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A parametric bootstrap procedure to perform statistical tests in latent class 
analysis 

Peter van der Heijden, Harm't Hart and Jos Dessens1 

Abstract 

Latent class analyses of huge data sets are unusual. In this paper we discuss statistical testing 

problems in this context. Some people try to solve these problems by applying fit indices like 

the AIC and the BIC in choosing a model. This is incorrect, because these fit indices are 

based on chi-squared statistics for which the asymptotic behaviour in this context is unknown. 

We show how the testing problems can be solved by using a parametric bootstrap procedure, 

also known as a simple Monte Carlo testing procedure. This procedure, proposed earlier by 

Hope, is worked out in some detail, and applied in the analysis of a large set of variables 

measuring anti-social behaviour of 2918 youngsters. 

1. Introduction 

We focus in this paper on latent class analysis of a large data set. The data deal with anti¬ 

social behaviour, which is measured by 24 dichotomous variables. Latent class analysis of 

such huge data sets is unusual. One of the reasons is that latent class analysis defines models 

for contingency tables, so, if there is a set of k dichotomous items, then a table of 2k cells is 

modeled. It will be clear that, in general, only for small k the cells of the contingency table 

will be reasonably filled. Therefore for large k we cannot rely on asymptotic results, meaning 

that the usual testing procedures cannot be applied. Furthermore, since the better known 

computer programs MLLSA (Clogg, 1977) and LCAG (Hagenaars and Luijkx, 1990) require 

the 2k frequencies as input, usage of these computer programs for such examples leads to the 

tedious creation of the correct input file, and computer storage problems. 

We know of only one example in the literature where k is much larger than, say, 5. 

The paper, written by Aitkin, Anderson and Hinde (1981), focuses on a substantive 

application, namely teaching styles measured by 38 variables, and directs relatively little 

space to the description of statistical and computational issues. Here we will emphasize these 

latter issues. 
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In latent class analysis there are problems in testing certain hypotheses, and these 

problems become more severe when the number of cells is much larger than the sample size. 

In some applications these problems are tackled by using fit indices like the AIC and the BIC, 

instead of to the usual chi-square statistics. However, since the AIC and the BIC are functions 

of the chi-squared statistics, they will have the same problems as these statistics. In section 2 

we will give a short description of these problems and discuss a solution. In section 3 we 

then describe a substantive application, and in section 4 we describe the results of this testing 

procedure in the substantive application. In section 5 we evaluate the testing procedure. 

Computational issues are described in an appendix. 

2. Testing problems in latent class analysis 

Usually latent class analysis is fitted by the method of maximum likelihood. Let the 2k 

frequencies be indexed by i, then the likelihood, log L, of a particular model A is defined as 

log L n; log mf1 + constant 
i 

where n; is the observed frequency for cell i, and miA is the estimate of the expected 

frequency under model A. The expression for log L makes clear that it is not necessary to 

perform calculations for those cells i for which n; = 0. If the number of cells is large 

compared to the response patterns that are actually observed, then much computer time and 

space can be saved when a computer program is used that only needs as input data 

frequencies n, >0 with the corresponding response patterns. We have written such a program 

ourselves in APL68000, but other programs that can be used in this way are PANMARK (van 

de Pol et al, 1991) and LEM (Vermunt, 1993). 

If the cells of the contingency table are all reasonably filled, then model A can be 

tested against the data using the likelihood ratio statistic 

Gi = 2Xnilog^ (1) 
i mf 

as a goodness of fit test where Ga2 is asymptotically chi-square distributed with a number of 

degrees of freedom equal to the number of cells minus the number of independent parameters 

of model A. In applications, however, two problems may arise. 

A first problem that one can encounter in the assessment of the number of latent 

classes has to do with sparseness of the data: when the number of variables is large, then the 

cells will not be reasonably filled, and the G2 's are not asymptotically distributed according 

to specific chi-squared distributions. 
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In many applications of contingency table analysis the sparseness problem is 

alleviated by using conditional tests (Agresti, 1990, p.310-313): the G2-statistic can be 

partitioned so that it can be used to test differences between models. However, this will not 

help us in assessing the number of latent classes: if there is a model B in which the number of 

latent classes is larger than in the true model A, 

GB-A = 2X"ik>g2j (2) 
i mj 

is not an asymptotically chi-square distributed variable (with degrees of freedom equal to the 

difference of the number of independent parameters of model B and A), since certain 

regularity assumptions are not fulfilled. This problem is well known in the literature on 

mixture models, which is relevant in this context because the x-class latent class analysis can 

be considered as a mixture of x independence models, see for example McLachlan and 

Basford (1988, section 1.10), but is usually not mentioned in introductory texts on latent class 

analysis. Everitt (1988) shows for some examples the discrepancy of the distribution of G2 

and the chi-squared distribution by means of Monte Carlo studies. 

