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Abstract 

The state space approach covers a very general class of dynamic models. Ex¬ 
amples are ARMA and ARMAX models as well as longitudinal factor and path 
analysis models. Originating from modern control theory, the state space ap¬ 
proach becomes increasingly popular in other fields as well. The paper first 
explains SEM state space modeling and parameter estimation. Then, using 
the Expectation-Maximization (EM) algorithm in combination with Kalman 
filtering and smoothing, the relationship to traditional A^ = 1 state space 
model parameter estimation is shown. Starting from the state space model 
in SEM form, the likelihood function is decomposed in a part for the state 
equation and a part for the output equation. A further decomposition using 
the assumption of time-invariant parameters leads to jV = 1 state space model 
parameter estimation. Because of the drawbacks of both decompositions, how¬ 
ever, the direct SEM approach without decomposition is preferred in the case 
of large N panel data. For the case of both N and T large (T the number 
of time points covered by the model), SEM overlapping cohort modeling is 
recommended. 

Keywords: ARMA model, EM algorithm, Kalman smoother, large N model¬ 
ing, longitudinal SEM model, maximum likelihood, missing data, prewhiten¬ 
ing, SEM, state space model. 
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SEM State Space Modeling of Panel Data and its Relationship to Traditional 
Single Subject State Space Modeling 

The state space approach, which is in the core of modern control theory 
and becomes increasingly popular in other fields as well, covers a very general 
class of dynamic models. In fact, all nonanticipative models (models with no 
causal arrows heading backward in time) can be represented in state space 
form. For example, both the Box-Jenkins ARMA model and the extended 
ARMAX model, which adds exogenous or input variables to the ARMA model, 
are easily formulated as special cases of the discrete-time time-invariant state 
space model (Caines, 1988; Deistler, 1985; Ljung, 1985). The state space model 
covers also longitudinal latent factor and path analysis models and allows the 
optimal estimation of the latent states or factor scores (Oud, van den Bercken, 
& Essers, 1990; Oud, van Leeuwe, & Jansen, 1993). Latent state estimation is 
performed by two important results of the state space approach: the Kalman 
filter and the Kalman smoother (Jazwinski, 1970; Lewis, 1986; Rauch, Tung, & 
Striebel, 1965). These results have additionally been proven to yield powerful 
methods for the estimation of the parameters of the state space model in the 
single time series (N = 1) case (Caines & Rissanen, 1974; Dembo & Zeitouni, 
1986; Mehra, 1971; Shumway & Stoffer, 1982). The methods are based on 
the iterative reestimation of the unknown latent states in conjunction with 
stepwise improvement of parameter estimates. 

Drawbacks of these parameter estimation methods stem from their re¬ 
striction to the A^ = 1 case, in particular the fact that the lack of independent 
replications in the N — l case makes it necessary to assume time-invariant pa¬ 
rameters and the necessity of observations from a large number of time points 
to obtain estimates with reasonably low variances. Also an asymptotic theory 
for T —» oc instead of —» oo needs to be considered. Recently it has been 
shown that the state space model may also be formulated in terms of a latent 
variables structural equation model (SEM) and its parameters estimated by a 
SEM program such as LISREL (MacCallum & Ashby, 1986; Oud et ah, 1990; 
Oud et al., 1993). Here the model is estimated on the basis of panel data, 
viewed as N independent replications of the random vector of all observed 
variables over all time points. In this approach with N large, the parame¬ 
ters may be chosen time-varying and the number of time points T may be 
arbitrarily small. The option of time-invariant parameters is retained by the 
possibility of specifying equality constraints between parameters. 

The present paper first explains SEM state space modeling and parame¬ 
ter estimation. Starting with the basic formulation, next latent time-varying 
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ARMA modeling, the introduction of exogenous or input effects in the model, 
and the state-trait model is discussed. Then, using the Expectation-Maxi¬ 
mization (EM) algorithm (Dempster, Laird, & Rubin, 1977; Little &: Rubin, 
1987) in combination with Kalman filtering and smoothing (Jansen & Oud, 
1995), the relationship to traditional N — l state space model parameter 
estimation is shown. Starting from the state space model in SEM form, the 
likelihood function is decomposed in a part for the state equation and a part for 
the output equation. A further decomposition using the assumption of time- 
invariant parameters will lead to the traditional N = 1 approach as given, for 
example, by Shumway and Stoffer (1982). The traditional approach may be 
extended to the TV > 1 case (Singer, 1993). Because of the drawbacks of both 
decompositions, however, the direct SEM approach without decomposition is 
preferred in the case of large N. For the case of both N and T large, SEM 
overlapping cohort modeling is recommended. 

State Space Modeling by Means of SEM 

The state space model consists of two equations: the dynamic part or 
state equation (Equation 1), which describes the dependence of the latent 
state variables in x( on their lagged values in xt_i and the static part or 
output equation, which connects the latent state variables to the observables 
in yt (Equation 2): 

x4 = Ai-jx,-! + with cou(w,_1) = Q,_i , (1) 

yt = Ctx( + v( with cou(vt) = R( . (2) 

The matrix A(_;l in Equation 1 contains the autoregressive and cross-lagged 
effects between the state variables at successive discrete time points t and t—l: 
t,t — 1 6 {fo,to+lj---,to + T — 1} for integers to and T > 2, with <o the initial 
time point and T the total number of time points considered. The output or 
measurement equation (Equation 2) is equivalent to the factor model equation 
in factor analysis with Ct the factor pattern matrix. Q(_i and Rf are the 
process error and measurement error covariance matrix, respectively. 

Instead of Equation 1, many econometric and social science models choose 
a so-called structural equation, which has x( at its right hand side as well as 
its left hand side. One of the advantages of the SEM approach is that the un¬ 
derlying structural parameters can be estimated instead of the state equation 
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parameters. This is possible even in combination with the Kalman filter and 
smoother, because before applying these devices the structural equation can 
be reduced to Equation 1 (Oud et ah, 1990). 

