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Abstract 

We compare two approaches for linear dynamic systems analysis. In the first approach (Bijleveld 
& De Leeuw, 1991) estimates for parameters, latent state variables and optimal quantifications for 
the categories of any non-numerical input and output variables are obtained through an alternating ' 
least squares algorithm that fits in the Gift (1990) approach to non-linear data analysis. In the 
second approach a quasi- Newton type of algorithm is used for estimating parameters and latent 
state variables (Bijleveld et al„ 1994). 

Both approaches can analyse data sets with either one or several subjects. In all cases, the 
number of time points should be large. The two approaches differ in the constraints they use to 
reduce the indeterminacy of solutions. We compare the two methods in these respects, both in 
terms of the model specifications as well as through an empirical example. 

We identify a number of important areas for further research to facilitate the applicability of 
either technique. These are: confidence intervals for the relevant entities in the solutions, 
guidelines for the choice on the number of latent state variables as well as guidelines for 
interpretation. 
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INTRODUCTION 

We consider situations where we have measured a number of input variables and a number of 
time-dependent output variables. Neither of the two types of variables are necessarily 
numerical, that is, they may be a mixture of variables measured at interval, ordinal or nominal 
measurement level. What is special about our variables is that the successive measurements are 
not independent. The output and input variables have been measured at time points t (t = 

so that there is reason to assume that present observations depend to some extent on 
past observations. The output and input variables have been measured for N subjects. N may be 
large as is usual in many types of behavioural research. However, N may just as well be 1. 
However, in all cases we will assume that T is large; if T is small, other models provide better 
alternatives for our type of problem. In addition, we would like T to be large because we expect 
that the accuracy of our estimates improves using sufficiently large numbers of replications. T 
need not be the same for different subjects, that is, subjects may have been measured at varying 
numbers of time points. 

Models such as these are useful in simations where one or more criterion or dependent 
variables have been measured over a successive number of time points. We want to predict the 
development of these dependent variables from a number of predictor or independent variables. 
Similar to a factor analytic or reductionist approach, we want to achieve our prediction in the 
lowest possible dimensionality. Such data-analytic situations occur frequently in developmental 
and clinical psychology, history, econometrics, in fact in all areas of science in which 
development or growth - and the prediction thereof - is the explicit research objective. Examples 
are the prediction of maternal behaviour from infant’s behaviour in developmental psychology, 
the prediction of therapeutic alliance from therapeutic content in clinical psychology, the 
prediction of various cardiovascular indices from mood states in biomedical psychology, the 
prediction of maize prices from various combinations of economic and demographic indicators 
in pre-industrialist societies, and the like. In all such cases, a model is warranted that explicitly 
models temporal dependence, that incorporates successive measurements on one or more 
predictor variables, and that reduces the dimensionahty of the problem. 

In developing our models, we will build from and extend the classical state space 
models made famous by Rudolf Kalman (Kalman, 1960; Ho & Kalman, 1966). However, state 
space modelling or Kalman filtering has been developed for the >V = 1 case from the engineering 
framework of exact, if necessary high-dimensional, forecasting. The behavioural framework 
focuses instead on approximation and interpretation. Therefore, classical state space analysis is 
less widely applicable in a behavioural context and the same applies to the closely related 
ARIMA models described by Box and Jenkins (Box & Jenkins, 1976; Akaike, 1976). It is 
therefore not surprising that the terminology 'state space modelling' for the type of models 
presented below has sometimes created unnecessary confusion and controversy, generated 
more by the differing paradigm and application of the models than by differences in model 
formulation. To avoid such confusion, we prefer to use the term linear dynamic systems 
analysis' in the following. 

A number of authors have presented models that resemble our type of model. For data- 
analytic situations with a limited number of time points and relatively large numbers of subjects, 
the structural equations approach, first exemplified in Joreskog & Goldberger's MIMIC model 
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(1975), provides an attractive approach to linear dynamic systems analysis (cf. MacCallum & 
Ashby, 1986; Oud et ai, 1990). However, whenever the number of time points becomes large, 
and is not accompanied by accordingly increased numbers of subjects, structural equations 
models have been reported to suffer from improper solutions (with for instance negative 
variance estimates, Bijleveld & Mooijaart (1993)). When only categorical variables are present, 
latent Markov chain analysis provides a family of models (van de Pol & Langeheine, 1989). Ad 
hoc adaptations of existing methodology may at times provide a suitable approximation to linear 
dynamic systems modelling. Examples can be given from multilevel modelling (Van der 
Leeden, 1997), growth curve models (Pothoff & Roy, 1964) as well as from various forms of 
non-linear multi-set analysis (Bijleveld & van der Burg, 1997). However, all such adaptations 
are in varying respects suboptimal. 

