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Abstract 

This article presents the results of a simulation study evaluating information 
criteria and other well-known criteria for model selection in structural equa¬ 
tion modeling. In the presence of overfitting, underfitting, and correctly spec¬ 
ified analytic models and using sample sizes of n = 100,400,1000,6000, the 
performance of the criteria is assessed by the frequency each of the analytic 
models is selected as best by the criterion. We find that the information cri¬ 
teria perform better than other criteria overall, but that the cross-validation 
index remains an attractive option. Within the class of information criteria, 
the Akaike information criterion is found to show some overfitting tendency. 
Contrary to suggestions in the literature but in accordance with theoretical 
results, this overfitting tendency is not found to be markedly stronger for the 
larger sample sizes. 
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Introduction 

Since Joreskog and Sorbom introduced the LISREL model (Joreskog, 
1973, 1977) as well as the program of the same name (Joreskog & Sorbom, 
1976), structural equation modeling (SEM) by means of LISREL and other 
SEM programs has become very popular in the behavioral sciences. One of 
the reasons for the popularity is that from the start heavy emphasis was put 
on model fit assessment. To the x2-value with associated p-value (chi-square 
goodness of fit test) for overall model fit assessment in the previous editions 
of the LISREL program, the fifth edition (Joreskog &; Sorbom, 1981) added 
the GEI (goodness of fit index), AGFI (adjusted goodness of fit index), and 
RMR (root mean square residual). However, all of these early criteria met 
much criticism. In an influential article by Rentier and Bonett (1980) the 
criticism on the chi-square goodness of fit test was formulated as follows: 

Large sample theory provides a chi-square goodness-of-fit test for com¬ 
paring a model against a general alternative model based on correlated 
variables. This model comparison is insufficient for model evaluation: 
In large samples virtually any model tends to be rejected as inadequate, 
and in small samples various competing models, if evaluated, might be 
equally acceptable, (p. 588) 

Rentier and Bonett’s article and a long series of subsequent publications (e.g. 
Rentier, 1990; Bollen, 1986, 1989a; Bozdogan, 1991; Cudeck &: Browne, 1983; 
James, Mulaik k. Brett, 1982; Hoelter, 1983; McDonald k Marsh, 1990; Mu- 
laik, James, Van Alstine, Bennett, Lind, k Stilwell, 1989) proposed alterna¬ 
tives for the chi-square goodness of fit test and other LISREL fit criteria. 

A special class of fit criteria, called information criteria, originated in 
mathematical statistics outside of the SEM tradition with Akaike (1973). 
Akaike was himself the first to apply his Akaike Information Criterion (A/C) 



71 

Information and Other Model Selection Criteria in SEM 

to factor analysis models (Akaike, 1987). The class was extended by Bozdogan 
(1987), Haughton (1988), Haughton and Dudley (1993), Haughton, Haughton, 
and Izenman (1990), Schwarz (1978) and others. The recent eighth edition of 
the LISREL program (Joreskog & Sorbom, 1993a) incorporates many of the 
new proposals, including two of the information criteria. Up to now, no single 
criterion has been identified as best by a majority of researchers. It turns 
out to be impossible to evaluate the quality of the fit criteria on mathematical 
grounds alone. Even with respect to the information criteria, Bozdogan (1987) 
observed: 

The preference of one or the other of these criteria in a given situation 
depends on how “conservative” or “liberal” we want to be in terms of 
setting the level of significance a per complexity and avoid overfitting 
and underfilling risks, (p. 368) 

To yield more insight into the performance of the criteria, a number of 
Monte Carlo simulation studies, starting with the Boomsma (1983) study of 
the LISREL chi-square goodness of fit test, have been carried out in the past. A 
review of these simulation studies by Gerbing and Anderson (1993) shows that 
the evaluation of information criteria in comparison to other criteria is rare. 
An exception is the study of Bandalos (1993), comparing three information 
criteria with one another and with the cross-validation index (CVI) of Cudeck 
and Browne (1983), which is theoretically very akin to the information class 
criteria. This article will present results for a wider variety of criteria from the 
information as well as the SEM tradition. In view of the growing emphasis 
on asymptotic behavior considerations (see e.g. McDonald, 1989), we include 
along with relatively small sample sizes (n = 100,400) considerably larger 
sample sizes (n = 1000,6000) than found in most other studies. 

The criteria are solely understood and applied as selection criteria, to 
choose the best model according to the criterion out of a set of different mod¬ 
els. Some criteria, especially the so-called normed fit measures, have more 
pretentions, trying to assess in some sense or another the fit of the model on 
an absolute scale independently from other models. Our evaluation, however, 
is restricted to the comparative use in the frequently occurring situation that 
different competing models are fitted to one and the same data set and the 
criteria printed in the SEM program output are used to identify the best fit¬ 
ting one. The set of competing models will he called selection set. As required 
by many testing procedures and criteria outside of the information class, the 
selection set is chosen hierarchically nested (Bentler, 1990): each consecutive 
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model in the hierarchy is obtained by imposing one or more restrictions on the 
preceding one. 

We start with some general considerations concerning the design of the 
simulation study, then we explain the information and other selection criteria 
to be evaluated, and next a detailed description of the simulation study is 
given, followed by the results and conclusions. 

Design of the Simulation Study 

A sharp distinction is made between a “true” model and an “analytic” 
model. A true model has all parameters fixed and is used to generate sample 
data sets to be analyzed by means of the analytic models in the selection set. 
An analytic model has one or more free parameters and is either “overfitting” 
or “underfitting”. It is overfitting, if by fixing the free parameters at specific 
values in the parameter space it is possible to produce the model implied 
covariance matrix of the true, sample generating model. This is equivalent 
to the noncentrality parameter of its ^-distribution being equal to 0. It is 
underfilling otherwise (noncentrality parameter greater than 0). The number 
of free parameters is called the “dimension” of an analytic model. Subtracting 
the dimension from the number of elements in and below the main diagonal 
of the covariance matrix gives the “degrees of freedom” of the analytic model. 
The notion of “correct” analytic model is not to be confused with that of the 
true (exactly fitting) model. Correct should be understood in a comparative 
sense. The correct model is, in fact, the most restricted or lowest-dimensional 
overfitting model in the selection set. By definition the correct model is also the 
best analytic model in the set, and should ideally be selected by the selection 
criterion. 