The process errors in successive vectors wt and the measurement errors 
in successive vectors v( are assumed to have (a) zero expectations: E(wt) = 
E(vt) = 0 for all t, (b) zero covariances between vectors: E(wt v(,) = 0 for 
all t and t', E(wt wj,) = £(v( v{,) = 0 for all t ± t' (nonzero variances and 
covariances for errors within vectors are in Qt and Rt), and (c) zero covariances 
with the initial state: £l(w( x(o) = E(vt x(o) = 0 for all t. Further, (d) the 
error vectors and the initial state are assumed to be jointly multinormally 
distributed. Finally, it is assumed (e) iJ(xto) = E(yto) = 0, implying ^(Xi) = 
E(yt) = 0 for all t. (See Meditch, 1969, pp. 168-169). Assumptions (a) 
through (d) are essential in state space as well as SEM modeling. Assumption 
(e) leads to the so-called ’’zero means” SEM model. Below this assumption 
will be dropped to obtain the flexible ’’structured means” SEM model which 
enables the estimation of the means structure in addition to the covariance 
structure. 

By taking in the SEM model equations, 

t] = Btj + ^ with eou(£) = \P , (3) 

y = \n + e with cov(e) = © , (4) 

*7 = K x't0+1... x;o+T_1]' and y = K y;o+1... y^+T-il' with t0 the initial 
time point and T the total number of time points considered, and putting 
the parameter matrices of Equations 1 and 2 on the appropriate places in the 
parameter matrices B, A, and 0, the SEM model is easily formulated 
as a state space model. Notice that the initial state xln, being exogenous or 
unexplained in the state space model, has zero rows in B and its covariance 
matrix $(o = B(xto x(J specified in 'P. The other nonzero elements of 9? 
are the process error variances and covariances in successive matrices Qf with 
t = t0,... ,t0 T — 2. Because all and only all the assumptions of the state 
space model are specified in the SEM model, the SEM model becomes fully 
equivalent to the state space model. Several parameter estimation methods 
can be used in most SEM programs (e.g. Joreskog h Sorbom, 1989, p. 16). 
Here the ML method is applied, which maximizes the loglikelihood function 
of the free parameters in parameter matrices B, A, 'S and 0, for given data 
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in Y: 

/V /V z) N 
e(0\Y) = -y log I S I -yMSS-1) - log2^ . (5) 

9 in Equation 5 contains the free parameters, YpXjv is the data matrix (N 
columns of independent replications of the p-variate vector y, typically origi¬ 
nating from a sample of randomly drawn subjects), £pxp Is the model implied 
covariance matrix: 

E = A(I - - S')-1 A' + © , (6) 

which is a function E(0) of 0, and SpXp — Y' is the sample moment or 
covariance matrix. The ML-estimator 6 — argmax £(91Y) chooses that value 
of 9 which maximizes £(0\Y). However, instead of maximizing Equation 5 the 
SEM program minimizes fit function 

Fml = log | E | +tr(SE'1) - log | S | - p (7) 

with the same result. Equation 7 only differs from Equation 5 in the negative 
multiplying constant —jj and an additive constant; S is based on the data and 
thus constant in the SEM fit function. 

In the frequent case of missing data as caused, for example, by panel 
attrition, the state space model naturally leads to the following EM procedure 
(Jansen & Oud, 1995; Oud & Jansen, 1996). In addition to being missing 
completely at random (MCAR), the procedure allows the data to be missing 
at random (MAR) in the sense of Little and Rubin (1987). Not the complete 
data loglikelihood f(#|Y) = £(0\Yot,s,Ymls) in Equation 5 but the loglikeli- 
hood f?(0|Yoj,s), given the observed data only, has to be maximized. As this 
cannot be done directly, the conditional loglikelihood expectation is deter¬ 
mined and maximized repeatedly by means of the SEM program. It depends 
on the observed data Y0i,s and parameter values 0T of the preceding M-step: 
EYm,3[£(0\Y)\Yobs,Or]. The expectation is taken over the distribution of the 
missing data Ymis given the observed data Y0bs and the current estimate 0T. 
For implementation of the EM algorithm the conditionally expected moment 
or covariance matrix Sr+i = Eymil(S\Y0i,s,6r) is to be calculated in the E-step 
and inserted for S in Equation 5. This is due to the fact that the loglikelihood 
function in Equation 5 is linear in S. Except for the replacement of S by 
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Sr+i, EYm„[^{0\Y)\Yoks,6T] does not differ from £(0|Y) in Equation 5 (which 
is handled in the SEM program by means of Equation 7, where again S is to 
be replaced by Sr+i). In case of no missing data ■HVmi3(S|Yro(,3,0r) = S, and 
EYm„{t.(0\Y)\Yobs,6T\ becomes equal to £(fl|Y) of Equation 5. The computa¬ 
tion of Sr+1 in the E-step requires the computation of the conditional expecta¬ 
tions for individual subjects, which are the Kalman filter and smoother values 
(Jazwinski, 1970; Lewis, 1986; Rauch, Tung, fc Striebel, 1965). A detailed 
explanation of the Kalman filter and smoother as well as the computation of 
Sr+i can be found in Jansen and Oud (1995) and Oud and Jansen (1996). 
In contrast to many ad hoc missing value procedures, in the last iteration of 
the EM procedure the SEM program produces the correct ML parameter es¬ 
timates 0 and model implied covariance matrix Y,(6) (see Equation 6), which 
are consistent and on the basis of which, under the usual independence and 
normality assumptions, correct asymptotic standard errors are computed by 
the SEM program. 

Latent Time-varying ARMA Modeling by Means of SEM 

In the state space model, curve shape is not only described but explained 
dynamically in terms of the effects of the random variables at previous time 
points on those at subsequent time points. The introduction of moving aver¬ 
age parameters as well as higher order autoregressive parameters in the ARMA 
model further enhances dynamic explanation power. In particular, the spec¬ 
ification of higher order effects extends the time span of past effects on the 
present. 