In the following, we will compare two approaches for linear dynamic systems analysis 
that have been advanced recently, the first by Bijleveld and De Leeuw (1991), the second by 
Bijleveld et at. (1994). Both estimate parameters and latent state variables from the observed 
data, using a non-recursive procedure for the latter. Either technique can be applied in case more 
than one series has been observed. Both approaches can in principle handle mixed measurement 
level variables, although this has as yet been implemented in the first approach only. We will 
first outline our model. Next we will compare the two approaches with respect to particular 
model specifications. We will compare the practical applicability of the two techniques through 
an empirical example, and conclude with recommendations for further research. 

Linear dynamic System for One subject 

Suppose thus that we have observed k input variables x and m output variables y, each at T 
consecutive occasions. We know that there is time-dependence in the measurements, which is 
modelled by supposing that the x influence the y through p-dimensional latent variables z. The 
state at time r, zt, depends linearly on the input at time r, xt. The output at time r depends 
linearly on the state at time t, zt. The z accommodate the time dependence in the measurements 
by following a Markov type of dependency: the state at time t, z,, depends linearly on the state 
at time M: z,^. As the state at time point t depends on the state at the previous time point M 
only, this implies that all information relevant for forecasting the present is contained in the 
previous state. As such, the latent states serve as the memory of the system. Although the 
dimensionality of the state may have to be quite high for capturing the dynamic nature of the 
latent state values, we want - given our behavioural paradigm - the dimensionality of the z to be 
small and preferably lower than that of the smallest of the dimensionalities of x and y. In that 
case, the z also filter the dependence of output on input. A visual representation of the linear 
dynamic model for one subject is in Figure 1. 

We can write this model for one subject as: 

zt - Ft zt-l + Gt x, + 5t 

yt = Ht z, + £t 

system equation 

measurement equation 

(la) 

(lb) 



40 

where Ft is the p x p state transition matrix at time point t, Gt the p x i control matrix at time 
point t and Ht the mxp measurement matrix at time point t. The vector of errors 5t is p x 1; Et 
is m x 1. The usual properties apply to 5, and £t, that is: 

-EtXZt.,;Et±xt; 

- St X z,^; StX xt; 

- E(Et) = E(6t) = 0 for each f = 1.T\ 

- E(Et'Et) is finite; E(8t'5t) is finite. 

Figure 1. Linear dynamic system for one subject. 

Note the inherent asymmetry in the model: the output depends on the input, and the present 
depends on the past. Model (1) is known under various names: linear dynamic system or 
model, state space model, longitudinal reduced rank regression model (cf. Ho & Kalman, 1966; 
Otter, 1986; Ljung, 1987; Hannan & Deistler, 1988; Aoki, 1990; Bijleveld & De Leeuw, 
1991). 

We want to investigate the impact of the input on the output, and to describe the 
relationships between the two sets of variables in as parsimonious a way as possible. As we 
(usually) have several input variables and (usually) several output variables, we are looking for 
a latent space for explaining the relation between X and Y that is of lower dimensionality than 
that of the X and the Y. 

We will first introduce a number of assumptions. We assume that the relations between 
the variables are time-invariant, that is, the transition matrices are the same across time points: 
Ft = F, Gt = G, Ht = H. While simplifying our model, these assumptions are also necessary 
in the sense that only when the transitions are time-invariant, we can be assured that the state 
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variable is indeed the same variable across time points. In matrix notation for one subject, for all 
time points simultaneously, the model can then be written as: 

Z = BZF + XG + D (2a) 

Y = ZH' + E, (2b) 

with Z the T x p matrix containing the latent states from time 1 until time 7", X the T x it matrix 
containing the input variables from time 1 until time 7, Y the 7 x m matrix containing the output 
variables from time 1 until time 7, D the 7 x p matrix containing the errors in the latent states 
from time 1 until time 7, E the 7 x m matrix containing the errors in the output variables from 
time 1 until time 7, and B the 7x 7shift matrix such that B(zj,...,zj) = (Zq,...^;.!). Several 
options are available for estimating , e.g. z0 = z^ z0 = zT or z0 = z. Note that, in general, B is 
identical to the well-known backshift operator from time series modelling. 

In (2), the unknown entities are the transition matrices F, G and H as well as the matrix 
of latent states Z. In practice, D and E are estimated as the prediction errors in Y and Z. 

There are several options for estimating the unknowns in (2) from the data. We follow 
Bijleveld and De Leeuw (1991) who proposed the following loss function: 

CTm(Z,F,G,H) = m2 SSQ (Z - BZF' - XG') + SSQ (Y - ZH’), (3) 

where SSQ stands for the sum of squares over all the arguments. The weight m determines the 
relative importance of the input and output, and the possible values for to define a class of 
solutions for (Z,F,G,H). As such, the solutions generated by minimisation of (3) are 
dependent upon the choice for m, and are thus in a sense arbitrary. In principle, (3) can be 
specified without the weight m, but this amounts to specifying m = 1. And even though this 
might appear rather unequivocal, also the choice m = 1 is - strictly speaking - not without some 
arbitrariness, as it gives a solution that is still dependent upon the normalisation of the 
variables. There are only two choices for m which are non-arbitrary: m = 0 and m —» 

Looking at equation (3), one can easily see that, when m becomes smaller, the first 
(input) part of the loss function is weighted by a smaller number, and any loss accrued in the 
system equation makes a smaller contribution to the total loss Om. The smallest value m can 
assume is 0. Then, any loss in the system equation has become totally irrelevant, as it is 
nullified by ro. In that case, the total loss is minimised by minimising only the second part: SSQ 
(Y - ZH'). Minimising (3) then amounts to a principal components analysis of the output 
variables Y. With the Z constructed as the principal components of Y, and given that p < m, 
this means that the linear space spanned by the latent state variables is a subspace of the linear 
space spanned by Y. In other words: the latent state variables are a linear combination of the 
basis of Y. 