Overfitting analytic models with higher dimension than the correct model 
as well as underfilling analytic models with lower dimension were both in¬ 
cluded in the selection set to evaluate overfitting as well as underfilling behav¬ 
ior of the selection criteria. A selection criterion is said to overfit, if it tends to 
select as best an overfitting model of higher dimension than the correct model. 
Underfitting analytic models were chosen by constraining parameters to be 
equal which were, in fact, unequal in the true model. Different true models 
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Figure 1 
Examples of selection profiles for five hierarchically nested analytic models: 

models 1 and 2 overfitting, model 3 correct, models 4 and 5 underfitting 

with different degrees of parameter value differences were entertained to eval¬ 
uate the effects on selection behavior. Underfitting behavior or the tendency 
to select an analytic model of lower dimension than the correct model, should 
be avoided more easily for highly separated parameter values (big differences 
in the true model between the parameter values of constrained parameters) 
than for only slightly separated parameter values. 

The performance of the selection criteria is analyzed in terms of the se¬ 
lection profiles. Figure 1 shows examples. In addition to the ideal selection 
profile, a well-behaving, a poorly behaving, a moderately underfitting, and a 
maximally overfitting selection profile are shown. In the ideal selection profile 
the correct model is selected a 100% of the times. Except for extremely large 
sample sizes this ideal is too demanding in practice. The well-behaving profile, 
which combines some underfitting and overfitting behavior with a maximum 
at the correct model, is a more realistic goal. For slightly separated parameter 
values (almost equal parameter values in the true model) it can be argued that 
moderately underfitting behavior is preferable to predominantly overfitting be¬ 
havior, especially in the case of small sample sizes. Parsimony considerations 
require that decreasing information as a result of decreasing sample size keeps 
avoiding overfitting behavior. On the other hand, increasing information as 
a result of increasing sample size should tend to a well-behaving and in the 
end to the ideal selection profile. Many fit measures proposed in literature 
turn out to be useless for selection purposes because they necessarily choose 
the highest-dimensional overfitting model, shown in the maximally overfitting 
profile. 
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Information Criteria 

The introduction in 1973 of a model selection criterion by Akaike (Akaike, 
1973) initiated much research activity on the behavior and properties of a class 
of criteria generally known as information criteria. The term “information 
criterion” arises from the fact that the Kullback-Leibler (K.L.) information 
distance between the true distribution and its fitted distribution according 
to a given analytic model is central to the derivation of AIC. The idea of 
minimizing the K.L. distance in fitting the distribution to the data leads quite 
naturally to the principle of maximum likelihood. AIC was introduced as 
an asymptotically unbiased estimator of the mean expected log likelihood of 
the model (see Sakamoto, Ishiguro, & Kitagawa, 1986; Bozdogan, 1987). The 
A/C is defined as: 

AIC(Mi) = Cmax(Mi) — k(Mi) (1) 

where Anax(AL) is the maximum of the log likelihood function for model 
Mi and k(Mi) is the number of free parameters in this model or its dimen¬ 
sion. To select a model according to AIC from a set of m candidate models 
{Mi, M2,..., Mm}, we choose the model for which AIC is largest. We note 
that AIC is also often defined as —2 times the AIC defined above; in this case 
we select the model with the smallest AIC. 

The log likelihood function for LISREL model M, is for n observations: 

((M,) = -|log | £m, I -^(SEm*) - ^ log2* , (2) 

where Em, is the p x p model implied covariance matrix and S is the p x p 
sample covariance matrix. The log likelihood function is maximized over the 
k free parameters in the model. However, instead of maximizing Equation 2, 
the LISREL program minimizes: 

F(M,) = -^ll(Mi)-lmax(Ma)} 

= log I Sm, |+fr(SE^) - log | S |-p , (3) 

where Ma is any general (minimally restricted or saturated) alternative model 
having k(Ma) = |p(p + 1) with Em„ = S at the maximum of its likelihood 
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function. Equation 3 differs from Equation 2 only in the negative multiplying 
factor -2/n and an additive constant (S is derived from the data only and thus 
constant in the log likelihood function). Hence, minimizing Equation 3 leads 
to the same parameter estimates in model M, as maximizing Equation 2, while 
the maximum of Equation 2 is related to the minimum Fm,n(Mj) of 
Equation 3 as follows: 

(max(Mi) = - |[log | S | +p(l + log 2jr)] . (4) 

Note that multiplication of the minimum Fm;n(Af;) by n immediately 
gives the well-known x2-value for testing Mi against a general alternative Ma.1 
In fact, the LISREL program (see Joreskog &; Sorbom, 1993b, p. 119) gives 
AIC in the following form: 

LAIC(Mi) = nFmi„(Mi) -(- 2k(Mi) 

= -2[emat(M,)-emal(M')} + 2k(Mi) 

= -2AIC(Mi) + 2emax(Ma) , (5) 

which, however, is seen to be a simple linear function of AIC in Equation 1, 
because 2lTnax(Ma) is constant when comparing the models in the selection 
set. Also Browne and Cudeck’s (1993, p. 148) approximation of the expected 
cross-validation index ECVI{Mi), given by 

ECVI(Mi) * Fmin(Mi) +-k(Mi) = 
n 

— —AIC(Mi) + —fmax{Ma) , (6) 
n n 

and in contrast to the CVI itself (Cudeck & Browne, 1983) computable on 
the basis of a single sample, is seen to give the same selection results as AIC, 

1It should be noted that the values printed in the technical LISREL output during 
minimization are not F but only ^F, so that the x2-value is to be obtained by multiplication 
by 2n. It should also be noted that LISREL multiplies in fact by 2(n-l) for getting the x2_ 
value. This small difference in case of large samples is due to the fact that LISREL uses 
the Wishart distribution of the covariance matrix of the multivariate normal observations 
for modeling. 
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because also n is constant in comparing the models in the selection set for the 
same data. 

The AIC criterion in Equation 1 is in fact a penalized maximum log 
likelihood; the penalty function is the number of free parameters or dimension 
of the model. As such it is an implementation of the principle of parsimony. 
If we selected a model with the largest (max (smallest Fm,n), we would always 
select the least restricted or highest-dimensional of several nested models (for 
example, Ma would necessarily be chosen, if included in the selection set). 
The selection profiles of (max and are a priori known to be the maximally 
overfitting one in Figure 1. With the introduction of a penalty function in 
AIC, there is a cost to adding more parameters, with an implied protection 
against the risk of overfitting. 