Fundamental for the state space model is the Markov or state separation 
property. This property, in fact, defines the concept of state. The requirement 
is that at each point in time the state be specified to be exclusively dependent 
on the just preceding state but not on states further back in time. This implies 
that the state must follow a first-order autoregressive scheme. Because, in 
addition, the state space model does not contain moving average parameters, in 
time series terminology it seems to cover only models of the order ARMA(1,0): 
first-order autoregressive and zero-order moving-average. Although special 
techniques are known from the literature, by which the state is reformulated 
and extended in such a way that ARMA models of arbitrary order fit into 
the reformulated state space model (e.g. Akaike, 1974; Deistler, 1985; Jones, 
1985), typically these reformulations (1) assume the ARMA model to be time- 
invariant and (2) do not fit into the SEM model. These problems are solved 
in the reformulation given below. 
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Instead of the state equation in Equation 1, the ’’standard noise” version 
in Equation 8 is chosen, which turns out to be an appropriate form for fitting 
in and estimating moving average parameters by means of the SEM program: 

Xj = + G(_iZ(_i with cov(z<_i) = I . (8) 

Equation 8 is more general than Equation 1, but reduces to the latter in the 
following way: and Q,-! = As the number of 
different elements in G(_x is larger than in the symmetric matrix Qi-i, iden- 
tifiability of the parameters in Equation 1 does not necessarily imply identifi- 
ability of those in Equation 8. However, by specifying (1) a diagonal matrix 
G(_i when Q(_i is diagonal or (2) a triangular matrix G*_! when Q(_i is 
nondiagonal, the number of parameters in both equations is the same and the 
elements of either set can be expressed in the elements of the other one. Also, 
the estimates of the elements in either set can be used to derive estimates for 
those in the other set. Estimating G*_i, however, and deriving the estimate 
°f Qt-i as the reduced form Q(_i = Gt-iG^j has the additional advantage 
of preventing any negative diagonals (variance estimates) showing up in the 
direct estimate of Qi-x (see Joreskog & Sorbom, 1989, pp. 239-240). Non- 
triangular forms of G^x may also be specified but require more complicated 
identification techniques which are outside the scope of the present article. 

The next step is reformulating the state and the state space model in the 
following way: 

x4 
z( 

A(_i Gf_i 
0 0 

xt-x 
Z(-1 

+ 0 
Z( 

A°_i x°_x 

with ccw(w°_i) = = 

+ w°t_i 

0 0 

0 I (9) 

y< = [ C, 0 ] x° + v, with cov(vt) = R, . (10) 

The reformulated state space model combines the latent vectors X( and z( 
in the reformulated state x°. The idea behind the reformulation is that by 
putting the noise zt at time point t in the current state x°, at the next point in 
time it becomes available as Z(_x in the lagged state x°_x to contribute to xt in 
the new state x°. Although more general than Equations 1 and 2, Equations 
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9 and 10 are at the same time in the form of Equations 1 and 2 and fit as 
easily into the SEM model. 

The extension of Equation 8 and of the corresponding state space model in 
Equations 9-10 to arbitrary ARMA(p, q) order is now straightforward. Equa¬ 
tion 11 shows the ARMA(2,1) example which adds to Equation 8 the second- 
order autoregressive term Ali(_2Xi_2 and the first-order moving average term 

Xt = Atit_2X(_2 + Gti(_2Zt_2 + -|- . (11) 

The special identification problems associated with the introduction of moving 
average parameters are addressed in Oud and Jansen (1995). Equation 11 is 
still not in state space form, because Xt is specified to be dependent not only 
on x(_i but also on x(_2 of lag two. However, the next reformulation in terms 
of new lag-one state x°_i and corresponding current state x° is in correct state 
space form, appropriate for use in Kalman filtering and smoothing, and fits 
again into the SEM model: 

Xi-l 

zt-i 
X( 

. Zt . 

0 0 10 
0 0 0 1 

Aiii_2 G(it_2 Attt-i Gti(_1 
0 0 0 0 

Xt—2 

Zt-2 

X|_l 

+ 

L zt-i 

■ 0 
0 
0 

Xt A0t_ + W°t_l 
(12) 

yt — [ 0 0 Ct 0 ] x0, + v, . (13) 

Extension to higher order ARMA(p, q) models is obtained simply by adding 
pairs Atit_,Xt_, and °f increasing lag i to Equation 11 and extending 
correspondingly the state and state space model in Equations 12-13 until i = 
max(p, q + 1). Notice that the reformulation keeps track of the identical 
parts in current state x° and lagged state x°_i by inserting submatrices I on 
the second upperdiagonal of A°_i- Notice also, that in collecting the state 
variables in the SEM model vector T), the identical parts in successive state 
vectors x° need only to be specified once. 
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Introducing Exogenous or Input Effects into the State Space and SEM Model 

Because the traditional SEM model specified zero means, it did not allow 
to study and predict nonzero mean development over time. Zero means state 
space and SEM modeling, E(yt) = E(xt) = 0 for all t, is appropriate, if the 
data are generated indeed by zero means processes. If this is not valid, as is 
typically the case for real life data, a popular way of getting rid of nonzero 
means in the sample, while keeping the assumption E(yt) = E(xt) = 0 for all 
t, is subtracting the sample means from the data and dividing by jV — 1 in 
the computation of the sample variances and covariances. However, if instead 
of this deviation score transformation of the data, one simply wants to model 
and estimate explicitly the means process parameters in addition to those 
of the covariance structure, the state space model and corresponding SEM 
model need to be extended with fixed so-called input-effects ^ 0 and 
DiUt ^ 0 and also the assumption E(xto) = 0 may be dropped: 

X( — At_iXt_i + + w*-!, (14) 
y< = C(x( + D,Ui + V; . (15) 

This realizes great flexibility in the specification of mean trajectories for latent 
and observed variables: 

E(xt) = A^K) + £ Afc+xBfcU* , (16) 
k=to 

t-l 

E(yt) = CtA(i(o£(xi0) + Ct £ + D(ut . (17) 
k=to 

t-t0 

Here A^:to = A-t-k is the well-known state transition matrix, also defined 
k=l 

for t = t0: = Attt = I (Desoer, 1970, p. 71). 

In one special case only a single, so-called unit input-variable is specified 
(ut — 1 for all t), which is constant over time points as well as over subjects 
in the sample (Joreskog & Sorbom, 1989, pp. 273-275). Here the vectors 
b(_j represent latent growth intercepts and the vectors dt location parameters 
(origins) of the measurement instruments. The model implies a means process 
which is common to all subjects in the sample. In another special case the 
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input-vaxiables are all constant over time (u, = u(_i for all t and k > 0) but, 
apart from the unit input-variable, varying over subjects. This gives rise to 
the longitudinal SEM model with background variables (gender, socioeconomic 
status, etc.). In the general case, considered here, additional input-variables 
are specified that vary over time points as well as over subjects. 

