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Abstract 

The loadings in the one-factor model for factor analysis are the covariances be¬ 

tween the observable variables and the latent factor. In case the observable variables 

correlate non-negatively, it is hypothesized that “mental factors are positive quan¬ 

tities” in the sense that the “loadings are non-negative” (Anderson &; Rubin, 1956). 

Sufficient conditions for estimates of the loadings to be non-negative are given. 
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1 Introduction 

It is well-known that the one-factor model for factor analysis assumes that m obser¬ 

vations are generated by 

X = fl + \f + £, (1) 

where x is the vector with observable variables of order m, /i its expectation 

{p =E*), (/i= Ex), / the (unobservable) factor score, e the error vector of order 

m, and A the loadings vector of order m. Let Var(x) = E. From the assumptions 

E(e) = 0, E(e/) = 0, and E(ee') = 'P diagonal positive definite, it follows that 

Cov(x,f) = A and 

E = AA' + S'. (2) 

The first motivation for this study is that in many empirical studies it has been 

found that the sample variance matrix S has no negative elements. Among other 

situations, such a finding is commonly made when the observed variables are mea¬ 

suring human intelligence. The second motivation is the conjecture by Anderson 

and Rubin (1956, p. 113) that “mental factors are positive quantities” which “im¬ 

plies” that the elements of A are non-negative. Indeed, when E has non-negative 

elements, the loadings are either all negative or all positive. Hence, without loss of 

generality, they may be taken non-negative. The third motivation for this study is 

the usefulness of the one-factor model as a measurement model (Joreskog, 1971). 

The purpose of the current note is to give sufficient conditions for estimates of 

the loadings to be non-negative. For this purpose three methods for estimation of 

the parameters A and 'P will be considered: maximum likelihood (ML), unweighted 

least squares (ULS), and generalized least squares (GLS). From the consistency of 

S for E, it follows that these methods yield consistent estimates for the parameters 

(Anderson & Rubin, 1956; Browne, 1974; Dijkstra, 1981; Shapiro, 1983). That is, 

when the sample size is sufficiently large and the true values of the loadings are non¬ 

negative, their estimates will be non-negative with large probability. The sufficient 

conditions given below, however, hold for all sample sizes. 
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2 The sufficient conditions 

Let \S\ be the determinant of S, ||£|| the Euclidian norm of E, S the usual pos¬ 

itive definite sample variance matrix, and S'2 the unique symmetric square root of 

S. S will be called “non-negative” when its elements are. The estimates for the 

parameters A and if' are obtained by optimizing the below defined functions ML, 

ULS, and GLS over these parameters. For optimal parameters this implies that A 

is optimal given <?. It will be assumed that the optimmal parameters are in the 

parameter space. Specifically, it will be assumed that iF is diagonal positive definite 

and that the diagonal of S — if' contains no negative elements. The latter means 

that the size of the error variance is less than the total variance of the variable. 

We will make frequently use of a simple version of Perron’s theorem (Gantmacher, 

1959, pp. 64-75): If a symmetric matrix is non-negative, then its first eigen value is 

strictly positive and strictly larger than all others and its corresponding eigenvector 

has no negative elements. Now we have the following. 

Definition 1. ML estimates (Joreskog & Lawley, 1968) minimize, over A and 'P, 

the function 

ln|AA' + 4'| + tr(AA' + if')“1S. (3) 

Proposition 1. If 5 is non-negative, then the A which minimizes (3) given # is 

non-negative. 

Proof. From the first order equations (Magnus & Neudecker, 1991, pp. 366-373), it 

follows that A =dfki, where dl and k\ are the first eigenvalue and eigenvector of 

^5^“2, respectively. From S and # non-negative, it follows that is 

non-negative. It follows from Perron’s theorem that k\ is non-negative. Hence, A is 

non-negative. Q.E.D. 

Definition 2. ULS estimates (Harman & Jones, 1966) minimize, over A and the 

function 

||S - (AA' + <f')||2. (4) 

Proposition 2. If 5 is non-negative, then the A which minimizes (4) given is 

non-negative. 
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Proof. Given V it follows that A minimizes ||(S - ■?) - AA'||2. It follows (cf Rao, 
I 

1973, p. 63) that A =rf12fei, where d1 and fci are the first eigenvalue and eigenvector 

of S — respectively. From S — 'P non-negative and Perron’s theorem, it follows 

that both fci and dy are non-negative. Hence, A is non-negative. Q.E.D. 

DeHnition 3. GLS estimates (Joreskog & Goldberger, 1972; Browne, 1974) mini¬ 

mize, over A and *Fr, the function 

tr[(S - (AA' + tfOS-1]2. (5) 

Proposition 3. If is non-negative, then the A which minimizes (5) given 'P is 

non-negative. 

Proof. Using the symmetry of the matrices involved, it follows that, given A 

minimizes 

||S-2(S - - S^5AA'S-5||2. (6) 

j 1 

It follows (cf Rao, 1973, p. 63) that S“5A =d12fei, where d1 and fci are the first 

eigenvalue and eigenvector of S~^(S - <P)S_2 = I- S~i>PS^i, respectively. The 

first eigenvalue d1 corresponds to the smallest eigenvalue of The latter 

eigenvalue corresponds to the largest eigenvalue of From Si and S' non¬ 

negative, it follows that is non-negative. Hence, by Perron’s theorem, fci 

is non-negative. From this, S? non-negative, and A =df S‘‘ fci, it follows that A is 

non-negative. Q.E.D. 

It may be noted that Si non-negative implies that S?Si = S is non-negative. 

Thus the condition si non-negative is stronger than the condition S non-negative. 

3 Conclusions 

It can be concluded that, under weak assumptions, the conjecture that the loadings 

are non-negative in the one-factor model when the the sample variance matrix is 

non-negative is sustained. The non-negativity of the loadings makes interpretation 

simpler than when the loadings would constrast in sign. It is remarkable that the 
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above results hold irrespective the sample size. 
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