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Abstract 
Latent transition analysis (LTA) is a type of latent class model for longitudinal data that 
emphasizes the use of multiple indicators. It is useful in estimating and testing stage-sequential 
models of human development in longitudinal data. One practical issue that arises frequently in 
connection with LTA is whether these models can be tested with modest sample sizes. The 
question arises because in any latent class model, the sufficient statistics are the cell frequencies 
of the multiway contingency table formed by cross tabulating all the items. In complex LTA 
models, such as models involving multiple items at multiple times, this contingency table 
involves many cells, often in the thousands or tens of thousands. If the sample of subjects is 
small in relation to the size of the contingency table, there will be many empty cells. 
Furthermore, these models often involve estimation of a large number of parameters. This is 
particularly true with second-order LTA models. The purpose of this paper is to investigate 
the extent to which estimation can proceed successfully under these conditions. 

1. Introduction 

la. Introduction to LTA 
Latent transition analysis (LTA) is a method for estimating and testing stage-sequential models 
of human development in longitudinal data. LTA is a type of latent class model (Collins & 
Wugalter, 1992; Van de Pol & De Leeuw, 1986) that emphasizes the measurement of stage 
transitions over time through the use of multiple indicators. Consider a model of math skill 
acquisition tested in Collins and Wugalter (1992). For purposes of the present article, suppose 
the model is tested on data collected from 1500 United States students in tenth, eleventh, and 
twelfth grade. Suppose we are interested in testing a model of math skill development over 
time, where individuals start out with no math skills; first learn single operations on whole 
numbers; then progress to powers and roots, decimals, and fractions; then learn low level 
algebra without word problems; then go on to low level geometry and algebra with word 
problems. In this model, it is possible to advance or to decline When an individual progresses 
to the next stage, all skills learned in earlier stages are retained; when an individual declines in 
skill, skills are lost in the order in which they were gained. This model is depicted in Figure 1, 
which is taken from Collins and Wugalter (1992). In LTA each stage is called a latent status. 
Further suppose that we wish to compare the math skill acquisition of two groups: those who 
on a questionnaire indicate a high interest in a career in mathematics, science, or engineering, 
and those who indicate a low interest in such a career. The changing math skills are a dynamic 
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endogenous latent variable, and the interest group is a static exogenous latent variable. 

Figure 1. Model of math skill development from Collins and Wugalter (1992). 

Like structural equation modeling, LTA is based on the idea of a latent variable 
measured by manifest indicators. Whereas in covariance structure modeling the latent variable 
and its indicators are usually continuous, in LTA the latent variable and its indicators are 
categorical. In the example used in Collins and Wugalter (1992), the four indicators of the 
math skills acquisition latent variable were four dichotomized “testlets” corresponding to each 
of the four skills making up the acquisition process. 

lb. LTA mathematical model 
For ease of exposition the latent transition model will be presented for problems involving 
three occasions of measurement, four manifest indicators (items or variables) of the dynamic 
latent variable at each occasion, and one exogenous static latent variable measured by one 
manifest indicator; the extension to other problems is direct. To relate this to the math skills 
acquisition example, the three occasions of measurement are tenth, eleventh, and twelfth grade, 
the dynamic latent variable is math skill development, and the exogenous static latent variable 
is career interest. The first occasion of measurement will be labeled Time t, the second 
Time M-l, and the third Time 1+2. Also suppose the four manifest indicators are Item 1, with /, 

response categories; Item 2, withJ response categories. Item 3, with 
k, k\ k"-\, ..Kresponse categories, and Item 4, with /, /’, response categories, where 
/,y, k and / refer to responses obtained at Time f; /j’, k' and /’ refer to responses obtained at 
Time M-l; and k" and /" refer to responses obtained at Time 1+2 The exogenous static 
latent variable divides the population into latent classes c = 1,...C, and is measured by a 
manifest indicator with m = \,. Mresponse categories. There arep,q,r= 1,5 latent 
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statuses, withp denoting a latent status at Time t, q denoting a latent status at Time H I, and r 
denoting a latent status at Time t+2. Let Y= represent a 
"response pattern", a vector of possible responses made up of a single response to the manifest 
indicator of the exogenous variable and responses to the four items at Times t, t+l, and t+2. 
Then the estimated proportion of a particular response pattern, P(Y), is expressed as follows 
for a first-order model: 