It is known (e.g. Woodroofe, 1982) that A/C is not asymptotically consis¬ 
tent, in the sense that the probabilities that AIC selects the least-dimensional 
of two nested overfitting models do not converge to one as the sample size in¬ 
creases to infinity. However, the asymptotic overfitting probability, although 
greater than zero, is less than one in this and many other situations with 
overfitting as well as with overfitting and underfitting models in the selection 
set (Haughton, 1996). McDonald (1989, p. 98), pointing out that in practice 
all models under consideration are underfitting, suggested that the highest- 
dimensional model will necessarily be selected by AIC and other information 
criteria for a sufficiently large sample size. This is true asymptotically in some 
situations where the selection set contains only underfitting models, but not 
for practically relevant finite sample sizes up to a size as large as 1000 (Boz- 
dogan & Haughton, 1995). In other situations, even where all models are 
underfitting, the probability that AIC selects the highest dimensional model 
does not converge to one (Haughton, Oud, & Jansen, 1996). 

The introduction of the BIC criterion by Schwarz in 1978 has led to the 
class of BIC-type criteria which are asymptotically consistent. The BIC is 
defined as: 

BIC(Mi) = fmax(Mi) — ifc(Mi)logn , (7) 

where again k(Mi) is the number of free parameters in the model and n is 
the sample size. The model to be selected becomes the one with the largest 
BIC. The central motivation for BIC is set in a Bayesian context: Given 
prior probabilities and prior distributions for the unknown parameters for each 
model, a posterior probability that a given model is the best model can be 
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formulated, even though, in general, this probability is difficult to calculate 
directly. By best model we mean again the lowest-dimensional overfitting 
model. The B/C is known to arise as the leading term in an asymptotic 
expansion of the posterior probability that a given model is the best one as n 
goes to infinity (see Schwarz, 1978, and Haughton, 1988). So, in that sense, 
model selection performed by maximizing B/C is close to a Bayes procedure 
where one would select a model by maximizing the posterior probability that 
a model is best. 

Using further terms in the asymptotic expansion leads to information 
criteria as, for instance: 

BIC'(Mi) = log , (8) 
Z ZTT 

(see Haughton, 1988; Haughton et ah, 1990), and 

BICR(Mi) = emax(M,) - \k(Mi) log + log mMi)] + 
l Z7T 

i log det[IFIM\(Mi)\ , (9) 

where 0(Mi) is the maximum likelihood estimator (M.L.E.) for the vector 8 of 
unknown parameters in model Mi, I FI Mi is the inverse Fisher information 
matrix for one observation evaluated at the M.L.E. 6(Mi), and / is the density 
(assumed to be smooth and non-zero) of the prior distribution of the unknown 
parameter 8 on the given model (see Haughton & Dudley, 1993). We note 
that the IFIM for n observations, equal to IFIM = (1 /n)IFIMt, is the 
estimated asymptotic covariance matrix of the M.L.E. 5(M,). The IFIM (for 
n observations) can be extracted from the LISREL output, provided that a 
sample size of rc + 1 instead of n is specified in the LISREL input (this is due 
to the fact that LISREL uses the Wishart distribution). We note that BICR 
can also be written as: 

BICR(Mi) = tmax(Mi) + \k(Mi) log 2ir + log f[8(Mi)\ + 

i \og det[IFIM(Mi)\ , (10) 

since det(IFIM1) = nk^M^det(IFIM). 
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From another angle, refining the approximations which lead to AIC and 
introducing a log n term in the penalty function to achieve consistency, yield 
a criterion CAIC (Bozdogan, 1987) of the form: 

C AIC (Mi) = emax(Mi) - l-k(Mi)(\ + log n) , (11) 

which is closely related to BIC. CAIC is given in the LISREL program output 
in the following, linearly related form (see Joreskog & Sorbom, 1993b, p. 119) 

LC AIC(Mi) = nFmi„(Mi) + *(M,)(l+logn) 

= -2CAIC(M,) + 2emax(Ma) . (12) 

The criteria BIC, BIC”, BICR, and CAIC are known to be asymptoti¬ 
cally consistent (see Haughton, 1989; Woodroofe, 1982; Nishii, 1984, for linear 
regression; Bozdogan, 1987). In other words, for these criteria, the probabil¬ 
ities of underfitting as well as overfitting converge to zero as the sample size 
goes to infinity. 

In summary, model selection problems in SEM when sample sizes are 
large are amenable to an information criterion approach, notably since the 
multivariate normal observations are assumed to be independently identically 
distributed (i.i.d.). By means of the simulation study, we will compare the 
performance of the information criteria mentioned above with one another and 
with fit criteria which are more frequently used in SEM model fit assessment. 

Other Criteria 

The well-known x2-value for testing Af, against M0, 

X2(M.) = -2(lmax(Mi) - lmax(Ma)\ = nFmin(Mx) , (13) 

is as such not useful as a selection criterion, because, like tmax and Fmtn with 
both of which it is linearly related, it necessarily selects the least restrictive 
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model (the model M, for which k is largest) and thus has as its selection profile 
the maximally overfitting one in Figure 1. However, via the degrees of freedom 
of the model 

V(M<) = \p(p+ 1) - k(Mi) , (14) 

the associated p-value 

p(Mi) = Pr[xl> x2(Mi)} , (15) 

accounts for the dimension k of the model by referring to the x2-distribution 
with v degrees of freedom: the higher the dimension (the lower the degrees of 
freedom) is for the same y2-value, the lower the fit as measured by the p-value. 
The criticism on the x2 p-value especially concerns its use as a testing criterion 
(rejecting the model, if p is smaller than the o-level, accepting otherwise). As 
a testing device its power in rejecting underfitting models (noncentrality pa¬ 
rameter greater than 0), although increasing for decreasing dimension, heavily 
depends on the a-level and the sample size chosen, while the test is constructed 
such that overfitting models (central x2) have equal acceptance probabilities 
for a constant a. Formally, x2_testing is not a selection device, because de¬ 
pending on the a-level chosen all nonsaturated models could be rejected or 
all could be accepted. Using the p-value as a selection criterion avoids the 
dependence of the result on the chosen a-level and provides a good standard 
for evaluating the behavior of other fit criteria. As these have almost all been 
constructed as alternatives to x2_festing, they may be expected to improve 
upon the selection behavior of the x2 p-value. 

The p-value will be included as a selection criterion in the simulation 
study together with the other early LISREL fit criterion, the adjusted goodness 
of fit criterion AGFI: 

AG FI (Mi) = 1 - - GFim) , 

which is based on the goodness of fit criterion GFI 

GFI(Mi) = 1 - 
M(SS^ - I)2] 

^[(SS^,)2] 

(16) 

(17) 
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GFI and AG FI are formulated in analogy to the coefficient of determination 
and the correction for bias of a squared multiple correlation, respectively. S,\r, 
in GFI is the p x p model implied covariance matrix evaluated at the M.L.E. 
6(Mi) and I is the p x p identity matrix. Both GFI and AGFI reach their 
maximum 1 only for perfect fit, that is Sat, = S. In contrast to AGFI, 
however, which accounts for the model dimension k, GFI is just as meaningless 
for selection purposes as the x2-value. GFI is a monotone transformation of 
X2 for all practically relevant true models (Maiti & Mukherjee, 1990, p. 722) 
and so a priori known again to give the maximally overfitting selection profile 
(see Figure 1). 