Conversely, when to becomes larger, any loss accrued in the input part of the loss 
function will be weighted more heavily, and will thus makes a bigger contribution to the total 
loss am. In the limiting case where to —> the total loss can be minimised only, if loss from 
the system equation is zero, that is if Z satisfy Z = BZF' + XG'. In that case, the latent state 
variables are a linear combination of any basis of X and the initial state z0. The loss accrued 
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from the system equation is then 0, and the total loss equal to the remaining loss in the 
measurement equation. The space spanned by the latent state variables is then a subspace of the 
space spanned by the input variables and the initial state Zq. 

The reader may wonder why all the fuss is necessary, when in classical state space 
analysis methods such as those advanced by Kalman (1960) disregard a (thereby effectively 
varying to per time point, depending on the update scheme for the Kalman gain respectively the 
error terms Et and St), and simply solve (1) for Z? Such a comparison is flawed however, as in 
these methods assume that F, G and H are known, and that specific information on the error in 
the system and measurement equations is available. This makes it possible to arrive at a non- 
arbitrary solution. As we have no such information at our disposal in a behavioural context, we 
have to eliminate the arbitrariness in another manner. As stated above, the only two 
unequivocal solutions are <n = 0 and to —»<*>. As the option to = 0 is not relevant in a dynamic 
context, the only remaining interesting option is co —> Note that this is the straightforward 
longitudinal analogue of reduced rank regression analysis (Van den Wollenberg, 1977). 

The option o —»<*> thus amounts to finding Z that satisfy: 

Z = BZF' + XG' (4a) 

that simultaneously minimise 

SSQ (Y - ZH1). (4b) 

Note that now D = 0. Another way to view model (4) is as a principal component analysis of 
the output with restrictions Z = BZF' + XG' on the component scores Z. 

Extension of the linear dynamic model to N subjects 

The classical state space model, like many time series models, has been developed for the 
analysis of single subject designs. The model outlined above can however easily be extended to 
situations where more than one subject has been measured, orlV> 1. Several possibilities exist 
for the extension of the model to the simultaneous analysis of V > 1 designs (Bijleveld & 
Legendre, 1993; Bijleveld et al., 1991; Verboon & Heiser, 1990). The simplest of these seems 
to be through the construction of a super-data matrix, super-latent state matrix and a super-shift 
matrix. 

This can be envisaged as follows. We start by stacking the input and output data for the 
N subjects in an (NT x k) matrix XSUp and an (NT x m) matrix YSUp respectively, where we 
define NT as the sum of the respective numbers of time points 7", at which the N subjects have 
been measured: 

N 

NTs'Z Ti- 
i=l 

The Xsup and Ysup can be envisaged as follows: 
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If we similarly stack the latent state scores into an (NT x p) matrix of latent state scores Zsup, 
we can then construct an (NT x NT) block diagonal super-shift matrix Bsup using for each of 
the N blocks the shift operator Br See Figure 2. 

B, 

B 2 

B 
3 

B 
N-1 

Bn 

Figure 2. Block diagonal super-shift matrix Bsup. 

As we want to fit one model for all subjects simultaneously, we assume that the transition 
matrices F, G and H are the same across subjects: F; = F, Gj = G, H; = H. For N subjects, 
for all time points simultaneously, model (2) can then be written as: 

Zsup — BsupZsupF' + XsupG' + Dsup 

sup- 

(5a) 

Ysup — ZsupH + E. (5b) 
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Note that, as all measurements for the various time points are stacked vertically, the number of 
time points may very well differ per subject: Tj * T. Thus: persons may have been measured 
during series of unequal length. 

MODEL I: LINEAR DYNAMIC MODELLING USING MAJORISATION 

As can be seen easily, there are far too many unknowns in either (2) or (5) to solve the 
minimisation problem uniquely. Bijleveld and De Leeuw (1991) opted to minimise the loss 
function using Alternating Least Squares. Their choice was guided by the fact that the 
minimisation problem can be divided into two parts: on the one hand solving for Z, which is 
possible if F, G and H are known, and on the other hand solving for F, G and H, which is 
possible if Z is known. 