Because assessment of the number of latent classes is important in many applications, 

we will now discuss a simple Monte Carlo testing procedure that is also known as the 

parametric bootstrap. This procedure can be used for such an assessment. 

Barnard (1963; see also Hope, 1968) originally presented the idea of a simple Monte 

Carlo test procedure, that works as follows for contingency table problems. Consider a one¬ 

sided test of the model (Ho) against the data (the saturated model. Hi), and one is interested in 

a type-1 error of .05, then 

(i) . calculate estimates of expected probabilities under Hq from the sample of size n, and 

assess the value of the fit criterion under Hq for the sample 

(ii) . draw 19 samples of size n from the distribution of estimates of expected probabilities 

derived in (i), and evaluate the 19 values of the fit criterion, 

(iii) . if the value of the fit criterion for the sample is larger than the 19 values found in (ii), 

then reject Hq, because this value is then the 20th value, corresponding with the type-1 

error of .05. 

The 19 values in step ii. constitute a Monte Carlo distribution of the fit criterion. The idea to 

reject Hq if the sample value is larger than the highest value of this Monte Carlo distribution 

is the usual idea underlying tests, namely, in this case it is unlikely that the model has 

generated the sample (although the type-1 error of such a decision is .05). This procedure is 

easily extended to two-sided tests, and Hope (1968) showed that the power of this test 

procedure increases when the number of Monte Carlo samples increases. 
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This procedure is also easily extended to conditional tests. Let Hq define a model that 

is a special case of the restrictive model under Hi. Let there be a fit criterion that can be used 

to measure the difference between the models under Hq and Hi. Then 

(i) . calculate estimates of expected probabilities under Hq and under Hi from the sample of 

size n, and assess the value of the fit criterion for the difference between Hq and Hj for the 

sample 

(ii) . draw 19 samples of size n from the distribution of estimates of expected probabilities 

derived in (i) under Hq, and evaluate the 19 values of the fit criterion for the difference 

between Hq and Hi, 

(iii) . if the value of the fit criterion for the sample is larger than the 19 values found in (ii), 

then reject Ho in the conditional test procedure. 

Readers well aware of bootstrap methodology (see, for an introduction, Efron and 

Tibshirani, 1993), will recognise this procedure as an example of the parametric bootstrap, i.e. 

in the well-known non-parametric bootstrap bootstrap samples are drawn from the data, 

whereas in the parametric bootstrap samples are drawn from a distribution derived from a 

sample by imposing a restrictive model on the sample. 

To our knowledge, the only application of this parametric bootstrap procedure to 

latent class analysis is by Aitkin et al. (1981), who used the procedure for unconditional tests 

only. The conditional procedure is used by de Soete and Winsberg (1993) to assess the 

number of dimensions of the latent class vector model. Bollen and Stine (1992) employ a 

similar procedure in the context of structural equation models. 

In this paper we will use only the procedure for unconditional tests. Numerical and 

computational issues are discussed in an appendix. The APL-computer programs are available 

from the first author upon request. There also exists a beta version of a new PANMARK 

release with an option to do parametric bootstraps. This program is certainly more 

userfriendly than our program.We refer to Langeheine, Pannekoek and van der Pol (in press) 

for related work in this area. 

