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Abstract. 

This paper concerns the analysis of the multitrait-multimethod correlation 

matrix with the composite direct product model proposed by Browne (1984). 

The paper contains a review of the literature related to the composite direct 

product model and provides guidelines to interpretation and analysis. 
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1.Introduction 

According to Campbell and Fiske (1959), there are two aspects to construct 

validity: one is convergent validation, which requires agreement between 

scores obtained with two or more different measures of the same trait or 

construct. The other aspect requires a demonstration that the construct can be 

differentiated from other traits, and to demonstrate this a researcher must 

show disagreement between two scores that presumably measure different 

constructs. Such disagreement is evidence of discriminant validity. When 

there are two tests measuring the same trait this means that tests can be 

shown to be invalid, not only because of low correlations but also because of 

high correlations with other tests purporting to measure different things 

(Campbell & Fiske, 1959, p. 84). 

To facilitate the comparison of different kinds of correlations, Campbell 

and Fiske (1959) arranged the correlations in a MultiTrait-MultiMethod 

(MTMM) matrix. The MTMM-matrix is a correlation matrix between mea¬ 

surements under combinations of traits T and methods M. If there are t traits 

and m methods, p = t x m measurements are made on each of N subjects. 

Campbell and Fiske (1959) suggested that four criteria should hold for 

measures that have convergent and/or discriminant validity : 

1. The monotrait-heteromethod correlations or validity values are large. 

2. The validity values should exceed the absolute values of correlations in the 

row and column of their respective heteromethod submatrices. 

3. The validity values must be higher than the correlations in each of the two 

corresponding monomethod submatrices. 

4. All submatrices of intertrait correlations should have the same pattern, 

no matter which methods are used. 
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A number of formal models have been proposed to (a) describe MTMM 

matrices in the presence of measurement error and (b) to quantify and extend 

the Campbell and Fiske conditions (Schmitt and Stulz, 1986; Wothke, 1995). 

Currently, it is common practice to impose upon the MTMM matrix an 

additive covariance structure model using confirmatory or restricted factor 

analysis (Joreskog, 1973; Widaman, 1985). 

Campbell and O'Connell (1967, 1982) came to the conclusion that the 

method effects were multiplicative rather than additive. Swain (1975) sug¬ 

gested a direct product model that is suitable for the analysis of MTMM 

covariance matrices that have the multiplicative property observed by 

Campbell and O'Connell. (See also Verhees and Wansbeek, 1990). The 

Composite Direct Product (CDP) model (Browne, 1984) is an extension of 

Swain's model which is suitable for correlation matrices and allows 

measurement error in the observations. 

The purpose of this paper is twofold: First, we present a review of the lit¬ 

erature related to the CDP model. Second, we wish to discuss the 

interpretation and the practical application of the CDP model in more detail 

then is usually done. 

2. The Work of Campbell and O'Connell 

Monomethod correlations are normally higher than heteromethod cor¬ 

relations. Usually it is assumed that sharing the same method augments 

inter trait relationships above the true values, which are more validly seen in 

heteromethod form. Assuming that this is true Campbell and O’Connell (1967, 

1982) investigated the relation between heteromethod and monomethod 

correlations. They plotted monomethod correlations against heteromethod cor¬ 

relations and calculated the slope of the linear regression in each of the plots. 

If shared method elements add to the correlations in a linear manner, they 

argue, the heteromethod correlations are an additive function of the 
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monomethod correlations and the relation will best be described by a straight 

line with a slope that is smaller or equal to 1.00 which equals the 45° line if 

there is no method effect. What they found however was that the relationship 

was best described by a straight line, passing through the origin with a slope 

greater than 1.00. Campbell and O'Connell concluded that the argument that 

method factors augment the intertrait correlations is correct but the 

magnitude depends on the level of true trait relationship. The higher the true 

trait relationship, the more this relationship is augmented. 