csss 
X/ Xy YcPrn\<Pp\cPi\p,cP]\p,<Pk\p,S)l\p,c*'q\p,cPI’.q.Pj’.q.cPk' q.cPl1 ,q,c~r\q,pl'■ r.cPj"\r,cP^ll\r,:Pl"ir.C 

c-1 p-l 9-1 r-1 

where 
y, represents the proportion in latent class c. In the example, there would be two 

gamma parameters, the proportion of students who indicate a high interest in a career in math, 
science, or engineering, and those who indicate a low interest in this kind of career. 

5^ represents the proportion in latent status p at Time t conditional on membership in 
latent class c. In our example this is the proportion of individuals in each of the stages in the 
model, for example, the proportion in the no skills latent status, the proportion in the simple 
operations on whole numbers latent status, and so on, conditional on membership in the high 
interest or low interest group. 

xllpc is an element of the latent transition probability matrix, representing the probability 
of membership in latent status q at Time t+l conditional on membership in latent status p at 
Time t and membership in latent class c. An example is the probability of membership in the 
simple operations on whole numbers latent status in twelfth grade, conditional on membership 
in the no skills latent status in tenth grade and membership in the low interest group. 

p: „,t represents the probability of response i to Item 1 at Time t, conditional on 
membership in latent status p at Time t and on membership in latent class c; represents the 
probability of response /' to Item 1 at Time t+l, conditional on membership in latent status q at 
Time t+l and on membership in latent class c, etc. An example of a p parameter is the 
probability of passing the testlet about power and roots, decimals, and fractions conditional on 
membership in the no skills latent status and the low interest latent class. 

Pmle represents the probability of having a value of m on the indicator of latent class 
membership, conditional on membership in latent class c. In the example this might represent 
the probability of choosing the “low interest” response to the questionnaire item asking about 
interest in a career in math, science, or engineering, conditional on membership in the low 
interest latent class. 

Sometimes transitions between latent statuses are conditional not only on the 
immediately previous latent status, but on the latent status two observations previous. Then 
the data are best represented by a second-order model: 

c s s2 s 
X! X ycPn,\/>p\cPftp,cPj\p,cPk\p,cPl\p,cXq]p,cPi'\q,J}j,\q,cPk,lq,cPll\p,c'':r\lxi,cPi"\r,cPj"\r,cPk"\r,cPl"\r,c 

c-1 p-l pq-l r-1 

where 
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tr|(79 c is an element of the latent transition probability matrix, representing the 
probability of membership in latent status r at Time t+2 conditional on membership in latent 
status p at Time t, membership in latent status q at Time t+1, and membership in latent class c. 

The first-order model is a special case of the second-order model where for a 
given q and c is equal across all p's. It is necessary to have at least three occasions of 
measurement in order to test a second-order model. 

1c. The problem addressed in this study 
As LTA models are used in an increasing variety of applications, it is inevitable that users will 
want to apply the procedure to larger models. The term “large” in this context is not what 
would be considered large in the context of a structural equation model. All current latent 
class models, including LTA, are intended for problems where there are relatively few 
indicators of the latent variable. This is because these procedures are special cases of loglinear 
models, and therefore they build multi-way contingency tables, which can become very large if 
there are numerous items or times. For example, suppose a problem involves four 
dichotomous indicators of the latent variable at each time. If there are three times, there are 
4,096 possible response patterns. If there are four times, there are 65,536 possible response 
patterns. If there are five times, there are over one million possible response patterns! The 
potential problem lies not in the number of response patterns per se, but rather in the number 
of subjects in relation to the number of response patterns. If there are data available on 
millions of subjects, over 65 thousand response patterns does not present a problem. 
However, if the number of response patterns is large and the number of subjects is small, a 
sparse data matrix results. This presents two problems. First, the goodness-of-fit statistic G2 
is not distributed as a chi-square when data are sparse, creating difficulties for model selection. 
This problem is not the focus of this article; for a more thorough discussion, see Collins, Fidler, 
Wugalter, and Long (1994) and Langeheine, Pannekoek, and Van de Pol (1995). Instead, this 
article focuses on the second problem, which has to do with estimation. Under conditions of 
sparseness, sometimes there may not be enough information in the data to provide good 
parameter estimates. This is an important practical consideration, because although studies 
with thousands of participants exist, it is more typical for the number of subjects taking part in 
a study to be in the range of 300 to 1500. 