Bentler and Bonett (1980) and Bentler (1990) proposed the normed fit 
index NFI, 

NFI(Mi) = (-max m-e max {M„) 

tmax{Ma) - fmax{Mb) 

X2{Mb) - x2(M,-) 
X2(Mt) 

(18) 

where model M/,, called the “baseline” or “null-model”, is a more restricted 
model than each of the models M, in the selection set {Mi, Mj,..., Mm} and 
M„ is any saturated model as in Equation 3. In addition, Bentler and Bonett 
require the sequence of models Ma, Mi, M2,..., Mm, Mi, to be a hierarchically 
nested one: each consecutive model to the right is obtained by imposing one or 
more restrictions on the preceding model to the left. Although NFI is indeed 
normed in the sense that each model Mi in the selection set gets a goodness 
of fit measure on a scale from 0 to 1, it does not improve on the x2"value 
or GFI as a selection criterion. Like the \2-value and GFI, NFI selects 
the least restrictive model in the selection set as best, because lma.x(Ma) and 
fmax(Mh) as well as x2(,Mb) are constants in comparing different models in the 
selection set. A series of extensions of Bentler and Bonett’s NFI have been 
formulated, however, which are all based on x2(Mi) and x2(Mi) and associated 
degrees of of freedom, but penalize in different ways through u(M,) for the 
model dimension k(Mi) and could therefore be useful selection criteria. These 
include the nonnormed fit index NNFI (Bentler k. Bonett, 1980; Bentler, 
1990), pi (Bollen, 1986), parsimony fit index PFI (James, Mulaik, k Brett, 
1982), incremental fit index IFI (Bollen, 1989a), new nonnormed fit index 
FI (Bentler, 1990), and new normed or comparative fit index CFI (Bentler, 
1990): 
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NNFI(Mi) = 
X2(Mb)/v(Mb) - x2(M,)/v(M,) 

X2(Mb)/v(Mb) - 1 
(19) 

. X2(Mb)/v(Mb) - x'm/viMi) 

Pm) ~ X2(Mb)lv(Mb)- 
(20) 

PFI(Mi) = 
v(M,) 

v(Mb) 

X2(Mb) - X2(M,) 

X2(Mb) 
(21) 

IFI(Mi) = 
x2(Mb) - x2m 
X2(Mb) - v(Mi) 

(22) 

FI(Mi) = 1 
X2^) - v(A/,) 

X2(Mb)-v(Mb) ’ 

= 1 - S) wi,h 
\{Mi) = max[x2(Mi) - i>(M,), 0] and 

A(M6) = mai[x2(M6) - v(Mb), A(M,)] . 

(23) 

(24) 

Bentler and Bonett’s NNFI was originally introduced by Tucker and Lewis 
(1973) in the context of exploratory factor analysis. A(Af,) and \(Mb) in 
Bentler’s CFI are motivated by the fact that fJ[x2(M,) — v(M,)] > 0 and 
E[x2(Mb) — v(Mb)] > E[x2(Mi) — u(Af;)]. Thus CFI avoids the possibility in 
FI that for finite samples {xl(Mi)-v(Mi)]l[x2(Mb)-v{Mb)] becomes negative 
or exceeds 1. Note that NNFI and are equivalent as model selection criteria 
since x2(Mb)/v(Mb) is constant. 

It is important to note that the choice of the baseline model does not affect 
the selection behavior of the fit measures involved except that of the parsimony 
fit index PFI (Equation 21). The reason is that x2(Afi>) and v(Mb) enter 
the equations only linearly (NNFI, plt FI,CFI) or monotonely (IFI). It is 
because of the term v(Mi)x2{Mb) in Equation 21 that the selection behavior 
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of PFI depends on the choice of the baseline model. Because for PFI(Mj) = 
PFI(M,) one derives 

X2(Mb) 
v(Mj)x2(Mj) - v(M,)x2(M,) 

v(Mj) - v{M,) 

assuming Mj more restricted or parsimonious than Mi, PFI(Mj) < PFI(Mi) 
implies that x2(J^b) must be in the range 

< x2(Mb) < 
v(Mj)x2(Mj) - v(Mt)X2(Mi) 

v(Mj) — v(Mi) 

The range is the more limited the smaller the x2 difference between the mod¬ 
els compared and the larger the difference in their degrees of freedom. For 
all baseline models with x2(AffcRvalues outside of this range the more par¬ 
simonious model Mj necessarily fits best according to PFI. Replacing the 
baseline model by one inside or outside of this range changes the PFI selec¬ 
tion behavior from PFI(Mj) > PFI(Mi) to PFI(Mj) < PFI(Mi) or vice 
versa. 

The class of fit indices started by Bentler and Bonett with NFI and 
NNFI has been extended with many more members under a variety of names. 
However, just as pi is monotonely related to NNFI, most of the other propos¬ 
als turn out to be monotonely or linearly related or even equal to the indices 
in Equations 19 through 24 and therefore do not lead to new selection criteria 
in the sense taken here. For example, McDonald and Marsh (1990) mention 
the indices and h/,. The first one is equal to IFI (Equation 22), attributed 
by Bentler (1990) to Bollen (1989a) who called it A2 (see also Bollen, 1990). 
The second one is equal to FI (Equation 23) and seems to have been in¬ 
vented by Bentler (1990, p. 250) and by McDonald and Marsh (1990, p. 243) 
independently. 

Two original contributions, that will also be included in the simulation 
study, are Hoelter’s (1983) critical-n index CN and Cudeck and Browne’s 
(1983) cross-validation index CVI. 

CN(M,) = 
cnt xi,a 

Fin,n (Mi) 
+ 1 (25) 

Here crit xl.o, 's the critical y2-value for degrees of freedom v(Mj) and chosen 
significance level a (i.e. the 100(1 — a)th percentile for the central x2 distri¬ 
bution with i»(Mi) degrees of freedom). For a well fitting model (small Fmin) 
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the n making x2(Mi) significant will be large; for a badly fitting model n will 
be small. Like the p-value CN penalizes for the dimension k by referring to 
the ^-distribution with v degrees of freedom. 