Whether E(x(o) = 0 or E(xto) yt 0, in both cases Equations 16-17 can 
be written more succinctly by 

£(xt) 

E(yt) 

t 

y, , 
k—to 

t 

ct y Ai k^k- + D(u( 
k=to 

(18) 

(19) 

where because of 

£(x(o) = Bto-iUto-r , (20) 

EiVto) = ctoE(xt0) + E>t0uto , (21) 

the initial state mean E(xto) is modeled by means of an additional matrix 
B(o_i, to be specified zero except, in the case of E(xto) yt 0, for the elements 
corresponding to the unit input variable in u(o_1. The value and identifiability 
of E(x.t0) depend on the choice of Dto as well as of the factor loading matrix C(o. 
The choice of the latter additionally determines the value and identifiability of 
the initial state covariance matrix <&io = E([x.t0 — E(x(o)] [x(o — ^(xt,,)]'). In 
fact, these choices determine the measurement scales (origins and measurement 
units) of the latent state variables. For example, by specifying values 0 and 
1 on specific places of, respectively, Dto and Cto, the latent measurement 
scales are chosen equal to those of specific observed variables in y(o. Special 
identification techniques are needed, however, to guarantee that the latent 
measurement scales maintain the same origins and measurement units across 
the whole time range (Oud et ah, 1993, pp. 15-16). 

For deriving the SEM model first write Equations 14-15 in the following 
form: 

Ui 
Xi 

0 0 

B(—i A(_! 
W-i 

Xf-l 
+ 

Ut 
Wt_l 

(22) 
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U( 
yt 

i o 
D( C( 

u( 
Xi 

0 
Vt 

(23) 

Next, collecting all input-variables in the input-vector u but specifying the 
constant input-variables (e.g. the unit input-variable) and other exactly lin¬ 
early related input-variables only once in u, and defining 

T? = [u'x']' with x = [x;o X;o+1 ... x^j-.,]' 
C = [u'w']'with w = [[xt(>-£;(xl0)]'w;o .. 
y = [u'y^]' with y0 = [y;o y;o+1... y(0+r_! 
e = [o'v']' with v = [v;o v;o+1... v;0+T_j] 

io+T-2. 

the SEM model is derived as follows: 

u 
X 

V 

0 0 
R A 

B 

u 
w 

c 

i o 
D C 

y = a 

u 
yo 

n + 

o 
v 

e 

(24) 

(25) 

where all parameter matrices A^j, Bf-!, Ct, D, are put on the appropriate 
places in A, B, C, D, respectively. Notice that in x the initial state xio gets 
zero rows in A but B(o_1 in B for modeling its mean E(xto), which therefore 
is subtracted from xio in w. From Equations 24-25 one derives 

u 
yo 

i o 
C(I — A)-1B + D C(I-A)-1 

y = A(I-B)-1 C + 

(26) 

£ 

Because 
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(I-A)"1 

I 
A t0 I 

*0 *0+1 

n a, n a* 
k=t0+T-2 k=t0+T-2 

o 1 

(27) 

A(o+T-2 I 

and i?(w) = 0 it is easily seen that the means of the yt in y0 of the SEM 
model equal those given by Equation 19 or 17. 

Defining 

D0 = C(I — A)_1B + D and CQ = C(I - A)-1 

Equation 26 becomes 

u 

yo 

i o 

Do Dq 

u 
w 

y = A(I-B)-1 C + e 

(28) 

Writing the random vector yo of the SEM model in terms of D0 and C0: 

y0 = D0u + C0w + v , 

its mean and covariance matrix are found to be: 

Mo = ^(yo) = Dou , (29) 

E0 = cov(y0) - E[(y0 - Mo)(yo ~ Mo)'] 
= E[(C0w + v)(C0w + v)'] 

= Co^oCq + ©o (30) 

where 

^o = E(ww') and ©0 = E(w') . 

The loglikelihood function then becomes 
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^|Y) = -vlog|S0 
1 N 

-^E(yo 
z .=1 

Moi) So (yoi Moi) 
PoN 

log27T , (31) 

where both y0, and fil)t have subscript i because u may vary over subjects. 
In contrast to /x0l) however, S0 is assumed common to all subjects. In fact, 
each subject in the sample is considered to be drawn from one o{ N' < N 
distinct but, apart from the specific u, equally distributed populations, having 
in particular iJ(x(o), $to and all other parameter values equal. If q is the 
number of (fixed) elements in u, the set of N' fixed values u, in the sample 
must contain at least q linearly independent ones. An important advantage of 
u being fixed is that no distribution needs to be specified for its elements, which 
even need not be interval scale variables (e.g. income) but may also be dummy 
variables representing simple group membership (e.g. gender). Stochastic 
input variables can be handled too by adding them as extra elements to the 
state vector x(, while adding their observables as extra elements to y( (Oud et 
ah, 1990, pp. 400-401). 

Most SEM programs do not maximize the loglikelihood function as given 
in Equation 31. However, it can be proven (see Appendix A) that minimizing 
the SEM fit function 7 on the basis of the sample moment matrix, augmented 
with the input variables, gives the same result as maximizing Equation 31. 

State-trait model 

An important aspect of the model is whether and towards which value 
or trajectory the state regresses. While in the zero means model (Equations 
1-2) stabilizing feedback (all eigenvalues of within the unit circle in the 
complex plane) implies that the state regresses towards the common mean 0, 
in the nonzero means model (Equations 14-15) 

(-1 

£(Xi|x<0) = A,(oxt0 + Y, A.i+iBr-u* (32) 
k=t0 

t-l 

£(x(|xio) - Y A,i+iB,fcUfc = A,«oxt0 
k=to 

or 
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and stabilizing feedback from t — 1 to f implies ||*4i,<ox(oll < ||-^i-i,(ox(0|| 
for all w4i_litoxto ^ 0 and 

||£(xt|Xt0) - Yj A,4+iBjtUfc|| < ||£(X(_1|X(0) - Y 
k=t0 k=t0 

for all A-i,ioxt0 / 0 . (33) 

Starting from arbitrary initial state xio ^ 0 the expected state decreases be¬ 
tween f — 1 and t its Euclidian distance to the trajectory YlkJtc B^u^. 
Thus regression is towards 

E(X(|x(o = 0) = A.jc+iBfcU* , (34) 
k=to 

which is the conditional zero-initial-state mean E^Xilx^ = 0) or the uncon¬ 
ditional mean E(x() for E’(x,0) = 0. This mean towards which the state 
regresses, is common again to all subjects, if the only input-variable is the 
unit input-variable. It may also be subpopulation specific, however. If one 
extra input-variable is, for example, gender, regression is towards the mean 
of the subpopulation of males or subpopulation of females. More generally, a 
subject’s state regresses towards (egresses from) the mean of the subpopula¬ 
tion of subjects sharing the same input history U[to,(). Notice that in the sample 
only one subject may happen to be present from such subpopulation. 