The number of parameters to be estimated is another important consideration. Suppose 
we are interested in a model with five latent statuses. Assuming no constraints are imposed on 
the parameters, the number of parameters for a first order model increases from 69 with a two- 
time problem to 204 for a five-time problem; for a second-order model, the increase is from 69 
to 504 parameters. In reality, constraints would be put on some parameters, which would 
reduce the parameter estimation load, but even with constraints added this is potentially a great 
deal of estimation. 

Thus, the effects of increasing the size of the problem, even to what most researchers 
would consider modest, can be severe in terms of the size of the contingency table and the 
number of parameters estimated. This raises an important question. Can estimation be 
successful, that is, unbiased and reasonably efficient, when the problem is large and the sample 
size is moderate? Collins, Fidler, and Wugalter (1996) investigated the issue of parameter 
recovery in large problems. They varied N/k, where N is the sample size and k represents the 
number of cells in the contingency table. They found very good parameter recovery overall, 
even with N/k as low as .5. Although these results are encouraging, they do not go far 
enough. A model with four dichotomous indicators and three times involving a sample size of 
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300 results in an N/k of about .07. Thus, for very large problems and moderate sample sizes, 
parameter recovery has not been investigated. The present article describes a simulation study 
that investigates this. 

Table 1 
Parameter values used to generate data 

8 parameters 
Ls 1 
.40 

Ls 2 
.30 

Ls 3 
.20 

Ls 4 
.05 

Ls 5 
.05 

x parameters 
Time t+l Ls 1 

Time t 
Latent status 1 .40 
Latent status 2 .05 
Latent status 3 .05 
Latent status 4 .05 
Latent status 5 .05 

p parameters 
Item 1 

Latent status 1 .10 
Latent status 2 .90 
Latent status 3 .90 
Latent status 4 .90 
Latent status 5 .90 

Ls 2 Ls 3 Ls 4 Ls 5 

.30 .20 .05 .05 

.40 .30 .20 .05 

.05 .40 .30 .20 

.05 .05 .50 .35 

.10 .10 .10 .65 

Item 2 Item 3 Item 4 
10 .10 .10 

.10 .10 .10 

.90 .10 .10 

.90 .90 .10 

.90 .90 .90 

2. Methods 

2a. Overview 
The purpose of this study is to investigate whether bias in parameter estimation is introduced in 
large problems with relatively small sample sizes, and to see whether the mean squared error 
(MSE) of parameters is acceptable under these conditions. LTA models were used as a basis 
for generating random data sets with known structure. These known models were estimated in 
the random data sets, so that the null hypothesis was true in every case. Thus model 
misspecification was not present to bias the parameter estimates. After the LTA models were 
estimated in the data, the parameter estimates obtained were compared to the known 
population parameter values, and bias and MSE were computed. 

2b. Design of the study and data generation 
All data were generated using the same basic model. This model involved five latent statuses 
and four dichotomous indicators at each of three times. Number of subjects was either N=300 
or N=T500. Table 1 shows the parameter values used to generate the data. 

The data generation procedure followed was the same as the one used in Collins et al. 
(1996). Based on the model and the previously specified parameter values shown in Table 1, 
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it is possible to construct a vector of response pattern probabilities, for example, 

Response Cumulative 
Pattern Probability Probability 
111111111111 .0203 .0203 
111111111112 .0023 .0226 
111111111121 .0023 .0249 

and so on for the entire vector of possible response patterns. These are the population 
probabilities of a randomly selected individual contributing a particular response pattern. For 
our purposes, we wish to draw random samples of either N=300 or N=1500 from this 
population. To do so, we use this vector of probabilities very much like a multi-sided die, with 
the sides weighted according to the probabilities. Each artificial “subject” was generated by 
sampling a number between 0 and 1 from a uniform random distribution. In order to assign a 
response pattern to the “subject,” the random number was compared to the cumulative 
probability. For example, if the random number is greater than .0226 and less than or equal to 
.0249, it is assigned to the response pattern 111111111121. 