3. The Composite Direct Product Model for MTMM Matrices 

Let x(TjMk) denote the random variable obtained by combining the j-th trait 

with the k-th method.1 

x(Tj, Mk) = p(Tj, Mk) + 8(Tj, Mk) x { c(Tj, Mk) + U(Tj, Mk) } (1) 

where: 

h(Tj, Mk) 

S(Tj, Mk) 

c(Tj, Mk) 

U(Tj, Mk) 

is the mean of the distribution of x(Tj, Mk), 

is a scaling factor, 

is a zero-mean random variate representing the common 

part of x(Tj, Mk), and 

is a zero-mean random variate representing the unique (or 

error) part of x(Tj, Mk). 

If we assume that the common part is uncorrelated to the unique term, 

the expected mean and covariance of the observed measures are 

1 The notation is chosen to be compatible with Browne's notation. 
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E[ x(Tj, Mk) x(Tg, Ms) ] = OTj, Mk) x ( E[ c(Tj, Mk) x c(Tg) Ms ) ] + 

E[ U(Tj, Mk) x U(Tg, Ms) ] } x 6(Tg> Ms) (2) 

and 

E[ x(Tj, Mk) ] = |i(Tj, Mk) (3) 

In matrix notation Equation (2) may be written as : 

Z = A(ZC +ZU)A (4) 

where A = { 5(Tj, Mk) ) is a p x p diagonal scaling matrix, Zc is the p x p com¬ 

mon score covariance matrix and 5)u is the p x p unique score covariance ma¬ 

trix. £ is the (implied) correlation or covariance matrix in the population. 

The CDP model may be derived from the following multiplicative struc¬ 

ture for c(Tj, Mk): 

(5) c(Tj, Mk)i = z(Tj)i x z(Mk)i 

It is assumed that the response of subject i to the item in the multitrait-multi¬ 

method design is the product of two latent variables. 
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In matrix notation the common score model in (5) becomes 

f 
z(T2) 

c = z(M) ® z(T): 

z(Mi) 

z(M2) 

z(Mn 

,z(Tt) 

z(Ti) 

z(T2) 

z(Tt), 

^(Tj)' 
z(T2) 

z(Tt), 

(6) 

where c = [ c(T1; Mi), c(T2, Mi), . . , c(Tt, Mm) ], z(T)’= [ z(Ti), z(T2), . . , z(Tt) ], 

z(M)'= [ z(Mi), z(M2), . . , z(Mm) ] and ® symbolizes the (right) Kronecker or 

direct product operator. The individual true scores are regarded as indepen¬ 

dent realizations of the random vector variate c and the variables are ordered 

such that traits are nested within methods. 

The matrix notation of the common score covariance matrix can be 

found by expanding the expected value of cc1, denoted by E[cc']: 

E[ ( z(M) ® z(T) ) ( z(M) ® z(T))' ] = 

E[ z(M) ® z(T) ( z(M)' ® z(T)') ] (7) 

The expected value involves fourth-order moments in terms of the z(T) and 

z(M) variables. The fourth-order cumulant is zero if we assume that z(T) and 

z(M) are normally distributed. If, in addition, we assume that z(T) and z(M) 

are independent, Equation (7) can be simplified and written as: 
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E[z(M)z(M)’] ® E[ z(T) z(T)'] 

® 3>t (8) 

The common dispersion matrix is standardized by pre- and post-multi¬ 

plying the dispersion matrices by a diagonal matrix which contains the 

inverse of the common score standard deviations. From Equation (8) this 

matrix is found to be 

D = diag 2 (Zc) = Dm ® Dt (9) 

where Dt = diag 2(<I>t) and Dm = diag 2(<I>m)- With Eqs. (8) and (9) we now 

derive the common score correlation matrix Pc : 

D zc D = (Dm ®m Dm) ® (Dt ^>t Dt) = 

Pc = PM ® Pt (10) 

The symmetric matrices Pt (t x t), Pm (m X m) are the trait and method 

correlation matrices. These matrices have the mathematical properties of 

correlation matrices whose elements represent multiplicative components of 

common factor score correlations or, 'correlations corrected for attenuation'. 