The question arises whether one could specify a model which makes a sub¬ 
ject regress to (egress from) its own mean instead of that of some (sub)popula- 
tion it shares the input history with. This is possible indeed by adding to the 
state equation constant (over time) random subjects effects £: 

x( = Aj-iXt-i + £ + B(_iU(_i + W(_x . (35) 

These constant random subject effects became very popular in econometric 
panel analysis (see e.g. Baltagi, 1995) and are sometimes called ’’trait” vari¬ 
ables. A trait variable may be specified for each of the state variables. It 
can be characterized as a random (but constant over time) intercept term, 
to be contrasted to the fixed (but possibly time-varying) intercept, associated 
with the unit input-variable. Because of the specification E(£) = 0, £ may be 
viewed as the subject specific deviation from the common fixed intercept. It 
is assumed to be normally distributed over subjects. 

In the state-trait model 
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t-i <-i 
i?(X(|xto,£) = A,(oX(0 + ^2 + ^2 , (36) 

A:=<o k=to 

and a subject’s state regresses towards the subject specific mean 

t-i t-i 

E{xt\xt0 = 0,^) = J2 A,fc+1^+ J2 A,k+^kUk , 
k=to k=t0 

(37) 

which keeps a subject specific distance Ylk2ta from the (sub)popula- 
tion mean So, while keeping the advantages of large N 
modeling, in a sense the state-trait model specifies for each of the subjects 
in each (sub)population a subject specific TV = 1 model, causing regression 
or egression to be to or from this mean trajectory instead of the one of some 
arbitrary (sub)population which happens to be chosen by the researcher. 

Reformulating the state-trait model as follows: 

xt 
£ 

At_! I 
0 I 

X(-l 

£ 
+ B(_i 

0 
U!-l + wt_i 

0 
(38) 

Xt A°_ X(-l + B°t-i U(-l w“(_l 

y( = [ Ct 0 ] x°( + D(U( + v( , (39) 

makes clear that it is nothing more than a special case of the state space 
model and may be fitted accordingly into the SEM model and its parameters 
estimated by means of the SEM program. The constancy over time makes 
that £ should also be considered part of the initial state xto 

Xi0 = A(o_1xto_1 + £ + B(0_1u(o_1 + , 

so that £ and x(o in 

xio+1 = A(o x(o + £ + Bi0u<0 + wto 

cannot be assumed to be uncorrelated and the initial state covariance matrix 
in the SEM model becomes: 

$ O to ^.-.0 
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Significance tests on the existence of constant random subject effects can easily 
be performed by the SEM model: both the variances of the trait variables in 
<f>^ and their covariances with the initial state variables in 3>zt0,{ are testable 
quantities in the SEM model, required to be different from 0 (Baltagi, 1995, 
p. 125). Being constant variables, the trait variables need not be repeated 
for successive time points in the SEM model but may be specified once, while 
trait variables with nonsignificant variances may be deleted. 

The benefit of the recursive state space specification in Equations 38-39 is 
that the Kalman filter can be used to optimally estimate for each subject the 
constant value of each trait variable in addition to the changing values of each 
state variable. The (changing) Kalman filter estimates of the constant trait 
value become more precise as time proceeds (because of the constancy, how¬ 
ever, the Kalman smoother does not improve upon the results of the Kalman 
filter). So, like the polynomial random effects model (Bryk & Raudenbush, 
1987; Willett & Sayer, 1994), the state-trait model allows different kinds of 
random subject effects to be specified, tested and their variances and covari¬ 
ances as well as their values estimated. In contrast to polynomial curve fitting, 
however, the state-trait model gives a causal dynamic description of the curves. 

Linking the Large N SEM Parameter Estimation Procedure to the 
Traditional N = 1 Procedure 

In fact, different procedures for estimating the state space model param¬ 
eters exist in the TV = 1 case. Well-known are the prediction error decom¬ 
position procedure (Caines & Rissanen, 1974; Mehra, 1971; Schweppe, 1965), 
using the Kalman filter and the first procedure for which complete consistency 
results have been obtained (Caines, 1988, p. 411), and the more recently de¬ 
veloped EM-prewhitening decomposition procedure (Dembo & Zeitouni, 1986; 
Shumway & Stoffer, 1982; Singer, 1990), which in addition to two decomposi¬ 
tions uses the Kalman smoother. As important computational advantages are 
claimed for the latter procedure (Shumway &; Stoffer, 1982, p. 255; Singer, 
1990, p. 82) and the use of EM additionally solves the missing value problem, 
the EM-prewhitening decomposition procedure will be concentrated upon here. 
Starting from the SEM model loglikelihood i(0\Y) the procedure is derived 
in two steps. The first step introduces the EM decomposition and the second 
step the prewhitening decomposition, which is based on the extra assumption 
of time-invariance. 
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EM decomposition 

As an alternative for the maximization of l(8\Y) in Equation 5 or 31 
(minimization of Fml in Equation 7) EM can be used even when Y contains 
complete data. Combining all latent states in the mT X N matrix X (m the 
number of state variables in state vector x( and mT the total number of state 
variables in rj), it consists of considering the latent unknown X as the missing 
data. Bayes’ formula enables one to decompose the complete data loglikelihood 
£(0|Y,X) into separate loglikelihoods for the structural (state equation) and 
measurement (output equation) parts of the SEM model: 

£(0|Y,X) = ^(6»|X)+^(0|Y|X) 

= ^(0s,*|X)+^(0A,e|Y|X) (40) 

Writing £„ = (I-iJ)-1®^-^')-1, S„ = ^X X', and S£ = £(Y-AX)(Y- 
AX)' = S + AS,,A' — SyXA' — ASr y one derives the separate loglikelihoods: 

N N mTN 
^fl,*|X) = -ylog|XJ-Ttr(S,E-1)-^llog2^, (41) 

N N t) /V 
<?(0A,e|Y|X) = _-log|© |-^tr(S£0-1)-^log27r . (42) 

The measurement part in Equation 42 now takes the form of a restricted 
regression analysis problem. 