3. The example: anti-social behaviour 

The data stem from the first wave of a longitudinal study into the life course of youngsters 

(see Meeus and't Hart, 1993). There are 2918 youngsters, aged between 12 and 24. They 

indicated on a long list of anti-social behaviours whether or not they performed these 

behaviours in the year preceding the interview. We started by studying the set of those 

questions to which at least one youngster answered 'yes'. The questions are presented in table 

1. The research question is how many typical groups of youngsters there are, in terms of anti- 
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Table 1: the variables measuring anti-social behaviour, and their last year prevalence in a 
sample of 2918 Dutch youngsters, aged between 12 and 24. The questions a to f were not 
used in the LCA that was conducted, because the number of local maxima that occurred was 
relatively large. The LCA of the variables 1 to 18 is therefore overemphasising the relatively 
less anti-social behaviours. The 18 variables are ordered according to their last year 
prevalence, this order not being the same as the order in the questionnaire. 

You filled in that you ever.Did you do this last year? yes/no. 
a. Stealing a car? 1 
b. Pick pocketing? 2 
c. Beating up a family member 2 

d. Threatening with a weapon or beating up somebody to obtain money or goods 5 
e. Wounding with a knife or other weapon 7 
f. Stealing from a car 11 

1. Raising a fire 34 
2. Stealing from a telephone booth or slot machine 36 
3. Selling stolen goods 37 
4. Beating up a non-family member 39 
5. Stealing something else 44 
6. Stealing a bicycle, moped or motor 57 
7. Committing burglary, sneaking in 68 
8. Graffiti 89 
9. Stealing from school children 106 
10. Buying stolen goods 127 
11. Stealing from a shop 138 
12. Stealing from home 162 
13. Stealing from work 169 
14. Dodging fare (train) 204 
15. Being involved in a fight 245 
16. Vandalism 343 
17. Dodging fare (bus, trolley, subway) 407 
18. Having a knife or another weapon 422 

social behaviour. Since it is well-known from criminological research that the prevalence of 

anti-social behavior is related to age and sex, we also study what role these variables play in 

the explanation of anti-social behaviour. We try to answer these questions using latent class 

analysis. In the context of anti-social behavior, earlier examples of latent class analysis are 

reported by Brownfield and Sorensen (1989), Sorensen and Brownfield (1989) and Fergusson 

et al. (1993). 

4. Results 

In table 1 the 24 items were described, and our original aim was to include all 24 items in an 

analysis. However, for technical reasons we failed in this respect. We started off by 

performing latent class analyses on 24 variables, and it turned out that the likelihood function 
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had many local optima for the models with three or more latent classes. We therefore 

excluded items a, b and c in table 1, having last year prevalence 1,2 and 2. Subsequently we 

performed latent class analyses of the remaining 21 variables. Here we had the same 

problems for solutions with three or more latent classes, so we excluded variables d, e and f in 

table 1, having a last year prevalence of 5,7 and 11. Thus we ended up with an analysis of 18 

variables. Because six extreme forms of anti-social behaviour were excluded, the 

interpretation of the results of the analyses will necessarily be in terms of relatively more 

common types of anti-social behaviour. 

In Table 2, the Monte Carlo distributions of the G2 - statistic is shown, which can be 

compared with the G2-value that is obtained in our sample of 2918 youngsters. Monte Carlo 

distributions are derived from 50 parametric bootstrap samples. For each analysis the Monte 

Carlo G2-values are ordered according to their value, and in order to give a rough idea about 

their distribution, specific points of the distribution are given. 

We started with ordinary LCA, ignoring the possible grouping of the 2918 youngsters 

by age and gender. Table 2a shows that the latent class models with one, two or three latent 

classes clearly have to be rejected, because the sample G2-value is higher than the Monte 

Carlo distribution, indicating that it is very unlikely that these models have generated the 

data. Given the parametric bootstrap procedure, we cannot reject the model with four latent 

classes. 

We found this model to be less parsimonious in terms of the number of latent classes, 

than we hoped for. A solution with only two latent classes, for instance, would simply imply 

that anti-social behaviour is one-dimensional, and there is no specialisation in deviating. 