With two trait and two methods the expanded form of (10) is equal to 

Pc = 
Pc(M2,Ml) 

Pc(ti,t2) i 

Pc (Ti,T2) 

Pc (T2,Ti) 
Pc(Ti,T2) 1 

(11) 
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Inspection of Equation (11) shows that the CDP model assumes that the 

correlation matrix corrected for attenuation has the following properties: 

1. The diagonal submatrices are all equal to Pt- 

2. The validity values are all equal to the associated elements of Pm- 

3. The heteromethod'heterotrait correlations are the product of terms 

Pc(Mr, Ms) and pc(Tg, Tj). 

4. The heterotrait correlations are symmetric around the diagonal. 

5. The CDP model possess the specific multiplicative property that was ob¬ 

served by Campbell and O'Connell. The relation between heterotrait hetero¬ 

method values and heterotrait monomethod correlations is given by : 

pc(TgMr, TjMr) = pc(TgMr, TjMs) x { pc(Mr, Ms) l1 (12) 

Since pc(Mr, Ms) < 1.00 the slope { pc(Mr, Ms) l"1 is equal or bigger than 11.00 |, 

depending on the sign of pc(Mr) Ms) (Browne, 1984, Equation 4.7). 

6. Monomethod correlations equal pc(Tg, Tj) and heteromethod correlations 

are pc(Tg, Tj) x pc(Ms, Mr) which implies that the off-diagonal entries in Pm in¬ 

dicate changes in MTMM matrix patterns relative to the monomethod block. 

For example, a value of 0.72 in Pm signifies a 28 percent drop in the correlation 

coefficient when the traits are measured with different methods. Similarly, off- 

diagonal entries in Pt express magnitude changes relative to validity values. 

If pc(T2,Ti) = 0.69 the average correlation between Ti and T2 is 31 percent 

smaller than the convergent validity values (cf. Wothke, 1995, p. 24). 
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The multiplicative data model in (4) and Equation (10) generate the 

model for the observed correlation matrix : 

A 1 A = A ( D-1 Pc D-1 + Lu ) A = A* ( PM ® Pt + £UD2 )A* (13) 

Where A*= AD1, with D as in Equation (9), and A is a diagonal matrix that 

contains the reciprocals of the sample standard deviations. To ensure the scale 

independence of the elements of Zu the model is frequently reparameterized as 

follows (Cudeck, 1988, p. 139): 

A* ( PM ® Pt + U2 )A*, (14) 

where A*= AD-1, D as in Equation (9), and the p x p diagonal matrix U2 

represents the ratios of unique variance to common score variance i. e. , 

U2 = Zu D2 = ( var(U) x —). (15) 
var(c) 

The CDP model is identified with two traits and two methods or more. 

This can be proved by equating Equation (11) with the observed correlation 

matrix (Cudeck 1988, p. 138). The number of degrees of freedom is 

df = I p(p-3) - t(t-l) - m(m-l)) /2 (16) 

Equation (14) shows that the model is scale free in the sense that scale 

differences among the observed measures are absorbed by the scaling terms in 

the matrix A* and the model is not affected by differences in scale. This is an 

important property of the model since in the social sciences scale information 
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is typically regarded as arbitrary or of little interest and it is customary to 

analyse the correlation matrix. 

4. The CDP Model and the Campbell and Fiske Criteria 

When the CDP model fits the data its parameter values provide information as 

to whether or not correlation coefficients corrected for attenuation meet the 

four conditions of Campbell and Fiske (Browne, 1984 pp. 9-10; Cudeck, 1988, pp. 

136-137: see Table 1). 

Table 1: The relation of parameters in the CDP model with the four criteria of 

Campbell and Fiske (1959). 