The conditional loglikelihood expectation to be maximized iteratively in 
EM decomposes accordingly: 

£xW0|Y,X)|Y,0r] = £x[^s,#|X)|YA] + 

£xW0A,e|Y|X)|Y,0r] (43) 

Implementation of the EM algorithm by maximizing Equation 43 in the M-step 
requires substituting in Equations 41 and 42 the unknown and the unknown 
X in S£ by, respectively, S„,r+1 = Ex(S„|Y,0r) and Xr+i = E;x(X|Y, 0r), 
leading to the Kalman smoother in the E-step (Jansen & Oud, 1995). It can be 
proven that (Singer, 1993) the successive EM estimates <?r+i = [QB ^ 0A 0]'+1 = 
argmax fJx[^(^|Y, X)|Y, 0r] converge to the maximum likelihood estimate 
argmax £(6\Y). This implies that the separate maximization of Equations 
41 and 42 (e.g. by means of the SEM program but also by means of any 
observed variables structural equation modeling program), using and iter¬ 
atively inserting Kalman smoother estimates, leads to the same parameter 
estimates as the direct maximization of Equation 5 or 31. Disadvantages 
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of the indirect decomposition procedure are that no cross-restrictions be¬ 
tween the parameters in 0and #a@ are possible, that no correct stan¬ 
dard errors are provided which must be computed separately (using £(#) 
according to Equation 6 and computing the information matrix as explained 
e.g. in Joreskog, 1973), and that the Kalman smoother estimates need to 
be computed for all subjects, not only for subjects with missing data in 
Y. In the case of missing data in Y, X)|Y, 0r] in Equation 43 
is replaced by i?ymj,,x[^(0|Y,X)|Yois,0r], and therefore S and in Equa¬ 
tion 42 by, respectively, Sr+i = £ymis(S|K,ts, flr) mentioned previously and 
Sy.x.r-fl — $,-)• 

Prewhitening decomposition 

The next step is the prewhitening decomposition, which is motivated by 
the fact that in the IV = 1 case no replications are left in the loglikelihood 
functions of Equations 41-42. Replications must be introduced in an alter¬ 
native way. Instead of replicating over subjects one could replicate over time 
points, replacing N by T in Equations 41-42. Evidently, this cannot be done 
without the assumption that the data at successive time points obey the same 
parameter values, that is, are produced by a time-invariant model. This solves 
only part of the problem, however. The loglikelihood function also assumes 
replications to be independently distributed. Some authors (e.g. Molenaar, 
1985; Molenaar, de Gooijer, & Schmitz, 1992) have performed LISREL analy¬ 
ses, using Equation 7 instead of EM, by filling out the N columns of the data 
matrix with stretches from one and the same time series, the stretches show¬ 
ing overlap in time (so-called windowing technique). This procedure, however, 
introduces strongly dependent data in the data matrix (different columns con¬ 
taining exactly the same data), the dependence remaining unaccounted for in 
the formulation of the loglikelihood function as used by LISREL and other 
SEM programs. It causes the maximum likelihood property to be lost and 
produces invalid standard errors and significance tests (Joreskog, 1973, p. 88; 
Joreskog & Sorbom, 1989, p. 162). There is, however, a solution outside of 
SEM, called prewhitening, which yields correct maximum likelihood results 
in the ./V = 1 case. The term prewhitening stresses that, in contrast to data 
produced by random sampling, time-dependent data need first transformation 
to independence before being usable as replications in the loglikelihood func¬ 
tion. It should be noted that no new or hidden assumptions are involved in 
the derivation of the transformation except those of the time-invariant state 
space model. 

The prewhitening decomposition of Equation 41 for a single subject, de- 
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rived by introducing time-invariance (Ato — A(o+i = ■ • • = A(o+t_2 = A 
and Q!o = Q(„+i = • • • = Qto+T-2 = Q), is as follows (see Appendix B): 

—2log l^‘ol - 

T - 1 1T^’ 
-log IQI - ^E(x‘<=+3 - Ax(0+j_i)'Q^1(x(o+j - Axi0+J_1) 

z z j=i 

— constant . (44) 

In an analogous but somewhat simpler manner than in Appendix B one finds 
that the regression analysis problem over subjects in Equation 42 becomes 
in decomposed form over time points for a single subject, assuming time- 
invariance (C,0 = C(o+1 = ■ ■ • = Cfo+T.j = C and R(o = R(o+1 = • ■ • = 
R-fo+T-i = R-). 

^(0A,e|y|x) = — ?log|R| — rX^(y‘0+i — Cxt0+J)'R 1(y(0+j — Cxio+j) 
z z ; =o 

— constant . (45) 

The data transformations are seen to consist in the subtraction of AXi0+J_1 
and CX(0+j from xio+J and yt0+j, respectively. Together Equations 44-45 form 
the complete data loglikelihood as given, for example, by Shumway and Stoffer 
(1982, p. 256), to be maximized by EM. Note that because of the input-effects 
in the nonzero means case (Equations 14-15), instead of Axi0+j_1 and Cx(o+j, 
Ax(0+j_j + Bu!o+j_] and Cx(0+J +Du(0+J- have to be subtracted, respectively. 

As indicated, the SEM program does not work in the N = 1 case and so 
for this case cannot be proven to give the same result. However, Equations 
44-45 generalize to arbitrary N as follows: 

^(0B,*|X) - 

- |]CxU$tVx'.to 
N(T - 1) j /v 
—--log IQI - ~^^(x,it0+j - Ax,ii0+J_1)'Q ‘(x,- Ax,i(o+j_1) 

z z.=ij=i 

(46) — constant 
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£(0A,e|Y|X) 

NT 1 N r_1 
-^-iog |R| - ^EE(y..to+J - cx,,t0+i)'R-1(y.,<o+J - cx„(0+J) 

Z Z t=l j=0 

— constant (47) 

or written in terms of the sample covariance matrices Sfo = jj x‘,tox 

= N{T-\) Si=i Hj=l w>,<o+j w>,t0+j ’ arl<^ ~ Wf Ei=l E’=o V*.ii 

for initial state x,it() and transformed w,ito+;) = x,i(o+J — and v,ito+j 
yi,!o+j — C'xi1to+i: 

t.^O ’ 

-ylog|$t0| - ytrCS,,,^1) 

_N(T- f) lQg |Q[ _ N(T- 1)tr(S^Q-1) - constant , (48) 

*(0a,0|Y|X) =-— log |R| - —tr^.R-1) - constant . (49) 

Putting Equations 48-49 instead of Equations 41-42 in Equation 43 and maxi¬ 
mizing the result by EM constitutes the EM-prewhitening decomposition pro¬ 
cedure for arbitrary N. A computer program applying this procedure is de¬ 
scribed by Singer (1990, 1993). It differs only from the EM decomposition 
procedure (Equations 41-42 in Equation 43) in the M step. The derivation of 
both as alternative maximization procedures of the SEM model loglikelihood 
proves that, for a time-invariant SEM model and a sample size N large enough 
to make S in the SEM procedure positive definite, the parameter estimates at 
the maximum in both procedures coincide with those of the SEM procedure 
(Equation 5 or 31 as handled by minimization of Equation 7). 