There are criminological theories supporting this view (for example, see Gottfredson and 

Hirshi, 1990). Therefore we turned to a less restrictive model, namely simultaneous LC 

model with homogeneous conditional probabilities but heterogeneous class sizes. By 

controling for age and gender in this way, the number of latent classes necessary to describe 

the data could hopefully be reduced. Under this model, groups are easily compared, because 

the only parameters needed to compare groups are the class sizes. We stopped investigating 

this model for the solution with 5 latent classes. It is unclear whether this model should be 

rejected or not, because the sample G2 of 3590 falls somewhere around .04<p<.06. It should 

be emphasised that the number of 50 parametric bootstrap samples is much too small to 

estimate the end of the Monte Carlo distribution with high precision. However, our aim to 

simplify the interpretation failed, because the number of latent classes went up instead of 

down. (We want to emphasise here that the ordinary latent class model is not equivalent to the 

simultaneous latent class model with homogeneous class sizes and homogeneous conditional 

probabilities, because the former model is a model for a table of size 218, whereas the latter 
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Table 2. Test results. Presented are the G2 - test values for the analysis of 18 variables. Monte 
Carlo distributions are derived from 50 parametric bootstrap samples. For each analysis the 
Monte Carlo G2-values are ordered according to their value, and in order to give a rough idea 
about their distribution the first, second, fifth, twentieth, thirtieth, forty-fifth, forty-nineth and 
fiftieth values are given. For example, the second column shows the solution for one latent 
class (LC=1), 18 independent parameters are fitted, the G2-value for the sample is 3958, the 
smallest (i.e. the first) value from the Monte Carlo distribution is 671 and the largest is 875, 
showing that if the model with 1 latent class would be true, then a sample resulting in G2 = 
3958 is so unlikely that we reject this model to be true. 

Table 2a. Test results for LCA. The Monte Carlo distribution for 5 latent classes is not 
derived because the model with 4 latent classes could not be rejected. 

LC=1 LC=2 
#par 18 37 
G2 3958 2358 

p<.02 p<.02 

LC=3 LC=4 LC=5 
56 75 94 

2150 1944 1880 
p<.02 ,l<p<.4 

1 671 
2 696 
5 707 
20 757 
30 807 
45 829 
49 853 
50 875 

1733 
1759 
1802 
1935 
1997 
2115 
2148 
2184 

1581 
1602 
1722 
1798 
1856 
1967 
1996 
2001 

1615 
1634 
1667 
1763 
1833 
1951 
1982 
2016 

Table 2b. Test results for simultaneous LCA with heterogeneous class sizes and 
homogeneous conditional probabilities. The Monte Carlo distribution for 6 latent classes is 
not derived because the model with 5 latent classes could not be rejected, and the distribution 
for one latent class is not derived because it was clear in advance that it would clearly be 
rejected. 

LC=1 
G2 6266 
#par 18 

p<.02 

LC=2 LC=3 
4438 4041 

44 70 
p<.02 p<.02 

LC=4 LC=5 LC=6 
3772 3590 3469 

96 122 
p<.02 ,04<p<.06 

2 
5 
20 
30 
45 
40 

50 

3416 3244 
3475 3270 
3637 3321 
3742 3507 
3834 3580 
3987 3737 
4077 3817 
4084 3842 

3108 3032 
3138 3087 
3235 3131 
3336 3244 
3440 3326 
3581 3531 
3724 3599 
3749 3669 
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Table 2. continued 

Table 2c. Test results for simultaneous LCA with heterogeneous class sizes and 
heterogeneous conditional probabilities. In the first columns we find the results for the latent 
class model with one and with two classes. The solution with two latent classes fits 
remarkably well: ,6<p<.9. On the right we have split up this G2 of 3418 over the eight age- 
gender groups, and for each of the groups the fit is adequate: no p-value is smaller than .05. 

LC=1 LC=2 
G2 4972 3418 
#par 144 296 

p<.02 ,6<p<.9 LC=2 

1 1757 
2 1781 
5 1826 
20 1930 
30 1969 
45 2053 
49 2086 
50 2104 

3200 
3289 
3325 
3552 
3708 
3998 
4144 
4275 

group 1 
2 
3 
4 
5 
6 
7 
8 

396 ,30<p<.32 
976 .18<p<.20 
623 .26<p<.28 
358 ,88<p<.90 
217 .32<p<.34 
426 .24<p<.26 
251 .28<p<.30 
171 ,16<p<.18 

3418 

model is a model for a table of size 8 x 218. Therefore the chi-squares of table 2a cannot be 

compared with the chi-squares of table 2b.) 

