0 
1.00 

Conditional probability fiaa in timepoint r—1 
for state category a given district a: 

state category 0 state category 1 
district 1 0.39 0.61 
district 2 0.57 0.43 

ontvangen: 25-9-95 
geaccepteerd: 16-9-96 