Comparison of the prewhitening Equations 48-49 with the non-prewhit- 
ening Equations 41-42 and with the original SEM Equation 5 or 31 shows that 
(1) the number of replications increases from N (non-prewhitening) to NT 
in Equation 49 and N(T — 1) in Equation 48, both over subjects and time 
points simultaneously, (2) the matrices of order mT x mT or rT x rT (m the 
number of state variables and r the number of output variables per time point), 
especially rT x rT matrix S, vanish, collapsing into much smaller matrices of 
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order m x m (Equation 48) and r x r (Equation 49), (3) as a result of the 
initial state x,i(o remaining necessarily untransformed, its covariance matrix 
$<0 keeps a separate part in Equation 48, being estimated on the basis of N 
replications only. 

The last point implies a typical problem for the iV = 1 case. Although 
the initial state can be estimated by means of the Kalman filter and smoother 
in the N = 1 case, by lack of replications its mean and covariance matrix 
cannot be estimated or only extremely unreliably: fixing the mean leaves only 
a single replication for estimating the covariance matrix and vice versa. In 
practice = 1 research is forced to fix both the initial mean and the initial 
covariance matrix at some arbitrarily chosen values (Shumway & Stoffer, 1982, 
p. 257). This is one of the reasons an asymptotically stable model has to be 
assumed in the ./V = 1 case, to guarantee that the influence of the initial value 
choices dies out over time, requiring also the time series available for analysis 
to be quite long to get reasonably reliable estimates (T large). 

Pros and Cons of SEM State Space Modeling 

Considering the pros and cons of SEM state space modeling, it is clear 
that the availability of data from a single or few subjects excludes SEM as 
an option. Many research problems in the social and behavioral sciences re¬ 
quire generalization of the results to a well-defined population, however, and 
thus use samples with large TV. For large TV, the drawbacks of the decom¬ 
positions as used in the EM-prewhitening decomposition procedure are the 
advantages of SEM. First of all, SEM offers extreme freedom in the choice 
of time-varying (nonstationary) models. This also is of crucial importance in 
social and behavioral science, because the causal mechanisms governing hu¬ 
man development as well as the available measurement instruments and their 
characteristics typically change over the life span. For example, there may 
be increase or decrease in the autoregressive and cross-lagged effects of the 
state variables over time and there may be change in the strength of the input 
effects as well. In contrast to SEM, the time-invariance requirement of the 
prewhitening decomposition rules out the possibility of estimating and testing 
the existence of such changing parameter values over time. 

Because SEM replicates exclusively over subjects, the number of time 
points may be taken arbitrarily small. Also, there is no need considering an 
asymptotic theory for T —> oo. Especially the asymptotic stability assumption, 
needed additionally to the time-invariance in consistency proofs for the TV = 1 
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case (Caines, 1988, p. 412), becomes superfluous. Instead the standard theory 
for A1' —> oc is applicable. This does not take away the merits of a stable model. 
However, in SEM state space modeling asymptotic stability does not enter as 
a prerequisite for consistent parameter estimation, nor is a large T required. 

Another important advantage of the large N characteristic of SEM is the 
estimability of the initial state mean and covariance matrix as a natural part of 
the procedure, thus bypassing the unsatisfactory fixation at arbitrarily chosen 
values. 

One of the consequences of the prewhitening decomposition is the dis¬ 
appearance of S. However, it is just by means of S that the specified model 
(e.g the state space model with or without the time-invariance assumptions) is 
tested in SEM. S is used as the estimated E of a saturated model, to which the 
one of the specified model is compared. The residuals or difference between 
S and the estimated E of the specified model give a detailed insight into the 
nature of misfit, if it occurs. High off-diagonal residuals, for example, may give 
indications for choosing a more appropriate ARMA-structure. High residuals 
at specific time points may suggest relaxing the time-invariance assumption 
for those time points. In fact, the SEM fit function Fml (see Equation 7) 
is a discrepancy measure, measuring the difference (times —jj) between the 
specified model loglikelihood and the saturated model loglikelihood, the latter 
having | E | = | S | and tr(SE_1) = p at its maximum. Most testing and fit 
measures are based on this discrepancy measure. In contrast, the prewhiten¬ 
ing decomposition presupposes the correctness of the state space model and 
time-invariance assumptions, but the collapsing of S as a result of the decom¬ 
position makes it impossible to test these and alternative assumptions against 
the general saturated model. 

A special feature of SEM is the optional specification of structural pa¬ 
rameters or instantaneous effects between state variables. These became very 
popular in econometric and social science models. From the structural form 
the state space or so-called reduced form can be derived. In addition to the 
importance of the structural form itself, however, the reduced form estimate 
with the structural restrictions incorporated leads typically to a considerable 
precision gain over the direct reduced form estimate (Bergstrom, 1984, pp. 
1146-1147). 

Three more advantages of the SEM procedure relate specifically to the 
EM decomposition. This splits and handles the loglikelihood in two separate 
parts linked only by the mT x N state matrix X. By deducing the explicit 
form of X out of the model and integrating the two parts in a single loglikeli- 
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hood function, SEM enables to skip the repeated, time consuming estimation 
of X (except for subjects with missing data), and additionally allows cross¬ 
restrictions to be imposed between parameters in the two parts and standard 
errors to be computed. Standard errors computed within the separate parts 
are incorrect. 

Finally, although in practice most panel data sets combine large N with a 
relatively small number of observation time points T, a possible problem with 
SEM should be considered for large T. While the prewhitening decomposition 
leads to m xm and rxr matrices which do not grow for increasing T, the SEM 
matrices do. Depending on the hardware used, the SEM program could run 
out of memory space for large T. If this occurs, one of the possible solutions 
is dividing the time axis in parts and analyzing each corresponding part of the 
total data set separately, to • • ■ •.. t^, t... t^, etc. The connection 
between the model parts is made by analyzing the last time point of each part 
(tTl, tT2, etc.) again as the initial time point of the next part. Not much is lost 
in this procedure, if there are no cross-restrictions between the parameters of 
the model parts and the parts are chosen not too small. The result for each part 
analysis, taken separately, is full information maximum likelihood, although 
the result of all parts taken together is only limited information maximum 
likelihood. The impossibility of applying cross-restrictions between the model 
parts is a serious limitation in practice, however. 