Thus, the minimisation problem was divided into two subproblems, that could each be 
solved by least squares minimisation procedures. Starting with an initial solution for Z, one 
obtains a sequence of solutions in which the loss is each time decreased, and which always 
converges to a solution. For details we refer to Bijleveld and De Leeuw (1991). To avoid trivial 
solutions, Z is standardised to Z'Z = TI and u'Z = 0 (with u a T x 1 vector with all elements 
equal to 1). Because of the restriction Z'Z = T1, estimates for Z cannot be obtained by 
ordinary least squares. Instead, the Bijleveld and De Leeuw algorithm uses majorisation to 
arrive at a solution for Z. Majorisation (De Leeuw, 1988) is a minimisation procedure in which 
a complicated loss function is minimised through the aid of a simpler loss function, which is an 
approximation of the complicated loss function in the sense that its values are always greater 
than or equal to the complicated loss function. Minimising the simple function, the complicated 
function is also decreased. The effectiveness and efficiency of the majorisation procedure 
depends of course on the appropriateness of the simpler 'majorising' function: the closer that 
function is to the original complicated loss function, the better performance is. In general, 
however, majorisation slows down convergence. 

One major advantage of the procedure proposed by Bijleveld and De Leeuw is that it can 
handle non-numerical variables. Adding a third substep to each iteration step, the categories of 
the variables can be rescaled according to their measurement level. Similarly, least squares 
optimal estimates of missing observations can be obtained. 

Implementation of the option co —> induces numerical problems, as it may lead to an 
ill-conditioned Hessian; this means slow minimisation and inaccurate solutions, a problem well 
known from penalty methods in minimisation theory (see e.g. Murray, 1969). In practice, the 
option to = 1 is thus used, with both input and output variables standardised to zero mean and 
standard deviation 1 to minimise arbitrariness. This standardisation is comparable to 
standardisations generally used in similar data analytic situations, such as factor analysis. 

Model II: Linear Dynamic Modelling using quasi-newton methods 

The second approach to linear dynamic modelling presented here was proposed by Bijleveld et 
al. (1994). It differs from the former approach in a number of respects. It has a somewhat 
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different model formulation in which, firstly, variables are not standardised anymore, as is 
usual in many instances of behavioural research. Instead, an intercept is added to the model 
equations. For N = 1, the model can thus be written as follows: 

zt = Fzt-l+Gxt + St+v (6a) 

yt = H z, + et + w. (6b) 

The vectors v and w have properties similar to the properties of intercepts in common 
regression models. In the following, the model equations have been written for one subject, but 
again can be generalised easily to situations where At > 1. 

We suppose that the latent state variables are a linear combination of the input variables 
and the initial state, in other words: 8t = 0. This means that we effectively implement to —> 
Equation (6a) then becomes: 

zt = F z,.! + Gxt + v, (7) 

We can write the equations for the successive time points as: 

zj = F z0 + Gxj + v 

z2 = F Z! + Gx2 + v = F (F z0 + Gxj + v) + Gx2 + v 

Z3 = F z2 + Gxj + v = F (F (F Zg + Gx j + v) + Gx2 + v) + Gx3 + v, etc. 

The state at time t can then be written more concisely as: 

t-l 

zt = Fkz0+X Fk(Gxt.k + v). (8) 
k=0 

Equation (8) shows that the state at time t, zt, is thus completely determined by z0, x,,..., xt, 
F, G and the shift v. Proof is in Bijleveld et al. (1994). Writing the system equations in this 
manner Z effectively becomes a linear combination of z0 and X plus an intercept term. 

Equation (8) also shows that the terms zt can thus be computed recursively once F, G, 
v and Zq have been estimated. Building on, and using the property that the latent state variables 
are a function of X and Zq, the loss function becomes: 

T m p 

^ — (yjt " ^jkzkt ~ (9) 
t=l j=l k=l 

where Hjk are the elements of the matrix H and zj^ is the £-th clement of the p-dimensional 
latent state variable at time point t. The matrix H and the vector w are determined by F, G, Zt v 
and the input variables. For each combination of these, H and w can be determined. 

It is now possible to estimate the values of the parameters for which the derivative of (9) 
is closest to zero with, for instance, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. 
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an algorithm generally known to be fast, efficient and stable (Fletcher, 1981). For details, see 
Bijleveld el al. (1994). 

Example 

For illustrative purposes, we will now compare the two models by analysing an example from 
psychosomatic medicine using each of the two models. We had at our disposal daily measures 
of well-being and distress that had been gathered in 59 healthy men and women in a study on 
menstrual symptoms (Bijleveld et al., 1980). The measures had been collected for 35 
consecutive days; this experimental time-span had been chosen to include at least one menstrual 
cycle for the female subjects. Men had been included in the sample to serve as control subjects. 
A self-administered questionnaire contained 53 items; it had been constructed from Moos's 
menstrual distress questionnaire (Moos, 1968) extended with 6 additional items reflecting 
positive moods that had emerged as meaningful in a pilot study. Subjects had indicated every 
day on a rating scale ranging from 1 to 6 whether they had 'no complaints regarding this item' 
(1) to 'many complaints regarding this item' (6). Factor analysis using the P-technique on the 
59 x 53 x 35 data box had produced nine factors (Van den Boogaard & Bijleveld, 1988). In the 
example here, we will further analyse the relations between the variables that constituted three 
of these factors. 