Finally, the cross-validation index CV/, 

CVI(Mi) = F(±Mi,A,SB) 

= log I I - log I SB I -p , (26) 

is in the form of the LISREL fitting function F (see Equation 3), but it avoids 
selection of the least restricted model by inserting for S the covariance matrix 
SB of a sample B (validation sample) that is different from the sample A 
(calibration sample) used for the maximum likelihood estimation of the model 
Mi and the computation of Sat,,a- It should be noted that it is assumed 
tia = ns and that no minimization is involved in the computation of CVI. 
F('EMiiA, SB) is merely a discrepancy measure between the validation-sample 
covariance matrix and the calibration-sample model implied covariance matrix. 

Simulation Study 

Consider the following confirmatory factor analysis model: 

< ii > 
Xi 

X3 

x4 

*5 

\ x6 / 

/ A„ 0 0 \ / d, \ 

A21 0 0 / c \ t>2 
0 A32 0 ( f1 I 1 
0 A42 0 U2 ^ 
0 0 A53 3 8^ 

\ 0 0 A63 / \ 8e J 

The vectors x and £ are assumed to have zero expectation. The measure¬ 
ment errors <5i, 82, ■■■, 86 are assumed to be independently and identically 
distributed according to ./V(0,crf), i = We also assume that ( and 
8 are uncorrelated, and that the covariance matrix $ of ^ has ones on its 
diagonal. 

In this study we will use three true models, differing in the true values of 
the parameters u3 in the model above: 
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True model I: 

An = Aji = 1, A32 = A42 = 2, A53 = Aes = 3, 
< = *1 = -25, *1 = < = .50, al = ol = .75, 
4> = I, the three dimensional identity matrix. 

True model II: 

An = A21 = 1, A32 = A42 = 2, A53 = A63 = 3, 
= •35> = •50> ah = g6, = -65, 

$ = I, the three dimensional identity matrix. 

True model III: 

An — A21 — 1, A32 — A42 — 2, A53 — A63 — 3, 

< = = ■45- a\ = a% = -50. = -55, 
$ = I, the three dimensional identity matrix. 

True model I shows relatively large differences in measurement error variances 
(.25, .50, .75), model II intermediate differences (.35, .50, .65), and model III 
very small differences (.45, .50, .55). 

Given data generated according to one of the three models above, we 
entertain the following hierarchically nested analytic models: 

Overfitting models: 

Analytic model 1 (dimension 12): 

An = A21, A32 = A42, A53 = Aea, 
All <r|. are estimated freely, 
‘h has ones on its diagonal, but the off-diagonal elements 012• 023- o 13 are 
estimated freely. 

Analytic model 2 (dimension 9): 

An = A21, A32 = A42, A53 = Aes, 
All <r| are estimated freely, 
$ = i 

Correct model: 

Analytic model 3 (dimension 6): 

An — A21, A32 — A42, A53 — Asa, 
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Underfitting models: 

Analytic model 4 (dimension 5): 

An = A21, A32 = A42, A53 = Aes, 

= ah = *1’ al = *1’ 
$ = 1. 

Analytic model 5 (dimension 4): 

A11 — A21, A32 = A42, A53 — Aea, 

“Correct” for analytic model 3 should be understood in the comparative sense 
of the most restricted overfitting model. Evidently, there is only one completely 
correct analytic model: the model with all parameters fixed and equal to the 
values of the true model. The analytic models 1-5 are designed to help us 
investigate how well the information and other criteria perform at accepting 
the “true” restrictions (only “true” restrictions are present in analytic models 
1-3 but most in model 3 and fewest in model 1) and rejecting the “false” 
restrictions (present in model 5 and to a lesser degree in model 4). 

A last and still more restrictive underfitting model than model 5, to 
be used as the baseline model Mj, in the Bentler-type criteria (’’the most 
restrictive, theoretically defensible model”; Bentler & Bonett, 1980) closes 
the hierarchy: 

Model 6 (dimension 1): 

An = A2i = A32 = A42 = A53 = A63 = 0, 

< = < = = < = < = 
$ = I. 

Because the most underfitting analytic model 5 (dimension 4) has only four 
free parameters (the three factor loadings and the single measurement error 
variance), leading to pairwise equal variance estimates for the observed vari¬ 
ables, introducing additional uncorrelatedness between the observed variables 
by eliminating factor loadings leads to a single, common variance estimate for 
all observed variables. So, the baseline model becomes the true counterpart 
of the saturated model in representing the observed variables as independent 
identically distributed variables. Going up the hierarchy, factor loadings are 
added and successively more constraints on the measurement error variances 
are freed until in the most overfitting model 1 (dimension 12) additionally the 
three factor covariances are freed. 
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The procedure of the simulation study was as follows: 

1. The model implied covariance matrices S = A<1>A' + Gg were computed 
for the true models I, fl, and III by means of the LISREL program 
(Joreskog & Sorbom, 1993a), fixing all parameters at the true model 
values. 

2. The LISREL program was used to compute the lower triangular matrices 
T such that X = TT' (see the procedure in Joreskog & Sorbom, 1994, 
pp. 7-8) for the true models I, II, and III. 

3. The PRELIS program (Joreskog & Sorbom, 1994, pp. 8-10) was used 
to generate four sets (sample sizes 100,400,1000,6000) of 500 sample 
covariance matrices of six multinormally distributed variables on the 
basis of T. This was repeated for the true models I, II, and III. 

4. Each sample covariance matrix in each of the 12 sets of 500 covariance 
matrices was analyzed by means of the five analytic models 1, 2, 3, 4, 
5, using the LISREL program. As starting values the parameter values 
of the corresponding true model I, II, or III were used. The LISREL 
print output files, goodness of fit matrices GF output files, asymptotic 
covariance matrices of estimated parameters EC output files, parameter 
matrices LX, PH, and TD output files were collected for each set of 500 
samples. 

5. The LISREL output files were checked for Heywood cases (negative es¬ 
timates of measurement error variances) and other abnormal results. 

6. The values of the following 15 information and other criteria were taken 
from the LISREL output or computed on the basis of information from 
the LISREL output according to the equations given below between 
parentheses. For the computation of the cross-validation index CVI 
a different sample was used for validation, so that each sample was used 
once as calibration sample and once as validation sample. 

1. AIC (Equation 1) 
2. BIC (Equation 7) 
3. BIC' (Equation 8) 
4. BICR (Equation 10) 
5. CAIC (Equation 11) 
6. CVI (Equation 26) 
7. p (Equation 15) 
8. AGFI (Equation 16) 
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9. NNFI (Equation 19) 
10. PFI (Equation 21) 
11. IFI (Equation 22) 
12. FI (Equation 23) 
13. CFI (Equation 24) 
14. CN(a = .05) (Equation 25) 
15. CN(a — .01) (Equation 25) 

7. The percentages within each set of 500 samples were computed that each 
of the five analytic models was chosen as best by each of the 15 criteria. 
Percentages were computed after elimination of the Heywood cases, while 
ties (exactly equal criterion values for different analytic models) were 
equally divided over the analytic models involved. 