2c. Parameter constraints 
In order to ensure identification, we added some constraints to the models. First, in all models 
tested we constrained the p’s equal across times. Second, we placed additional constraints on 
the p parameters for all models and in several additional places in the second-order models. 
The additional constraints on the p parameters in the first-order models are summarized in 
Table 2. Two different sets of constraints were used. We will refer to these as A constraints 
and C constraints. The A constraints are more parsimonious, resulting in only one p parameter 
estimated. The C constraints are less parsimonious, resulting in four p parameters estimated. 
These same constraints were used in the second-order models, along with the additional 
constraints shown in Table 3. 
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Table 2 
Constraints on p parameters 

A Constraints: Probability of passing* 

Item 1 Item 2 Item 3 
LSI e e e 
LS2 dee 
LS3 d d e 
LS4 d d d 
LS5 d d d 

Item 4 
e 
e 
e 
e 
d 

C constraints: Probability of passing’ 

Item 1 
LSI e 
LS2 d 
LS3 d 
LS4 d 
LS5 d 

Item 2 Item 3 

g ' 
g i 
f i 
f h 
f h 

Item 4 
k 
k 
k 
k 

j 

'Constraints for the p parameters corresponding to probability of failing are the 
complements of the constraints shown in this table. 

Table 3 
Additional constraints used in second-order models' 

5 parameters 
Ls 1 

1 

r parameters” 
Time f+1 Ls 1 

Time t 
Latent status 1 1 
Latent status 2 d 
Latent status 3 e 
Latent status 4 f 
Latent status 5 1 

Ls 2 Ls 3 Ls 4 Ls 5 
1 1 b b 

Ls 2 Ls 3 Ls 4 Ls 5 

1 1 c c 
1 1 1 d 
e 1 1 1 
f f 1 1 

g g g 1 

Parameters denoted by the number 1 are freely estimated. Parameters denoted by the 
same letter are constrained equal to each other. 

This pattern of constraints was repeated for the entire t matrix. 
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One hundred data sets with N=300 and one hundred data sets with N=1500 were 
generated. Each data set was analyzed four ways: as a first-order model using A constraints; 
as a first-order model using C constraints; as a second-order model using A constraints; and as 
a second-order model using C constraints. Thus, there were three independent variables in the 
simulation: sample size (300 vs. 1500), type of constraints (A vs. C), and order of the process 
(first-order vs. second-order). 

2d. Data analysis 
Because we generated the artificial data analyzed in this study, we are in the unique position of 
knowing exactly which model generated the data. In each data set, this model was tested, so 
the null hypothesis was always true Both first-order and second-order versions of each model 
were tested. The data were generated using a first-order model; however, a first-order model 
is identical to a second-order model where the probability of a transition between Time 2 and 
Time 3 does not vary according to latent status membership at Time 1. Therefore, a second- 
order model fits identically to a first-order model, although it is not a parsimonious model 
because it involves estimating parameters that are not needed 

For each analysis performed on each data set, two different sets of start values were 
used for each run. The same two sets of start values were used for each data set. 
Convergence for the EM algorithm was defined as a mean absolute deviation between 
successive parameter estimates smaller than .00001. On the rare occasions where there were 
differences in fit between the two sets of start values, the run with the smaller G2 was selected 
for further analysis. 