Therefore we turned to the simultaneous LC model with both heterogeneous class 

sizes and heterogeneous conditional probabilities. This model with two latent classes fitted 

very well for each of the eight age-gender groups (see table 2c). Although this leads to an 

enormous increase of independent parameters fitted (namely from 139 for the 5 latent class 

model in table 2b to 303 independent parameters for the 2 latent class model in table 2c), the 

interpretation is considerably simplified, because we can now say that for each combination 

of age and gender anti-social behaviour is one-dimensional, but the way in which anti-social 

youngsters express anti-social behaviour depends on age and gender. This interpretation says 

that , although the class structures are different , the latent class structures are conceptually 

identical. In principle it is also possible to argue that these 8 latent class structures measure 

something which is also conceptually different, but this does not seem likely given the 

interpretation of both classes in each structure, and the class size probabilities, that follow the 

usual age-peak (see below). 

We now interpret the parameter estimates of the partly heterogeneous simultaneous 

latent class model with five latent classes in table 2b and the completely heterogeneous 

simultaneous latent class model with two latent classes in table 2c. In table 3 we find the 

solution for simultaneous LCA with five latent classes, with heterogeneous class size 

estimates at the top and homogeneous conditional probabilities at the bottom. The 
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Table 3: Solution for simultaneous LCA with heterogeneous class sizes and homogeneous 
conditional probabilities, model with 5 latent classes. The latent class probabilities add up to 
1 rowwise. For the conditional probabilities only the estimates for the probabilities to commit 
the anti-social behaviour is reported. For example, for variable 1, given that one falls into 
latent class 1, the estimated probability to say 'yes' is .000, and hence the estimated 
probability to say 'no' is 1.000. Over all latent classes, the (weighted) average probability to 
say 'yes' is equal to the observed proportion of saying 'yes', which is .012 for variable 1. 

heterogeneous class sizes 

1. 

males 
12-14 .450 
15-17 .333 
18-20 .422 
21-24 .622 
females 
12-14 .666 
15-17 .595 
18-20 .760 
21-24 .826 

Latent classes 
2. 3. 

.321 .178 

.339 .042 

.191 .000 

.000 .000 

.000 .328 

.000 .238 

.009 .023 

.000 .004 

4. 5. 

.000 .050 

.145 .141 

.313 .074 

.336 .042 

.000 .006 

.141 .026 

.187 .021 

.165 .005 

homogeneous conditional probabilities 
Latent classes 

1. 2. 3. 
variables 

1 .000 
2 .002 
3 .000 
4 .000 
5 .000 
6 .003 
7 .004 
8 .001 
9 .000 

10 .005 
11 .005 
12 .006 
13 .022 
14 .004 
15 .012 
16 .017 
17 .020 
18 .038 

.035 .005 

.018 .037 

.008 .000 

.062 .000 

.012 .088 

.000 .000 

.045 .051 

.026 .134 

.089 .080 

.014 .027 

.043 .115 

.158 .243 

.027 .003 

.000 .034 

.244 .073 

.307 .367 

.058 .182 

.535 .071 

4. 

.000 

.005 

.020 

.007 

.012 

.045 

.022 

.008 

.064 

.133 

.050 

.023 

.194 

.251 

.125 

.064 

.452 

.188 

5. 

.160 

.097 

.186 

.124 

.063 

.233 

.165 

.264 

.185 

.333 

.437 

.148 

.236 

.514 

.509 

.603 

.663 

.630 

observed 
proportion 

.012 

.012 

.013 

.013 

.015 

.020 

.023 

.031 

.036 

.044 

.047 

.056 

.058 

.070 

.084 

.118 

.139 

.145 

homogeneous conditional probabilities are more easily interpreted by comparing them with 

the observed proportions of the various forms of anti-social behaviour. This shows that the 

first latent class is clearly the non-anti-social class, because all estimates are much lower than 

the observed proportions. The heterogeneous class size estimates show that not being in this 

class is peaked at age 15-17, both for boys and girls. Such an age-peak in anti-social 
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behaviour is well known from the literature. Girls tend to show much less anti-social 

behaviour than boys (i.e. they fall more often into this class). In the fifth latent class all the 

estimates to perform anti-social behaviour are much higher than is observed for the whole 

group. For both boys and girls this peaks at age 15-17, but much more boys than girls fall into 

this class. We coin this a multi-anti-social class. The second latent class is used 

predominantly by males 12-20. Variables 1,2,4,7,9, 12,15, 16 and 18 have estimates much 

higher than their corresponding observed proportions. These are items that are referring to 

showing off, vandalism, violence and stealing, and it seems that items having expressive 

anti-social behaviours against people are overrepresented in this class. The third latent class is 

used predominantly by the younger age groups, but especially by females. Variables 2, 5, 7, 

8, 9, 11, 12, 16 and 17 have estimates much higher than their corresponding observed 

proportions. These items mainly have to do with stealing and vandalism, and it seems that 

items having expressive anti-social behaviours against objects are overrepresented in this 

class. The fourth latent class is used predominantly by older age groups, especially by boys. 