Results and Conclusions 

The results of the model selection procedure are given as percentages in 
Table 1 and, based on this table, graphically in the form of selection profiles 
in Figure 2. All 30000 LISREL runs were completed without minimization 
problems and no abnormal results were encountered other than Heywood cases. 
Apart from one sample of n = 400 generated by true model I and analyzed 
by analytic model 1, Heywood cases occurred only for samples of the smallest 
size n = 100 analyzed by the highest-dimensional analytic models 1 and 2. 
Under true model I, II, and III, respectively, 40, 34, and 47 Heywood cases 
were produced by analytic model 1, and 34, 38, and 47 by analytic model 2. 
Heywood cases were left out of the computations. 

Ties occurred only for CFI and AGFI. Ties for CFI are not avoidable 
but a logical consequence of its definition (Equation 24). In fact, Bentler’s 
new normed or comparative fit index CFI is a tie generating adjustment of 
his new nonnormed fit index FI, making all (typically different) FI values 
below 0 equal to 0 and above 1 equal to 1. When these ties are divided equally 
over the models involved as in Table 1 and Figure 2, the adjustment is clearly 
seen in almost all cases to lower the percentage of correct model selection 
and to increase the percentages of choices of overfitting models. For AGFI 
the percentage part of ties in the selection percentages involved is negligible 
(never exceeding 1.2%), always concerns values close to the upper limit 1, and 
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Table 1: Percentages of best model selection in the set of five hierarchically nested 
analytic models (1 and 2 overfitting, 3 correct, 4 and 5 underfitting) under true 
models I, II and III, and sample sizes n=100, 400, 1000, 6000 

True model I 

N 100 400 1000 6000 
AIC 1 

2 
3 
4 
5 

4.6 5.4 4.2 3.4 
7.8 8.8 8.8 10.4 

86.2 85.8 87.0 86.2 
1.4 

BIC 1 
2 
3 
4 
5 

0.4 
84.6 100.0 100.0 100.0 
15.0 

BIC* 1 
2 
3 
4 
5 

0.2 
3.8 0.6 0.2 

93.2 99.4 99.8 100.0 
2.8 

BICR 1 
2 
3 
4 
5 

13.0 2.4 0.4 
72.8 97.6 99.6 100.0 
14.2 

CMC 1 
2 
3 
4 
5 

81.8 100.0 100.0 100.0 
17.8 
0.4 

CVI 1 
2 
3 
4 
5 

8.0 30.8 16.4 8.0 
13.4 12.6 15.4 18.8 
72.2 56.6 68.2 73.2 
6.4 

P 1 
2 
3 
4 
5 

27.8 33.8 34.6 33.0 
24.8 24.0 24.6 24.8 
47.2 42.2 40.8 42.2 
0.2 

AGFI 1 
2 
3 
4 
5 

29.6 35.6 41.2 36.2 
27.6 23.7 22.2 24.4 
42.6 40.7 36.6 39.4 

0.2 

N 100 400 1000 6000 
NNFI 1 

2 
3 
4 
5 

32.4 35.8 41.0 36.4 
19.0 23.2 22.6 24.4 
47.8 41.0 36.4 39.2 

0.8 

PFI 1 
2 
3 
4 
5 

0.8 
19.6 3.0 
79.6 97.0 100.0 100.0 

IFI 1 
2 
3 
4 
5 

25.6 32.6 29.2 29.6 
18.0 24.0 25.0 26.0 
56.2 43.4 45.8 44.4 
0.2 

FI 1 
2 
3 
4 
5 

26.0 32.4 29.2 29.6 
17.6 24.2 25.0 26.0 
56.2 43.4 45.8 44.4 
0.2 

CFI 1 
2 
3 
4 
5 

31.9 39.6 36.2 36.9 
26.6 27.3 29.7 29.9 
39.4 33.0 34.0 33.2 

2.2 

CN(.05) 1 
2 
3 
4 
5 

43.0 50.2 51.0 49.0 
23.2 24.4 24.4 23.8 
33.2 25.4 24.6 27.2 
0.6 

CN(.01) 1 
2 
3 
4 
5 

48.0 57.6 57.0 55.0 
24.6 21.2 22.6 23.0 
27.4 21.2 20.4 22.0 
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Table 1: (continued) 

True model II 

N 100 400 1000 6000 
AIC 1 

2 
3 
4 
5 

2.6 3.2 5.0 4.2 
8.2 8.2 8.0 10.8 

52.8 86.8 87.0 85.0 
31.6 1.8 

4.8 
BIG 1 

2 
3 
4 
5 

28.2 85.0 99.8 100.0 
43.0 15.0 0.2 
28.8 

BIG’ 1 
2 
3 
4 
5 

0.8 
1.8 

50.8 92.0 100.0 100.0 
34.8 8.0 
11.8 

BICR 1 
2 
3 
4 
5 

10.8 0.4 0.4 
25.8 85.2 99.4 100.0 
38.6 14.4 0.2 
24.8 

CAIC 1 
2 
3 
4 
5 

20.6 81.6 99.4 100.0 
39.6 18.4 0.6 
39.8 

CVI 1 
2 
3 
4 
5 

5.8 26.4 18.6 11.2 
12.0 14.4 13.4 19.4 
50.8 54.0 67.4 69.4 
23.0 4.8 0.6 

8.4 0.4 

P 1 
2 
3 
4 
5 

24.6 29.4 26.6 37.4 
27.2 27.2 29.0 21.2 
36.4 42.6 44.4 41.4 
10.8 0.8 

1.0 
AGFI 1 

2 
3 
4 
5 

27.2 32.2 33.0 39.7 
26.0 24.2 28.2 21.7 
34.6 43.0 38.8 38.6 
10.4 0.6 

1.8 

N 100 400 1000 6000 
NNF1 1 

2 
3 
4 
5 

31.2 31.8 33.2 39.8 
18.4 24.6 28.2 21.6 
36.6 42.8 38.6 38.6 
12.8 0.8 

1.0 
PF1 1 

2 
3 
4 
5 

1.2 
98.8 100.0 100.0 100.0 

1FI 1 
2 
3 
4 
5 

24.0 29.4 25.0 34.2 
18.0 26.8 24.2 21.6 
43.8 43.0 50.8 44.2 
13.0 0.8 

1.2 
FI 1 

2 
3 
4 
5 

23.4 29.4 25.0 34.2 
18.6 26.8 24.2 21.6 
43.8 43.0 50.8 44.2 
13.0 0.8 

1.2 
CFI 1 

2 
3 
4 
5 

26.9 34.3 35.2 40.0 
22.2 28.2 31.7 28.4 
36.7 35.7 33.1 31.6 
11.3 1.8 
2.9 

CN(.05) 1 
2 
3 
4 
5 

40.2 44.0 49.4 52.0 
24.0 24.0 25.6 23.0 
28.4 31.2 25.0 25.0 
7.4 0.8 

CN(.Ol) 1 
2 
3 
4 
5 

48.0 50.8 55.8 59.4 
20.6 23.4 23.2 20.8 
24.6 25.2 21.0 19.8 

6.8 0.6 
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Table 1: (continued) 