More particularly, we will investigate to what extent variables typically associated with 
pre-menstrual and menstrual distress such as water retention and abdominal pain influence 
concentration. For this purpose, we selected four variables reflecting symptoms of water 
retention and two variables reflecting symptoms of abdominal pain. These variables serve as 
input variables in our example. Five variables had been used as indicators of concentration; for 
reasons of simplicity, we summed these into one variable, which we label 'concentration'. This 
variable serves as our the output variable. The three-dimensional data for our example now 
have dimensionalities 59 x 6 x 35 for the input variables, and 59 x 1 x 35 for the output 
variable. See Table 1 for an overview. 

Table 1. Overview of Input and Output Variables used in the Example 

ABDOMINAL PAIN 
CRAMPS 
PAINFUL BREASTS 
SWELLING 
SKIN DISORDERS 
WEIGHT GAIN 

Output Variable 

CONCENTRATION 

The research question we will analyse is to what extent the above mentioned factors typically 
associated with pre-menstrual and menstrual distress influence concentration. Male subjects 
serve as controls in the sample. Female subjects could be divided into those using oral 
contraception (OC) and those using no oral contraception (NOC). The answers to all items had 



47 

been poled such, that high scores are unfavourable, reflecting high levels of complaints. For 
either model, we modelled one dimension for the latent state. For the first model, we set to = 1. 
For the second model, we set v = w = 0. For reasons of comparability, we did not optimally 
rescale the essentially ordinal rating scales of the input variables and/or output variable. For 
Model I, we used the default option for estimating z0, that is, we set z0 = z,. We modelled 
one dimension for the latent state. 

Model I 

The model converged to a solution with a standardised fit of .922. F was estimated at .934, 
meaning that there is a strong influence of the previous state on the present state. Because of 
possible multicollinearity, we do not interpret the coefficients in G, but the correlations of the 
input variables and output variable with the latent state values, computed over subjects over 
time points. These are given in Table 2. 

Table 2. Overview of Correlations of Input and Output Variables with the Latent State 

Input Variables Outrun Variable 

ABDOMINAL PAIN .285 
CRAMPS .330 
PAINFUL BREASTS .111 
SWELLING .344 
SKIN DISORDERS .209 
WEIGHT GAIN .364 

CONCENTRATION .954 

From Table 2, it appears that the latent state variable strongly resembles the output variable. 
Thus, we may infer that the latent state variable is best interpreted as reflecting concentration. 
The correlations of the input variables with this latent state then show that concentration is most 
strongly influenced by Weight Gain, Swelling, Cramps and Abdominal Pain, these variables 
constituting the most prominent menstrual distress aspects. Skin Disorders plays a lesser role, 
and Painful Breasts has a very low correlation, which is not surprising given that most male 
subjects will have given the lowest possible entries on this variable. 

The development of the latent variables over time has been summarised in Figure 3. To 
facilitate interpretation, we have averaged the latent scores for each of the three groups in the 
study, i.e. men, women using oral contraception (OC) and women using no oral contraception 
(NOC). For the women, the latent scores have been synchronised such that for each female 
subject, the score at day 1 in the figure is the first day of her pre-menstrual phase. As the pre¬ 
menstrual phase had been defined as the week before the onset of menstruation, menstruation 
starts for all women at day 8. As women’s cycles were of unequal length, the number of 
subjects decreases rapidly after day 28, so that we do not give the average latent scores after 
this day anymore, given that they are bound to become heavily influenced by attrition. For 
men, scores were synchronised such that for all men, day 1 was the first Monday in the 
research period, this being the day that was most often shared by the men as the first day they 
participated in the research. 

Looking at the level of the curves in Figure 3, we see that women using oral 
contraception occupy on average the highest level; as the variables were all poled such that high 
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values mean many complaints, this means that women using oral contraception generally report 
the highest level of complaints regarding concentration. Men assume an intermediate position. 
Women using no oral contraception report on average the lowest level of complaints. In a 
sense, this is surprising as one would expect women using no hormonal contraceptives and 
men to be on a somewhat equal footing, both being in a ‘natural state’. However, as 
‘treatments’ (contraception) were not assigned randomly, it is quite likely that the groups that 
were formed by natural selection differ with regard to other relevant aspects (e.g. the women 
using oral contraception may more often have had a partner; the women not using oral 
contraception may have been younger). Because of privacy reasons, demographic information 
for investigating such presumptions had not been made available. 

Figure 3. Synchronised latent state scores of men (extending up to day 35), women 
using oral contraception and women not using oral contraception (both 
extending up to day 28). 