Variables 3, 6, 9, 10, 13, 14, 15, 17 and 18 have estimates much higher than their 

corresponding observed proportions. These variables show that this kind of anti-social 

behaviour is mainly of an instrumental type. It is not completely straightforward to interpret 

latent classes 2, 3 and 4, as we did above. It is also possible, of course, to think of these 

classes as giving descriptions of what kind of behaviour is in groups of a particular age and 

gender, more often exhibited than on average. 

Table 4 shows the results for simultaneous LCA with two latent classes, having both 

heterogeneous class sizes as well as heterogeneous conditional probabilities. Tentatively, we 

interpret this solution as an indication that for each age-gender combination that there are two 

groups of youngsters: anti-social ones and non-anti-social ones. This is in line with the class 

sizes of the anti-social behaviours, which peak both for males and for females at age 15-17. 

The conditional probabilities then show which behaviours are more likely to be picked by 

people from a specific age-gender combination. It is enlightening to study the estimates to 

perform anti-social for each anti-social behaviour separately, because it shows when 

particular behaviour peaks as a function of age. For example, "graffiti" (variable 8) peaks for 

boys at age 15-17, but for girls at age 12-14, going down when they get older. 

5. Discussion 

From a substantive point of view, our results support criminological theories stating that there 

is no specialization in crime (see, for example, Gottfredson and Hirshi, 1990). In this 

discussion we focus on the statistical and computational aspects of this study. There are a 

number of points that need special attention. 
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Table 4: parameter estimates for the simultaneous latent class model with two latent classes, heterogeneous class sizes and 
heterogeneous conditional probabilities. First four columns are estimates to answer 'no' for males of four age groups, columns 5 

to 8 are estimates to answer 'no' for males of four age groups, columns 9 to 12 are estimates to answer 'no' for females of four 
age groups, columns 13 to 16 are estimates to answer 'no' for females of four age groups.'—' indicates that in this particular 

age-sex group none of the respondents answered 'yes to this particular variable. 

Sex males 
Class 1 2 

females 
2 

Age 12-14 15-17 18-20 21-24 12-14 15-17 18-20 21-24 12-14 15-17 18-20 21-24 12-14 15-17 18-20 21-24 

Class 
sizes .882 .768 .816 .829 .118 .232 .184 .171 .887 .879 .883 .905 .113 .121 .117 .095 