Often in latent class models a problem comes up that is sometimes called a “naming 
problem.” This occurs when two or more latent classes are not conceptually distinct because 
the pattern of the p parameters across items is very similar. For example, in an ability test the 
probability of passing might be .05 for all items in one latent class and .2 for all items in 
another latent class. Both of these latent classes can be interpreted as “No knowledge.” This 
poses a particular problem for simulation studies because when two latent classes are not 
distinct, it is impossible to tell which parameters “belong to” a particular latent class or latent 
status. In the present study, data sets were discarded when the LTA analysis resulted in latent 
statuses that were not distinct enough to determine which of the parameters in the data- 
generating model were associated with them. In other words, the pattern of the values of the p 
estimates had to correspond at least roughly to the p’s in the known true model. The naming 
problem did not occur at all in first-order models, or in second-order models with A 
constraints. In the second-order models with C constraints, the naming problem occurred in 
about three percent of data sets with N=1500 and about one-third of data sets with N=300. 
Data sets discarded for this reason were replaced with additional random data sets until the 
required number of data sets was obtained. 

3. Results 

Tables 4-9 contain results presented in two slightly different ways. In each table the first panel 
contains data from the same 100 data sets in each row. This means that if a data set failed to 
meet one of the two criteria explained above in any cell, it was removed from all analyses. The 
data in the first panel facilitate straightforward comparisons, but the inclusion criteria are 
restrictive. The second panel contains data from the first 100 data sets generated that meet the 
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requirements for a particular cell. Thus a data set with n=300 may appear in one, two, three, 
or four cells of the second panel. This makes comparisons across cells more difficult, but 
allows considerably less restrictive inclusion criteria. 

Table 4 shows the average number of iterations in each cell required for convergence 
It is clear that overall fewer iterations are needed for first-order than for second-order models. 
There does not seem to be a large difference between the average number of iterations needed 
for A constraints as opposed to C constraints, or for the smaller N as opposed to the larger N. 

Table 4 
Average number of iterations required for convergence 

Same 100 data sets in all cells 

1st order 2nd order 

A C A C 
constraints constraints constraints constraints 

N = 300 

N = 1500 

First 100 data sets meeting inclusion criteria in each cell 

1st order 2nd order 

A C A C 
constraints constraints constraints constraints 

N = 300 

N= 1500 

47.79 49.37 108.49 121.22 

36.01 32.91 115.35 120.39 

46.21 47.44 109.78 121.22 

36.14 32.70 114.49 120.39 

Bias is defined as the average difference between the parameter estimate and the true 
parameter. Mean squared error (MSE) is defined as the average squared difference between 
the parameter estimate and the true parameter. There are many parameters that could be 
exammed in this results section. In order to save space, and because the results are generally 
consistent across parameters of the same type, we have selected a subset of parameters to 
present here. Tables 5-9 show bias and MSE for these selected parameters. 

Tables 5 and 6 show the results for the 5 (parameter=,4) and p (parameter. 9) 
respectively. The results for these two parameters are very similar. There is virtually no bias 
associated with either parameter when N=1500, even in the second order models. When 
N=300 there is somewhat more bias overall. However, nowhere does the bias exceed .004 in 
absolute value. MSE associated with these parameters is generally small in every cell, not 
exceeding .001. 
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Table 5 
Bias and mean squared error (in parentheses) for the 6 parameter 

Same 100 data sets in all cells 

1st order 2nd order 

N = 300 

N = 1500 

A C A C 
constraints constraints constraints constraints 

-.003 (.001) -.002 (.001) -.002 (.001) -.002 (.001) 

-.000 (.000) -.000 (.000) -.000 (.000) -.000 (.000) 

First 100 data sets meeting inclusion criteria in each cell 

1st order 2nd order 

A C A C 
constraints constraints constraints constraints 

-.001 (.001) -.001 (.001) -.001 (.001) -.002 (.001) 

-.000 (.000) -.000 (.000) -.000 (.000) -.000 (.000) N = 1500 
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Table 6 
Bias and mean squared error (in parentheses) for the p parameter 

Same 100 data sets in all cells 

1 st order 2nd order 

A C A C 
constraints constraints constraints constraints 

N = 300 

N= 1500 

-.000 (.000) .002 (.000) .002 (.000) .004 (.000) 

-.000 (.000) -.000 (.000) .000 (.000) .000 (.000) 