True model III 

N 100 400 1000 6000 
AIC 1 

2 
3 
4 
5 

1.6 1.6 2.6 3.8 
6.0 5.0 9.4 11.6 

11.4 33.4 49.4 84.0 
18.0 33.8 33.8 0.6 
63.0 26.2 4.8 

BIC 1 
2 
3 
4 
5 

1.8 2.6 13.4 89.2 
9.8 21.2 43.4 10.8 

88.4 76.2 43.2 
BIC* 1 

2 
3 
4 
5 

1.6 
7.8 9.0 25.2 94.0 

14.8 34.0 47.8 6.0 
75.8 57.0 27.0 

BICR 1 
2 
3 
4 
5 

9.8 0.2 0.2 
1.6 2.6 14.6 90.0 

10.0 23.2 43.6 9.8 
78.6 74.0 41.8 

CMC 1 
2 
3 
4 
5 

0.4 1.8 8.8 87.2 
6.2 15.0 38.2 12.8 

93.4 83.2 53.0 
CVI 1 

2 
3 
4 
5 

4.6 28.8 16.4 7.6 
9.8 7.8 10.2 17.2 

21.2 27.0 46.4 71.2 
26.2 19.8 21.0 4.0 
38.2 16.6 6.0 

P 1 
2 
3 
4 
5 

20.0 28.6 28.6 27.6 
26.6 24.4 24.2 29.0 
16.0 21.4 35.6 43.4 
14.0 17.0 11.0 
23.4 8.6 0.6 

AGFI 1 
2 
3 
4 
5 

22.4 34.3 32.0 32.9 
27.0 22.8 22.4 25.5 
13.6 19.7 34.8 41.6 
12.4 15.2 9.8 
24.6 8.0 1.0 

N 100 400 1000 6000 
NNFI 1 

2 
3 
4 
5 

24.4 34.2 32.2 32.8 
20.4 22.4 22.6 25.2 
17.0 20.0 34.2 42.0 
14.2 15.2 10.0 
24.0 8.2 1.0 

PFI 1 
2 
3 
4 
5 100.0 100.0 100.0 100.0 

IFI 1 
2 
3 
4 
5 

20.6 23.6 28.4 27.0 
11.4 21.2 22.0 26.2 
22.4 26.0 35.0 46.8 
19.2 21.0 13.8 
26.4 8.2 0.8 

FI 1 
2 
3 
4 
5 

20.6 23.6 28.4 27.0 
12.2 21.2 22.0 26.2 
22.0 26.0 35.0 46.8 
18.8 21.0 13.8 
26.4 8.2 0.8 

CFI 1 
2 
3 
4 
5 

24.5 29.0 31.7 35.8 
17.0 23.5 26.6 30.4 
21.1 20.7 28.3 33.5 
17.5 17.3 10.7 0.4 
19.8 9.5 2.7 

CN(.05) 1 
2 
3 
4 
5 

36.8 47.0 44.6 49.0 
23.6 23.2 26.0 25.8 
14.0 14.4 23.8 25.2 
11.8 9.2 5.2 
13.8 6.2 0.4 

CN(.Ol) 1 
2 
3 
4 
5 

43.8 53.2 52.2 54.2 
22.0 23.6 25.2 24.2 
12.8 12.4 19.0 21.6 
11.8 6.2 3.2 
9.6 4.6 0.4 
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Figure 2: Selection profiles for five hierarchically nested models (1 and 2 overfitting, 
3 correct, 4 and 5 underfilling) under true models I, II and III, and sample sizes 
n=100, 400, 1000, 6000, based on the percentages in Table 1 
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Figure 2: (continued) 
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Figure 2: (continued) 
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is very likely to be caused by the fact that differences could not show up in 
the five decimals given by the LISREL program. 

Recalling that the correct model is the six-dimensional model 3, a quick 
glance at the percentages of correct model selections in Table 1 and Figure 2 
for all the criteria indicates that overall the information criteria obtain higher 
percentages than other criteria, at least for true models I and II. This is very 
clear for true model I where the three measurement error variances are most 
separated (.25, .50, .75), and holds almost always for true model II (medium 
separation of the measurement error variances: .35, .50, .65) with some ex¬ 
ceptions for the lowest sample size n = 100. In the case of true model III 
(extremely low separation of the measurement error variances: .45, .50, .55), 
the information criteria perform very well for the largest sample size n = 6000, 
but increasingly underfit for lower sample sizes. Here the behavior of infor¬ 
mation criteria should be viewed as a desirable application of Occam’s razor: 
do not make the model more complex than warranted by the data. Relatively 
high percentages of correct model selections occur here for the cross-validation 
index CVI, which in comparison to the criteria outside of the information class 
performs also very well in the cases of true models I and II. It should be noted 
that CVI requires in addition to the calibration sample a validation sample 
and is thus based on twice the amount of data. 

The known tendency of AIC to overfit is clearly visible in Table 1 and 
Figure 2, when AIC is compared with the often ideal selection profiles of the 
other information criteria. For AIC the probability of overfitting is known 
to not approach zero as the sample size increases (non-consistency), and we 
indeed see that the percentages of overfitting selections, although small, are 
persistent for the larger sample sizes. However, in contrast to the suggestions 
in the literature, there is no marked increase for increasing sample size. Even 
for a sample size as large as n = 6000 the overfitting percentage (analytic 
models 1 and 2 combined) for AIC never exceeds 16%. 

The best performing criterion in the information class seems to be BIC*, 
which for the low sample sizes is somewhat less underfitting than the other 
consistent information criteria. Somewhat stronger underfitting behavior is 
shown by CAIC. The penalty function for BIC* is larger than that of AIC 
but smaller than that of BIC, so it seems to provide with a satisfactory 
compromise. 