When we inspect the development of the average latent curves over time, we see that the 
women using no oral contraception start out at a high group-specific level of complaints in the 
pre-menstrual phase. During day 1 and day 2 of the menstrual phase, concentration complaints 
are at their highest. From day 3 onwards, complaints decrease rapidly, remaining at a low level 
from day 13 onwards, i.e. after most women will have stopped menstruating. We see an 
increase and subsequent decrease between days 21 and 25, which might be related to mid¬ 
phase distress sometimes reported around the time of ovulation; however, given general levels 
of variability, it is hard to say whether this is a chance phenomenon or not. 

For the women using oral contraception, we see a steady increase of concentration 
complaints, from low levels at day 1 to the highest group-specific levels at day 6, which is the 
day the women in the sample - who all used a combination-type of containing pill containing 
oestrogen and progesterone - terminated their strip of pills. After two days, all women in this 
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group started their menstrual period, this menstruation being a withdrawal bleeding actually. 
After 6 days, concentration complaints start picking up again from day 14, levelling off in a 
step-wise fashion, and rising once more from day 25 onward. 

For the men, we see something of a swing during the first 7 days of reporting, from 
higher to lower levels and up again. After day 9, levels remain fairly constant, with some 
fluctuation. Even though the initial swing is not dramatic in the sense that it spans the range of 
values exhibited later on in the curve, it is remarkable. It is hard to say what may have caused 
it; one likely explanation for the initial decrease may be offered by the fact that in menstrual 
research subjects are well known to report generally higher levels of complaints during the 
beginning of the investigation period; as the men's average initial values are actually located at 
the beginning of the investigation period, this may thus emerge much clearer for the men than 
for the women, the sequencing in whose series has become jumbled because of the 
synchronisation to menstrual periods. 

While the developments of the women in the group using no oral contraception can thus 
be linked in an interpretable fashion to the menstrual cycle and pre-menstrual and menstrual 
periods therein, it is hard to associate the fluctuations in the group of women using oral 
contraception with the menstrual phase or with possible other hormonal changes through the 
period of pill use. Men can be shown to be variable in their reported levels of concentration as 
well. 

Model II 

The model first converged to a degenerate solution. This is a common though by no means sure 
occurrence in using Model II for A > 1 data. Given that the technique is free to estimate the 
initial state value for each subject i, it can be seen from Equation (8) that if zi0, v, F and G are 
estimated as: 

zi0 ® average (zit) 
v = 0, 
F = I, and 
G = 0, 

the model achieved will be 

and thus: 

t-1 

zit “ 1 ■ zi0 +X 
k=0 

1 . (0 x; t_k + 0). 

zit~ zi0- 

(8) 

This, in a meta-sense, provides a sensible approximation to the observed data structure: the 
latent state scores for each subject are estimated as his or her average output score, this being 
the simplest model to explain the observed variability in scores. However, as we are interested 
in mtraindividual as well as interindividual change, this is not a satisfactory solution. Given the 
fact that the dimensions are not necessarily orthogonal, it therefore seems most pragmatic to 
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circumvent the occurrence of this type of solution by replacing the scores yjtby scores y*t 

defined as: 

yit =yit- h. - 

in words: to center each subject’s scores around his or her mean. For forecasting purposes, the 
standardisation can always be made undone afterwards. 

After this standardisation, the model converged to a solution with a standardised fit of 
.787. It is to be expected that the fit be lower than that in Model I, as Model II is more 
restrictive. F was estimated at .993, meaning that there is now an even stronger influence of the 
previous state on the present state. Because of possible multicollinearity, also here we interpret 
the correlations of the input variables and output variable with the latent state values. These 
have been summarised in Table 3. 

Table 3. Overview of Correlations of Input and Output Variables with the Latent State 

Tnput Variables Output Variable 

ABDOMINAL PAIN .248 
CRAMPS .299 
PAINFUL BREASTS .076 
Swelling .313 
SKIN DISORDERS .168 
WEIGHT GAIN .319 

CONCENTRATION .757 

The pattern of correlations is fairly similar to that arrived at through Model I. The latent state 
variable again most strongly resembles the output variable, although the correlation coefficient 
is sizeably lower. This is to be expected as the latent state variable is now restricted to be a 
subspace of the space spanned by the input and initial state variable. Thus, we infer that the 
latent state variable is now best interpreted as a mixture of concentration and abdominal 
pain/water retention complaints. The correlations of the input variables show that this latent 
state is most strongly influenced by Weight Gain, Swelling, Cramps and Abdominal Pain. Skin 
Disorders plays a lesser role, and Painful Breasts has again a quite low correlation. 

The development of the latent variables over time has been summarised in Figure 4. To 
facilitate interpretation, we have again averaged the latent scores for each of the three groups in 
the study, i.e. men, women using oral contraception and women using no oral contraception. 
The cycles have been synchronised as described above for Model I. 