First 100 data sets meeting inclusion criteria in each cell 

1st order 2nd order 

N = 300 

N= 1500 

A C A C 
constraints constraints constraints constraints 

-.000 (.000) .003 (.000) .002 (.000) .004 (.000) 

-.000 (.000) -.000 (.000) .000 (.000) .000 (.000) 

Results for the first and second x parameters appear in Tables 7 and 8 respectively. The 
first t (parameter-^,4) considered here corresponds to the probability of membership in latent 
status 1 at Time 2, conditional on membership in latent status 1 at Time 1. This the only one 
of the t parameters considered here that is directly comparable across the first-order and 
second-order models. This is because the Time 1-Time 2 transition probability matrix is the 
same for first-order and second-order models. However, the Time 2-Time 3 transition 
probability matrix and any subsequent x matrices differ. First-order models contain a simple 
Time 2-Time 3 transition probability matrix, while in second-order models the Time 2-Time 3 
transition probability matrix is conditioned on Time 1 latent status. This means that there are 
many more x parameters in a second-order model than in a first-order model, and that the 
parameters have a slightly different meaning. The second x (parameter.4) selected for the 
first-order model is the probability of membership in latent status 1 at Time 3, conditional on 
membership in latent status 1 at Time 2. In contrast, the second x (parameter-.4) selected for 
the second-order model corresponds to the probability of membership in latent status 1 at Time 
3, conditional on membership in latent status 1 at Time 2 and Time 1 

Tables 7 and 8 show that somewhat more bias is evident in the x parameters than 
appears in the 6 or p parameters. For the first x parameter the largest bias in absolute 
magnitude is approximately -.013. This occurs in the second order models where N=300, for 
the data based on the same 100 data sets. Bias is reduced considerably when N=1500, and 
appears to be somewhat less in the data based on the first 100 data sets meeting the inclusion 
criteria in each cell. MSE is around .003 when N=300 and around .001 when N=1500 for 
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both first-order and second-order models. For the second t parameters bias is larger, with the 
largest bias occurring in the second-order models. The MSE associated with these parameters 
is also considerably larger, although still not exceeding approximately Oil. 

Table 7 
Bias and mean squared error (in parentheses) for the first t parameter 

Same 100 data sets in all cells 

1st order 2nd order 

N = 300 

N= 1500 

A C A C 
constraints constraints constraints constraints 

-.009 (.003) -.010 (.003) -.013 (.003) - Oil (.003) 

.000 (.001) -.000 (.001) -.000 (.001) -.000 (.001) 

First 100 data sets meeting inclusion criteria in each cell 

1st order 2nd order 

N = 300 

N= 1500 

A C A C 
constraints constraints constraints constraints 

-.004 (.003) -.004 (.003) -.007 ( 003) -Oil (.003) 

.000 (.001) .000 (.001) .000 (.001) -.000 (.001) 
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Table 8 
Bias and mean squared error (in parentheses) for second x parameter 

Same 100 data sets in all cells 

1st order 2nd order 

N = 300 

N= 1500 

A C A C 
constraints constraints constraints constraints 

.019 (.008) .017(008) .025 (Oil) .027 (.011) 

.004 (.002) .004 (.002) .003 (.002) .002 (.002) 

First 100 data sets meeting inclusion criteria in each cell 

1st order 2nd order 

N = 300 

N = 1500 

A C A C 
constraints constraints constraints constraints 

.009 ( 008) 008 (.008) 014 (.010) .027 ( Oil) 

.006 (.002) .006 (.002) .004 (.002) .002 (.002) 