Conditional probabilities 
Variable 

1 .000 .020 .003 .000 
2 .007 .007 .005 .000 

3 .000 .013 .000 .000 
4 .013 .011 .014 .000 

5 .029 .007 .003 .004 
6 .000 .000 .028 .021 

7 .007 .017 .018 .020 
8 .027 .002 .000 .004 

9 .029 .046 .038 .000 
10 .000 .017 .026 .036 

11 .030 023 016 .000 
12 .101 083 025 .004 

13 -- .027 074 .117 
14 .004 .037 035 .007 

15 061 .092 .085 .044 
16 .147 .123 .081 .028 

17 .035 .093 .120 .034 
18 .199 .237 .162 .114 

.164 .124 .069 .020 
.059 .062 .024 020 

082 .125 .176 .119 
.124 .101 .131 040 

.000 .083 .017 .020 
.055 .190 .148 096 

.247 .156 .031 .062 
.153 .215 .144 060 

.168 .165 .120 .060 
.109 .196 .301 .379 

.271 .294 .199 .159 
.154 .177 .083 .060 

— .154 .373 .206 
.242 .372 .324 .582 

.528 .432 .486 .343 
.653 .542 .345 .201 

.339 .525 .602 .849 
.621 .638 .510 .317 

.000 
on 

.028 

020 
.005 

.008 
.000 

.000 
.062 

.004 
.000 

.020 
.078 

.047 
.026 

.009 
.000 

.000 
.000 

.000 
.017 

.010 
.022 

.000 
025 

.039 
.016 

.049 
.027 

.075 
.121 

.033 

.000 
.003 

.000 
.000 

.005 
.000 

.003 
.005 

.020 
.013 

.013 
.027 

.011 
.031 

.027 
.058 

.045 

.000 
.002 

.003 
.000 

.008 
.000 

.000 
.007 

.023 
.011 

.000 
.046 

.018 
.011 

.011 
.021 

.041 

.056 
.052 

.198 

.043 
.441 

.163 
.140 

.309 
.241 

.000 
.028 

.122 
.653 

.335 
.192 

.115 
.018 

.018 
.053 

.053 
.071 

.302 
.144 

.213 
223 

.339 
.114 

.299 
.282 

.446 
.449 

.258 

.023 
.023 

.045 
.045 

.026 
.068 

.046 
.207 

.162 
.242 

.012 
.228 

.528 
.106 

.273 
.663 

.310 

.026 
.055 

.000 
.052 

.028 
.026 

.026 
.063 

.151 
.185 

.104 
.344 

.379 
.028 

.055 
.709 

.079 
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1. Local maxima. As discussed at the beginning of section 4, we found that local maxima 

made it sometimes difficult to find a final solution. Our impression is that there may not be 

too many variables with a proportion "yes" or "no" close to zero, because this leads to 

problems in the estimation of the model. There are two problems, and an assessment of the 

importance of both problems needs a rigorous investigation that falls outside the scope of this 

paper. One problem is that, in the EM algorithm, once an estimate has value 0 in the iteration 

process, it cannot leave that value. This problem is particularly eminent when one or more 

variables are skewed. This shows that, although the likelihood is well defined even if many 

observed frequencies are zero, in practice it can result into estimation problems. A second 

problem is that, in the general case, the likelihood function in LCA can have multiple 

maxima. Our impression is that the number of maxima increases when the data that have to 

be spread out over the latent classes become sparser. So this phenomenon is particularly a 

problem when the number of latent classes increases. See also Aitkin at al. (1981, p.425-427). 

2. Number of bootstrap samples. In our study we have chosen a number of 50 bootstrap 

samples for each test. This number seems to be far too low to have a good estimate of the 

Monte Carlo distribution of the G2-statistic. It is unclear to us how large this number should 

be. Hope (1968) proves that the power of the test rises if the number of bootstrap samples 

rises. 

3. Which statistic to use? Hope (1968) emphasises that the statistic used for the assessment of 

the fit of the model should be adequate for this purpose. Although G2 is useful in those 

circumstances where its asymptotic behaviour is well known (i.e. if the sample size goes to 

infinity it follows a chi-squared distribution if Hq is true), it is not clear whether this statistic 

is useful when the assumption of an infinite sample size is not approximated at all. In 

circumstances like this Hope (1968) advises to use more than one statistic, and hopefully all 

these statistics lead to the same conclusion regarding Hq. Possible test statistics are Pearson's 

chi-square that sums (observed - expected)2/expected over all cells. However, for our 

example this would mean that we would have to calculate the expected frequency for all cells 

in the contingency table, and this would mean a computationally rather expensive task. In 

other examples it would certainly be advisable to use this statistic as well, especially because 

of the unclarity about the usefulness of G2 versus Pearson's chi-square in the light of small 

sample size. Other statistics are AIC, BIG and CAIC, but these would all lead to the same 

conclusion as bootstrapping tests using G2, because they are linear transformations of this 

statistic. What seems to be needed is to show by simulation studies that this procedure works 

well, but this involves a lot more work. A comparable simulation study is performed by de 

Soete and Winsberg (1993) to show that this procedure worked in the context of the latent 

class vector model. 