Campbell and Conditions to be met in 

Fiske Criteria. the CDP model. 

First of all the CDP model must be accepted. 

Criterion 1 Method correlations are substantial. 

Criterion 2 All trait correlations are small and do not 

approach plus or minus unity. 

Criterion 3 The method correlations are bigger than the 

trait correlations. 

Criterion 4_The CDP model must be accepted._ 

The first Campbell and Fiske condition requires validity correlations to 

be large. As validity values equal method correlations this happens when 

method correlations are substantial. Second, Campbell and Fiske require that 

the validity values are larger than the off-diagonal elements in the same 

heteromethod submatrix. The off-diagonal values equal pc(Mr,Ms) x pc(Tg,Tj), 

and are lower than the convergent validity values unless pc(Tg,Tj) = | 1.00 |. 

The third criterion specifies that the validity values should be greater than all 

monomethod correlations. This is true when elements of Pm are larger than 

elements of Pt- The last criterion is that the pattern of all submatrices of 
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intertrait correlations is similar. This requirement will obtain whenever the 

model describes the data adequately (see Equation 11). Under the CDP model: 

p(TgMr, TgMr) = 82(TgMr) + U2(TgMr) and the scaling terms, 82(TgMr), provide 

an estimate of the reliability of x(TgMr) (Cudeck, 1988, p. 140). 

Finally, note that the elements of Pt and Pm can be restricted and the 

criteria in Table 1 can be tested by comparing the likelihood of the model with 

and without the restrictions (Bagozzi and Yi, 1992). 

5. Parameter Estimates and Goodness-of-Fit 

Most programs for structural equation modelling such as LISREL (Joreskog 

and Sorbom, 1993) or EQS (Bentler, 1989) have no option for models with 

Kronecker products. In contrast to these other programs the Mx program 

recognizes the Kronecker product as a modelling operation so that the CDP 

model can be specified in its original form (Neale, 1994, 1995). Table 2 presents 

a general scheme for Mx scripts that is easy to revise for different number of 

variables. 

Table 2 : A general Mx setup for the multiplicative model 

TITLE: Browne-Swain CDP model with two facets 

DAta NObservations=7i NInput= p NGroup=7 

CM Fl=mtmm.cor 

#define methods m 

#define traits t 

#define mxt p 

MATrices 

D Diagonal mxt mxt FREE 

T STandardized traits traits FREE 

M STandardized methods methods FREE 

U Diagonal mxt mxt FREE 

CO D*(M@T + U.U)*D / 

STart 1 all 

OU 
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The italic printed text in Table 2 is optional and the capital letters denote the 

minimally required input specification. 

If one wishes to impose a multiplicative structure on the unique 

dispersion matrix i. e. , U2 = Um ® Ut, this requires only a minor change in 

the Mx setup. Under these conditions, however, the model is not scale 

invariant and should not be fitted to the correlation matrix (Browne, 1984, p. 12; 

Cudeck, 1989). It is equally simple to structure the trait or method correlation 

matrices (Browne, 1989, p. 16-17) or extend the model to include additional 

facets (Browne and Strydom, In Press; Cudeck, 1988). 

In order to obtain parameter estimates with LISREL8 the CDP model 

may be written as a common factor model (Dolan and Molenaar, 1992): 

Z = APcA + Lu = A^A' + 0e (17) 

Under this parameterization the error variances are estimated directly instead 

of the ratios of error to the true score variance, ©g (Theta_epsilon) and A 

(Lambda) must be specified as diagonal matrices of order p. The structure of T 

(Psi) requires the specification of appropriate non-linear constraints which can 

be found be writing out the matrix 

‘F = Pc = PM ® PT (18) 

as in Equation 11. In the same manner a multiplicative structure can be im¬ 

posed on ©g. (A LISREL8 setup is contained in the appendix). Wothke and 

Browne (1990; also Wothke, 1995) describe how the CDP model can be fitted with 

older versions of LISREL, EQS or AMOS (Arbuckle, 1995). Special purpose pro¬ 

grams, called MUTMUM and LINLOG, were written by Browne (1991) and 
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Browne and Strydom (1991), respectively. LINLOG uses non-iterative methods 

to fit the CDP model (see Browne and Strydom, In Press). 