Two additional t parameters are examined. These parameters are taken from the 
second-order models; no corresponding parameters exist in first-order models. The third t 
parameter examined is the probability of membership in latent status 1 at Time 3, conditional 
on membership in latent status 1 and Time 2 and membership in latent status 3 at Time 1; and 
the fourth t parameter examined is the probability of membership in latent status 1 at Time 3, 
conditional on membership in latent status 1 at Time 2 and membership in latent status 5 at 
Time 1. Table 9 combines the results for these t parameters in one table. The table shows a 
pattern of increasing bias and MSE. Overall, there is more bias in the third x parameter than 
in the second, and more in the fourth than in the third. On the average, MSB’s are larger in the 
fourth x parameter, but the largest MSE’s occur in the third x parameter when N=300. In 
sharp contrast to the other parameters, in the fourth t parameter the MSE does not differ very 
much between the N of 300 and the N of 1500. In fact, the MSE’s observed in the fourth x 
parameter and in the smaller N in the third x parameter would probably be considered 
unacceptable by most researchers. 
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Table 9 
Bias and mean squared error (in parentheses) for third and fourth t parameters, 

second-order models 

Same 100 data sets in all cells 

Third x Fourth t 

A C A C 
constraints constraints constraints constraints 

N = 300 

N= 1500 

-.047 (.131) -.044( 131) | -.077 (.117) -.083 (.119) 

-.007 (.057) -.008 ( 056) | -.072 (.120) - .067 (.119) 

First 100 data sets meeting inclusion criteria in each cell 

Third x Fourth x 

N = 300 

N= 1500 

A C A C 
constraints constraints constraints constraints 

- Oil (.138) -.044 (.131) -.087 (.112) -.083 (.119) 

.004 (.059) -.008 (.056) -.065 (.122) -.067 (.119) 

4. Discussion 

The results of this simulation are very encouraging for estimation of complex LTA models, 
and, by extension, latent class and loglinear models. There is very little bias in the 6 or p 
parameters, even in the complex second-order models. In addition, the MSB’s associated with 
these parameters are small, rounding to .000. Bias and MSB’s are generally better in the 
conditions with the larger N (which is an N/k of only about .37). There is a slight tendency 
for bias to improve when the more restrictive A constraints are imposed. 

The most bias and the largest MSB’s were found in the second-order models in the 
third and fourth x parameters. The reason for this has to do with the nature of these 
parameters in the models used here to generate the data. As explained above, the third and 
fourth x parameters represent the probability of membership in the first latent status at Time 3, 
conditional on membership in the first latent status at Time 2 and membership in the third or 
fifth latent status, respectively, at Time 1. The unconditional probability of membership in the 
third latent status at Time 1 is .2; the unconditional probability of membership in the fifth latent 
status at Time 1 is .05. The probability of membership in the first latent status at Time 3 and 
one of these latent statuses at Time 1 and another latent status at Time 2 is small, and therefore 
the estimation of these quantities is less stable. In other models for other applications, 
parameters like these will occur elsewhere in the model. 

We attempted to replicate this simulation using p=.65, and encountered many 
problems. We found that the programs took a very long time to run, and about one-third failed 
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to converge after 1000 iterations of the EM algorithm. This suggests that maintaining 
reasonably strong p parameters is important for estimating large and complex models. 

5. Conclusions 

The results of this study suggest that estimation of parameters for complex LTA models, and, 
by implication, for other latent class and loglinear models, is surprisingly robust even with 
relatively small N’s. While bias and unacceptably large MSB’s were a problem for some t 
parameters, the 5 and p parameters and most of the t parameters were estimated with little 
bias and acceptably small MSB’s. On a less encouraging note, our study points to some 
limitations researchers using LTA and related models. First, several of the parameters in the 
second-order models had degrees of bias and MSB that would make most researchers 
uncomfortable. This suggests that second-order models should be used with extreme caution. 
Second, it is important to note that the p parameters used in this study were all .9 or . 1. Our 
attempt to replicate this study with considerably weaker p’s indicates that estimation can be 
difficult under such conditions. Thus it is worthwhile to spend time and attention constructing 
good items to serve as manifest indicators, because this will help strengthen the p parameters. 
This strategy is greatly aided by having a good background in the substantive field to which the 
model pertains. 

It should also be reiterated that although this study supports the contention that 
parameter estimation can be robust under conditions of data sparseness, serious model 
selection problems remain because the likelihood ratio statistic G2 is not distributed as a chi- 
square. A new approach to model selection is needed. In the meantime, Collins et al. (1994) 
and Langeheine et al. (1995) outline Monte Carlo simulation methods for approximating the 
correct probability of the obtained G2. 
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