The same results would be obtained, if the model parts and correspond¬ 
ing data sets are analyzed simultaneously in a multi-sample SEM analysis as 
performed, for example, by the LISREL program (Joreskog & Sorbom, 1989, 
pp. 255-272). The use of the multi-sample analysis is strongly recommended, 
because it has the additional advantage of allowing cross-restrictions between 
the parameters of the part models, so that from the modeling perspective 
nothing is lost in comparison to the analysis of the total time axis and cor¬ 
responding data set in a one-sample analysis. The gain of the multi-sample 
analysis in memory space is considerable. For example, supposing there are 
k equally sized parts, the total number of elements in the k part matrices of 
overall S is only | the number of elements in S. Again information is left 
out in the computation of the loglikelihood, but mainly by neglecting distant 
off-diagonal elements in overall S, which are often known to be virtually zero 
a priori. 

Evidently, the loss of information in the multi-sample analysis solution is 
just a consequence of the fact that the data sets for the model parts originate 
from one and the same group of subjects and not from independently drawn 
samples. This suggests another, statistically more appropriate solution, which 
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turns out to have other important advantages as well. It consists in substi¬ 
tuting the data sets from the same group of subjects by data sets from truly 
independent samples of subjects, either drawn from the same population at 
different points in time or from differently aged populations at the same point 
in time. The latter case gives rise to the so-called overlapping cohort design, in 
which the age intervals of the samples in the investigation are chosen overlap¬ 
ping. In both cases the multi-sample analysis gives full information maximum 
likelihood results, thereby solving the problem of building a large T model by 
SEM in a statistically appropriate way. A perhaps more important reason for 
choosing the overlapping cohort design is the possibility to collect the data sets 
for the model parts simultaneously, thereby shortening considerably the data 
collection period needed for state space model parameter estimation (Oud et 
ah, 1993, pp. 18-19). It builds the large T model in only a fraction of the time 
period covered by the model. Moreover, by giving contiguous pairs of cohorts 
more overlap in time than just the last time point of each first and the initial 
time point of each second cohort, cohort effects become testable and thereby 
the assumption of the model parts originating from equal populations except 
for age (Jansen k. Oud, 1996). 

Discussion 

In addition to the SEM procedure, several alternative procedures for es¬ 
timating the state space model parameters were explained. In some cases, as 
when N is small or the model is time-varying, the choice is limited. For the 
cases that several procedures can be used, we stressed the advantages of the 
SEM procedure. However, if possible, it may be wise to apply different proce¬ 
dures to the same data set and compare the results. One reason for this is the 
possibility of solutions in nonadmissable regions of the parameter space. It is 
well-known, for example, that LISREL and other SEM programs may produce 
negative variance estimates, especially in the case of a badly fitting model. 
Some of these nonadmissable solutions are avoided in the EM decomposition 
procedure, because Kalman smoother values are actually inserted for the latent 
state variables and therefore no negative variance estimate nor, for example, 
a covariance estimate exceeding the estimates of both variances involved may 
show up. So, applying different procedures and checking whether the results 
are the same diminishes the risk of finding and taking seriously nonadmissible 
solutions, local maxima, and other abnormal results. 
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APPENDIX A: PROOF THAT MINIMIZATION OF SEM FIT FUNCTION 
7 USING THE AUGMENTED MOMENT MATRIX EQUALS 

MAXIMIZATION OF LOGLIKELIHOOD FUNCTION 31 

Write the augmented sample moment matrix 

^Eu.u: ^Eu<yo. 
5(po+g)x(p0+7) — n ' 

;vX/yo,’ui ,y>o,yo. 
i=l i—1 

and derive for E in Equation 7 using Equations 28-30 

t'=i 
N 

i=i 
AT 

E = A(I-0 

-f Eq 5 

S 
°3i,yo 

s s Oyo 

|£| = l^ul | So I 

log I E I = log I I + log I E0 I 

Hence log j X | in Equation 7 differs only a constant log | “f ,. | from 
log | E0 | in Equation 31, while 

E_1 = 
0 + 

D' 
VI -Do I] 

tr(SE-1) = ^(y'E-V.) 
iV t=l 

1 
= ( K y^] 5T1 

u, 
yo.- 

^ w j w 
= + ^7E(yo*- - Dou^'Eq 1(y0.' - Dou.) 

i N 

= + tt E(yo- - D0u,)'E01(y0i - DqU,) 
^ ,=i 

1 N 

= 9 + 77 E(y°- - Mo,')'E0 1 (yoi - Mo,) • 
iv t=l 

Therefore, -y times the SEM fit function FML (Equation 7) is equal to the 
loglikelihood function (Equation 31) plus a constant. 
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APPENDIX B: DERIVING EM-PREWHITENING DECOMPOSED 
LOGLIKELIHOOD FUNCTION 44 FROM EM DECOMPOSED FORM 41 

FOR A SINGLE SUBJECT UNDER TIME-INVARIANCE 

As in Equation 41 

S„ = jB')-1 

with (I — B) 1 triangular (see the matrix in Equation 27) and 

* 
Qti 

Qio+l 

0 Qto+T-2 

by introducing time invariance for the parameters in Equation 41 (A(o — 
A(o+i = • • • = Ato+T-2 = A and Qto = Q(0+i = • ■ • = Qi0+r-2 = Q) one 
finds that log |S„| in Equation 41 decomposes in 

log IE,! = log |^| = log |$J + (T - 1) log |Q| ■ 

Next, as in 

E"1 = (I - — B) 

l-B' = 

I -Ah 
i -a: £o + 1 

—-A-io+r-a 
I 

and 

I*-1 = 
Qro1 

Qr’t «0 + l 

Q 
-i 
(o+T-2 . 0 
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while in the iV = 1 case 

v(0+T-lJ 

tr(S 
,V) = *0 ^0 + 1 ^to+T- *0 A<0 + 1 '■to+T-lJ 

becomes 

tr(SI)S 
Xto*to 

T—l 

Xt0 "i" ^ ^ i^-to+j A-X-to+j 
3=1 

-i) Q (x(o+3 Axto+J_i) 

Substituting log|S„| and tr(S„S^1) in 41 one finds the decomposed form of 
the latter in Equation 44. 
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