Worked applications of the CDP model have been reported by Bagozzi 

(1993), Bagozzi and Yi (1992), Browne (1984, 1989, 1991, 1993, 1995a, 1995b), 

Browne and Strydom (1991, In Press), Byrne and Coffin (1993), Cudeck (1988), 

Goffin and Jackson (1992), Henly et al. (1989), Hox and Bechger (1995), 

Lastovicka et al. (1990) and Wothke (1987, 1995). 

6. Concluding Remarks 

The CDP model has many desirable properties: it provides insight into the 

Campbell and Fiske conditions, it has a multiplicative property suggested as 

appropriate for MTMM correlation matrices by Campbell and O'Connell and it 

can be fitted to the correlation matrix by means of conventional software. 

The CDP model may not be suitable to every MTMM correlation matrix. 

If the model is not acceptable one may consider using an additive model in 

stead. Presently, the confirmatory factor model is considered virtually useless 

for the analysis of MTMM data (Wothke, 1995, p. 9). The arguments are that: its 

parameters are difficult to interpret (Browne, 1984, 1995a, 1995b) and con¬ 

firmatory factor analyses frequently give inadmissible or uninterpretable solu¬ 

tions (Brannick and Spector, 1990). Alternative additive models have been 

proposed by Wothke (1984, 1995), Browne (1989), Dudgeon (1994) and Kiers, 

Takane and Ten Berge (in press). 
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Appendix: A LISREL8 setup for the CDP model with 3 traits and 3 

methods. 

title: CDP model on 9x9 matrix 
da ni=9 ma=km ng=l no= 
km fi= 
mo ly=fu,fr ne=9 ny=9 ly=di,fr ps=sy,fr te=di,fr 
pa ps 
0 
10 
1 10 
1110 
11110 
111110 
1111110 
11111110 
111111110 
eq ps(2,l) ps(5,4) ps(8,7) 
eq ps(3,l) ps(6,4) ps(9,7) 
eq ps(3,2) ps(6,5) ps(9,8) 
eq ps(4,l) ps(5,2) ps(6,3) 
eq ps(7,l) ps(8,2) ps(9,3) 
eq ps(7,4) ps(8,5) ps(9,6) 
co ps(4,2)=ps(2,l)*ps(4,l) 
co ps(5,l)=ps(2,l)*ps(4>l) 
co ps(4,3)=ps(3,l)*ps(4,l) 
co ps(6,l)=ps(3,l)*ps(4,l) 
co ps(5,3)=ps(3,2)*ps(4,l) 
co ps(6,2)=ps(3,2)*ps(4,l) 
co ps(7,2)=ps(2,l)*ps(7,l) 
co ps(8,l)=ps(2,l)*ps(7,l) 
co ps(7,3)=ps(3,l)*ps(7,l) 
co ps(9,l)=ps(3,l)*ps(7,l) 
co ps(8,3)=ps(3,2)’,'ps(7,l) 
co ps(9,2)=ps(3,2)*ps(7,l) 
co ps(7,5)=ps(2,l)*ps(7,4) 
co ps(8,4)=ps(2,l)*ps(7,4) 
co ps(7,6)=ps(3,l)*ps(7,4) 
co ps(9,4)=ps(3,l)*ps(7,4) 
co ps(8,6)=ps(3,2)*ps(7,4) 
co ps(9,5)=ps(3,2)*ps(7,4) 
va 1 ps(l,l) ps(2,2) ps(3,3) ps(4,4) ps(5,5) 
va 1 ps(6,6) ps(7,7) ps(8,8) ps(9,9) 
ou 
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