The developments in the curves in Figure 4 are different from those given in Figure 3 
for Model I. This is not surprising as the meaning of the latent variable is different now. We 
see how the From Figure 4 we see that the average development of the men is now very 
smooth. We also see that again men started at higher levels of concentration complaints. 
Similarly to the results from Model I, we see that the women using oral contraception again 
report the highest levels of complaints; they also vary most. (This is irrespective of the sudden 
jagged development around day 3 which is attributable to one starting value for z0 that was 
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extremely low and should perhaps be deleted; without the synchronisation of the curves, this 
odd value would remain at the starting point of the series and thus have much less of a 
distorting influence.) Similarly to their development in the curve derived from Model I, their 
levels of complaints increase once more towards the end of the menstrual cycle. The women 
not using oral contraception show a similar development as they did in the curve derived from 
Model I, with somewhat lower group-specific levels of complaints in the pre-menstrual phase, 
towards a peak in the first two days of menstruation, decreasing from day 9 onwards, and 
somewhat increasing and decreasing once more around days 21-25, again possibly reflecting 
mid-phase distress around ovulation. 

Figure 4. Synchronised latent state scores of men (extending up to day 35), women 
using oral contraception and women not using oral contraception (both 
extending up to day 28). 

Compared to the curves derived from Model I, women using no oral contraception now do not 
report the lowest levels of complaints any more. This is not surprising, as in Model I, the latent 
variable could be interpreted mainly as a concentration variable, whereas for Model II it 
incorporates menstrual distress to a larger extent. As men will generally report much lower 
levels on any of these menstrual distress variables, their scores on the latent variable are thus 
bound to be the lowest now. 

DISCUSSION 

One of the main advantages over existing methodology of the model proposed by Bijleveld and 
De Leeuw (1991) is that it can incorporate optimal scaling of nominal and ordinal variables. 
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Where traditional state space models allow the subsequent dimensions of the latent state to be 
non-orthogonal, the orthogonality of the latent state variables is thus in principle a restrictive 
feature of the first model. However, as the general solution is underdetermined, some 
restrictions are needed anyway; in addition, orthogonality has practical advantages as it 
simplifies interpretation which is our main focus. A second disadvantage of the first model is 
that the majorisation algorithm can at times be slow. Then, solutions are affected by 
standardisation, which means that some types of development (e.g. exponential) cannot be 
retrieved by the algorithm. Lastly, it is difficult to ensure that co This means that 
solutions are determined by an essentially arbitrary choice of normalisation, although the 
arbitrariness can be minimised by setting CO = 1 and standardising X and Y to zero mean and 
standard deviation one. 

In the second model, solutions for the latent state variables are always in the space of 
the input variables and the initial state z0 because of the way in which the model has been 
formulated. Variables may be left unstandardized. The estimation method is fast and reliable, 
but if the largest eigenvalue of the state transition matrix F is larger than 1 or even close to 1, 
the algorithm may run into numerical problems because of the exponential role of F in (8). A 
practical problem is that the nonorthogonality of solutions may make interpretation very hard. 
The technique has a lot of freedom in the choice of ZjQ. As our example showed, this may give 
rise to degenerate solutions, which can be circumvented by standardisation. And although it is a 
general property of linear dynamic models that latent state values can be interpreted reliably 
only after stabilisation after a number of time points from the starting point of the series, our 
example also showed that zi0 may sometimes assume eccentric values. The model should 
definitely be extended with an option for scaling of non-numerical variables. 

Both techniques can be used for situations with N > l, which is an eminently useful 
feature for a behavioural environment. At first glance, this gain comes at the price of a possibly 
problematic huge super-matrix Bsup (e.g. for moderate values of A = 100 and T = 20, Bsup is 
already 2000 x 2000). However, by making use of the property that it is very sparsely filled 
and simply structured, this aspect is of litde practical relevance. 

A number of practical aspects need to be resolved before either of the two techniques 
can be applied widely. The first of these is the formulation of guidelines for the choice of 
dimensionality of the latent state. Contrary to the forecasting focus of classical state space 
models and time series analysis in general, our main aim is interpretation. Thus, we do not 
want to find an exhaustive but a parsimonious model, and we are content with approximate, not 
necessarily exact, solutions. This means also that we want to find only a small, and actually 
very small, number of dimensions, for most real life applications 3 to 4 at the most. However, 
in neither of the two approaches do we have criteria to decide on the number of dimensions for 
Z. As dimensions are not nested, it is hard to apply an elbow-type criterion. In either of the two 
approaches, the dimensions of Z are in practice - though not exactly nested - somewhat 
comparable across solutions with varying dimensionality. One can in practice thus make do 
with an elbow-type of criterion. However, in the second approach the dimensions are not 
orthogonal and subsequent dimensions, while rendering the solution increasingly complicated, 
may add very little in terms of interpretation. Both approaches are thus in need of an objective 
criterion for choice of dimensionality. 
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The applicability of both techniques would be enhanced by guidelines for interpretation 
of the latent state variables. As in many comparable situations in correlational analysis, e.g. 
canonical correlation analysis, there may be multicollinearity, and instead of looking at the 
regression weights, we prefer to look at the correlations of the input and output variables with 
the state. However, when there is more than one subject, there are several ways to compute 
these correlations. To start with, they can be computed per subject over time points. This gives 
separate interpretations of the latent state variables for each subject. That would make it hard to 
compare subjects, but makes it easy to compare time points within subjects. A second method 
is to compute correlations per time point over subjects. That makes it easy to compare subjects 
at each respective time point, but comparison over time points is now hard. Thus, for the 
investigation of development, and thus for many of the areas in which one would be interested 
if one did linear dynamic systems analysis, this method seems inappropriate. It is most 
pragmatic (and this is what we did in the example above) to compute correlations over subjects 
over time points. At the cost of maybe overaveraging, this gives a general solution, where the 
latent state variables have identical interpretations over time points and over subjects, so that 
comparisons can be made across subjects as well as within subjects (that is, interindividually as 
well as intraindividually). 