143 

4. Parameter estimates equal to zero for the sample. A referee has pointed out that succes of 

our bootstrap procedure is not warranted because some of the parameter estimates for the 

sample are on the boundary of the parameter space, i.e. they are equal to zero or one. "Under 

resampling from this population, these parameters will show no variation at all. However, in 

the true population these parameters may be close to the boundary, but not on it. Sampling 

from the true population will result in some variability for these estimates. If this reasoning is 

correct, the two sampling distribution will not be the same and the validity of the 

bootstrapping will be questionable." Although we agree with this viewpoint, nothing is 

known to what degree the bootstrapping results will be invalid in these cases. In general we 

expect minor effects. The underpinning of this expectation, however, requires further 

research in that we will be able to assess to what extent zero parameter estimates will 

invalidate the bootstrapping procedure. 
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Appendix 

Although the Monte Carlo test procedure is remarkably simple in its presentation, there are 

some details that have to be kept in mind while using it in the context of latent class analysis 

of a large number of variables. 

We now describe phase (ii) of the unconditional test of Hq described in section 2. Let 

there be k dichotomous variables, so that there are, theoretically, 2k response patterns. The 

estimates of the parameters found in step (i) define a multinomial distribution over the 2k 

cells of the contingency table. 

Kemp and Kemp (1987) and Davis (1993) have given useful advises on how to draw a 

sample from a multinomial distribution. A way that is simple to program, though 

computationally not the most efficient one, is the so-called direct or naive method. First the 
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2k cumulative estimated probabilities are calculated. Then a random observation is drawn 

from a uniform distribution between 0 and 1, and this observation is assigned to a cell using 

the cumulative probabilities. For a sample of size n, n such random observations are drawn, 

and assigned to the 2k cells. This then provides the sample drawn from the multinomial. A 

simple modification, that is particularly important for our application, is first drawing the n 

random observations, then ordering the multinomial probabilities according to their size, so 

that hopefully not the complete cumulative distribution needs to be calculated (see below). 

To avoid calculating all the 2k probabilities, as well as calculating all cumulative 

probabilities, we take the following steps: 

1. draw n=2918 observations from a uniform distribution between 1 and 1015 (the maximum 

floating point precision of APL68000) and order them. We go through the 2*8 response 

patterns from 1...1111, via 1...1112, 1...1121, etcetera to 2...2222. However, by first ordering 

the k=18 variables from lowest proportion "yes'' to highest proportion "yes", it turns out that 

the latter probabilities to be calculated are on average smaller than the first former ones (this 

is a result from the fact that the observed one-way marginal probabilities of the table of order 

218 are equal to the corresponding margins of estimates of expected probabilities). Thus we 

avoid calculations for as many response patterns as possible. For each response pattern 

2. calculate the probability of a particular response pattern, multiply that probability with 

1015, derive the cumulative probability, and see if there are any random observations to be 

assigned to this response pattern. If so, store the response patterns with the number of random 

observations assigned to it, and then go to the next response pattern, if not, go directly to the 

next response pattern. A possible problem here is that there are estimated probabilities so 

small (much smaller than ICb15) that it is not possible to assign any random observations to 

them. We can only hope that this numerical problem does not influence our results a lot, 

which is likely because the probability that any of the 2918 random observations is assigned 

to such a cell has a very small probability indeed. 

3. end if all the 2918 random observations are assigned. Thus the first parametric bootstrap 

sample is obtained. 

4. perform an LCA, using the parameter estimates from the original sample as starting values. 

If the G2 of the bootstrap sample turns out to be larger than the G2 of the original sample it is 

checked whether the bootstrap sample G2 is actually the G2 of a local maximum by doing 

three analyses with random starting values. If the G2 of the bootstrap is smaller, we do not 

have to check for local maxima. The reason for this is that the only aspect of the Monte Carlo 

distribution we use is the number of bootstrap samples having a larger G2 than the original 

sample. 

Calculating a probability of a response pattern from the parameter estimates takes a 

rather large part of all the computing time. Therefore in phase 1 we draw 50 strings of 2918 
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random observations, in phase 2 we calculate the probability and cumulative probability once 

and assign observations from each of the 50 strings to 50 bootstrap samples. 

For simultaneous latent class analysis we have simply performed the above routine 8 

times, once for every group. In doing this, we have conditioned on the sample size of each of 

the groups. So this yields 8 Monte Carlo distributions of G2 (see the right part of table 2c). 

We have created the Monte Carlo distribution of the overall model (i.e. the 8 groups 

simultaneously) by adding the eight distributions where the 50 values of each distribution 

were placed in a random order (see column 2 of table 2c). 
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