One might have expected BICR to perform better than BIC*, since it 
contains further terms in the expansion of the log of the posterior probability 
that a model is best (see Equations 9 and 8); however a difficulty in using 
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BICR is to select a suitable prior distribution for the unknown parameters. 
A prior with non zero density on the parameter space is needed for each model. 
For our calculations, we used the Cauchy distribution on the real line for the 
A’s (with density l/[7r(l -f A2)]); its tails are thicker than those of the normal 
distribution. For the <r2’s, we used a Cauchy distribution on the positive half¬ 
line, with density f(cr2) = 2/[7r(l + (<r2)2]), and for the non-diagonal 0’s in 
the covariance matrix $ of the latent factor f. we used a uniform distribution 
on [—1,1] (the non-diagonal 0’s are restricted to [—1,1] since the diagonal 0’s 
are assumed to be equal to one). Other prior distributions are possible, such 
as Jeffreys’ non informative prior (see, e.g., Kass, 1989), and it is conceivable 
that BICR might perform better with a different choice of prior. But the 
main focus of this article is on comparing the information criteria with the 
more classical fit indices, so we do not pursue other priors here. 

Among the other criteria, the CVI (Cudeck and Browne, 1983) gives by 
far the best results. The approach consisting in evaluating the performance 
of the model on an independent data set is an interesting one, used in many 
applications, and works quite well. In fact Cudeck and Browne (1983) did 
calculate AIC and BIC along with CVI but not in the context of evaluating 
the performance of criteria by the frequency of selection of the correct model. 
Our results indicate that CVI selects the overfitting models more frequently 
than AIC, but selects the underfitting models less frequently than BIC. This 
confirms one of the observations of Cudeck and Browne that BIC appears 
more conservative than CVI by choosing less frequently higher dimensional 
models. Browne and Cudeck (1989, 1993) also developed the expected cross 
validation ECVI, which is based on a single sample, but as pointed out by 
them and Joreskog (1993) and shown in Equation 6, it gives the same rank 
order between competing models as AIC and is thus equivalent to AIC as a 
model selection criterion. 

All remaining criteria - the p-value, AGFI, the five Bentler-type mea¬ 
sures (NNFI, PFI, IF I, FI, CFI), and the two critical-n indices - have 
overall considerably lower correct model selection percentages. The best per¬ 
formers in this group are the almost identically behaving IFI and FI. With 
the exception of PFI, all these remaining criteria exhibit strong overfitting 
tendencies which do not seem to decrease as the sample size gets larger. It 
has been argued in the literature that the statistic nFm,„(M,) in Equation 13 
may not be asympotically distributed as a central y2 (see e.g. Bollen, 1989b, 
pp. 266-268; Bozdogan, 1991). The asymptotic distribution will certainly fail 
to be a central x2 if the model A/, in Equation 13 is not overfitting (does not 
cover the true parameter values of the distribution generating the data). Pre- 
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vious literature has therefore pointed to the problem of model misspecification 
as a limitation to based criteria, and has also stated that when the sample 
size is large, models are likely to be rejected for trivial reasons. The results of 
this study indicate the presence of problems with x2 based criteria even when 
there is no misspecification, as is the case here. The built-in dimension pe¬ 
nalizations simply turn out not to work properly: the less restrictive analytic 
model 1 is more frequently chosen than the more restrictive analytic model 
2. It is interesting in this respect that the heavily criticized p-value of the x2 
test, which typically motivated the construction of the alternative measures, 
shows in many cases as good or better results with often less overfitting. 

The overfitting tendency is particularly strong in both CN measures. 
However, because the choice of o = .05 instead of a = .01 systematically 
decreases the percentage for overfitting and increases the percentage for correct 
model 3, is seems worthwile to investigate whether choosing still higher ot- 
levels than the customary a = .05 would improve the performance of the CN 
criterion. 

While most of the poorly performing criteria show a clear tendency to 
overfit, the problem with the parsimony fit index CFI is just the opposite: 
it is parsimonious indeed, as it underfits in an extreme way in all true model 
and sample size situations. Mulaik et al. (1989, pp. 436-437) state that PFI 
“has certain affinities to the Akaike (1987) AIC lack of fit index, which also 
penalizes a model for losses in degrees of freedom”. There can be no doubt 
that in contrast to AIC, PFI is an example of extreme overpenalization. It 
penalizes not only for the loss in degrees of freedom but also heavily for the 
baseline model chosen. 

In summary: 

• In this study where the data were generated by a model (called the 
“true” model) that was covered by three of five hierarchically ordered analytic 
models and most restrictively by the so-called “correct” analytic model, the 
information criteria were overall more successful at the task of selecting the 
correct analytic model than the other criteria considered. However, the two 
sample cross-validation criterion remains an attractive option. 

• Of the information criteria considered, the best performer seems to 
be BIC* which is somewhat less overfitting than AIC, and somewhat less 
underfitting than the other information criteria (BIC, BICR, CAIC). 

• All other criteria included in the study, with the exception of the ex¬ 
tremely underfitting parsimony fit index PFI, showed overfitting problems 
and did not or hardly improve on the well-known x2 p-value as a selection 
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criterion. 

Discussion 

A problem inherent to simulation studies as the one reported here, is 
that generalization of the results to true models and sample sizes outside of 
the ones used in the study is not warranted. However, the simulation procedure 
by means of the PRELIS and LISREL programs, explained in this article, is 
easily repeatable for other kinds of models and sample sizes. In general, before 
analyzing an empirical data set, it is advisable to perform a simulation study 
to find out whether the results in this article are confirmed for the sample 
sizes, kind of models and parameter values ranges relevant for the data set at 
hand. 

Worth mentioning here is a recent direction in the area of model selec¬ 
tion, that of complexity based criteria (Bozdogan, 1991). In AIC or BIC 
the complexity of a model is defined as the number k of its estimated pa¬ 
rameters. A novel approach proposed by Bozdogan points out that this is 
too simple a definition of complexity and introduces a new class of criteria 
called ICOMP (Information Complexity) where the number k is replaced by 
a suitable measure of the complexity of the model derived from information 
theoretic principles. ICOMP criteria have been applied to some examples of 
confirmatory factor analyses (see Bozdogan, 1991), but not in the context of 
comparing criteria on the basis of frequency of selection of the correct model. 
For the type of models considered in this study, where the covariance matrix 
of the errors is diagonal and the number of latent factors equal to three for all 
analytic models, a suitable ICOMP criterion behaves somewhat like AIC. An 
interesting direction for a future study would involve simulations containing 
models with different numbers of factors, possibly a nondiagonal covariance 
matrix for the measurement errors, and exclusively misspecified (underfitting) 
analytic models in the selection set. 
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