A third practical consideration is the interpretation of subjects’ development on the latent 
state dimensions. While a lot can already be gained from simple visual inspection, it would be 
nice if objective criteria for interpretation were at hand. One possibility to approach this is by 
implementing concepts from individual differences modelling (Carroll & Chang, 1970) In that 
case, the individual latent state scores are decomposed into two components: zt and wp 

Zjt = Wj zt, 

in which the zt stand for the common latent state space, and the weights w, stand for the 
weights each subject attaches to each dimension of the common state space Z. The 
decomposition can be computed through some optimisation procedure similar to the ones used 
in individual differences modelling. As the weights reflect the importance subjects attach to the 
respective dimensions, the weights can be used to look for similarities and differences between 
subjects. Subjects share the same common solution of latent scores, but they differ in the 
importance they assign to the respective dimensions. In that case, we could compare subjects' 
positions in the individual differences space, and subjects' clustering on the dimensions can be 
interpreted. In all instances, efforts to understand subjects' developments on the latent state 
variables, will necessarily incorporate some type of simplification, as the wealth of analysis 
output necessitates this. 

Further research is also needed to establish the links of either of the two models with 
existing methodology for state space modelling. Most notable candidates for comparison are 
provided by the models as described in Caines (1988), Hannan and Deistler (1988), Aoki 
(1990). A likely outcome of such a comparison is firstly the non-recursive property of the 
estimation method for Z in Model I, the loss criterion that focuses on approximation of the 
observed series rather than on optimisation of forecasts through the model, and lastly the 
focuses of either model on low-dimensional approximation, where an overview with all its 
limitations prevails over the complexity of high-dimensional accuracy. 
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Both techniques should be supplied with features to provide information on the 
reliability of the estimates, e.g. the correlation coefficients. At present, in both approaches, the 
data are approximated and no distributional information is taken along. Given the ordered 
character of the values zt, the bootstrap-type moving blocks approach (Efron & Tibshirani, 
Chapter 8, 1993; Shao & Tu, Chapter 9, 1995) is an option for obtaining information on the 
reliability in time of the estimates. This approach cuts out 'chunks' of the time series, treating 
them as new subjects. The chunks, however, should be relatively long, which means that also 
the original time series must be pretty long indeed, and maybe very long for behavioural 
practice. If the series are shorter, another option is to randomly leave out measurements, 
estimating them on the basis of the model. The first model appears to be more suited for this 
given the possibility for least squares optimal estimation of missing values. A second 
possibility is to resample the residuals (Efron & Tibshirani, Chapter 8, 1993; Shao & Tu, 
Chapter 9, 1995). However, many time series models for behavioural data are non-stationary 
by nature, as in behavioural applications we are usually investigating developmental processes 
in which there is growth of some kind. Any changes in the sequence of measurements give an 
unnatural and ill-fitting disruption of the flow of the series. Of course, bootstrapping over 
subjects is always possible when N> l. This appears to be definitely one natural choice, as we 
are given our paradigm, definitely interested in stability over the independent replications. 

This leads the way to a quite useful feature that the two models share. Where cross- 
sectional methods derive stability from a suitably large number of replications over subjects, 
and where time series models derive stability from a suitably large number of replications over 
time, the two methods discussed here analyse over time points as well as over subjects. Thus, 
every subject adds T additional measurements to the data, or conversely; every time point adds 
N additional measurements to the data. Contrary to the rivalling - essentially cross-sectional - 
methods like structural equations modelling that derive stability from sufficient (and for time 
series applications usually unrealistically large) numbers of replications over subjects, it is 
likely that under hopefully mild conditions the essentially three-way methods proposed here can 
derive sufficient stability of the estimates at lower N and/or T than conventional time series or 
cross-sectional two way methods. An other way to say this is to say that N and T boost each 
other in terms of stability. In that case, the methods discussed here will be applicable for a 
much wider range of research situations, requiring fewer replications over subjects for a certain 
number of time points. In practice, this will mean that they will be an especially useful 
extension to the existing methodology for longer series obtained for smaller numbers of 
subjects. 
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