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Abstract 

The introduction in 1973 of a model selection criterion by Akaike (AIC) ini¬ 

tiated much research activity on the behavior and properties of a class of criteria 

generally known as information criteria. This paper expands on a lecture on this 

subject given at the March 1995 annual meeting of the Dutch Statistical Soci¬ 

ety and focuses on issues which have been the object of active discussions in the 

structural equation modelling literature. We briefly explain the rationale behind 

information criteria such as the A/C, the BIC and related criteria for choosing a 

model to fit a data set among a finite set of alternatives. We also briefly describe 

model selection criteria based on the concept of the complexity of a covariance 

matrix. We review some results on the asymptotic behavior of the criteria as the 

sample size goes to infinity both in the case when at least one of the analytic 

models contains the true parameter vector, and the case when none do. Finally, 

we illustrate the use of information criteria with an application to the selection of 

a harmonic regression model. 

Information, Kullback-Leibler distance and 

information criteria. 

We recall here the concept of Kullback-Leibler distance, following Kull- 

back (1959). Let /i(x) and /2(z) be two probability densities. Consider a random 

variable X whose density is either /i or /2. Call Hi (respectively Hi) the hypoth¬ 

esis that the density of X is /, (respectively /2). Given an observation x of X, we 
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can apply Bayes’ theorem to get the posterior probability that the hypothesis Hi 

(respectively //2) holds: 

.. M*)P(u,) (U 
( 'l ) fi(x)P(Hi) + Mx)P(H2y ( } 

for i = 1,2. It follows that: 

l°g[ 
Mx) 

/2(x) = l°g[ 
P(Hi\x) 

P(H2\x) 
~ log[ 

P(Hi) 
P{H2) 

So the expression l°g[~^j] can be considered as the information in the observation 

x for discriminating in favor of H2 against H2. If x is an observation from the 

density /i, then the mean information for discriminating in favor of Hi against H2 

per observation from f\ is: 

where Ejt denotes the expected value with respect to the density fi. In general, 

the Kullback-Leibler distance between two densities /! and f2 is defined 

to be I(fuf2). 

Note that, in spite of its name, the Kullback-Leibler distance is not a distance 

strictly speaking because it is not symmetric: in general, I(fi,f2) / fi)- But 

the two following properties hold: 

• /(/i,/2)>0 

• f(fitfi) = 0 if and only if fi = f2 almost everywhere in the possible range 

of x. 

Let us now turn to the problem of model selection. Consider a sequence 

Xi, X2, ■ ■ ■, Xn of independent identically distributed (i.i.d.) random variables 

with unknown density /<j. = /(x,0*), where the unknown parameter vector 9* 

belongs to d-dimensional space. In general, we will call a model a subset of 

d-dimensional space, to which the unknown parameter vector is restricted. Let 

us assume that we have at our disposal a finite number of competing models 

mi) ”*2! • • •! "L/) and that our task is to select a model which fits the data well 

and is parsimonious. We define the minimal true model to be the smallest 

model which contains the true parameter vector 0*. We devote our attention to 
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the problem of trying to determine what this minimal true model is, and examine 

several criteria for model selection generally referred to as information criteria. 

In 1973 Akaike introduced the AIC criterion, which is motivated as follows. 

Given a model where the vector 9 of parameters is allowed to vary, a reasonable 

goal would be to identify the value of 9 such that the distance /(/(z,0*),/(x, 0)) 

is minimum. Since 

= £s.[log/(x,0*)] - Mlog/(x,0)], 

where Eg- denotes the expected value with respect to /(x, 9"), in order to mini¬ 

mize I(fg-,fe), we should maximize i?0*[log/(x,0)]. Of course this latter quantity 

depends on the unknown parameter vector 0* so cannot be calculated directly. By 

the strong law of large numbers, we know that, almost surely, as the number n of 

observations goes to infinity, the sample mean 

l£>g/(*„0) 
n i=i 

converges to Eg*[\og So one might think of trying to maximize 

X>g/(*,, 0). 
i=i 

This idea leads directly to the concept of maximum likelihood. Let us assume 

that on each model rrij, j = 1 ■ ■ • J we have a maximum likelihood estimator 0y 

which maximizes the log-likelihood S"=1 log/(A’i,0) on rrij. Recall the problem 

we mentioned above of maximizing Eg-[\og f(x,9)]. This of course is equivalent to 

maximizing the quantity 

/*(0) = nfi#. [log/(x,0)]. 

Consider the quantity This quantity depends on the random variables 

X\,---,Xn through 9j. Following Sakamoto, Ishiguro and Kitagawa (1986), we 

define the mean expected log likelihood on rrij to be 

£,.<»> im)], 
where Es,(n) denotes the expected value with respect to the product of n densi¬ 

ties of the form /(x,0*). One can then prove (Akaike (1973), Sakamoto, Ishiguro, 
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Kitagawa (1986); see also Bozdogan (1987)) that, under some conditions, an ap¬ 

proximately unbiased estimator of the mean expected log-likelihood on mj when 

the sample size n is large is provided by: 

AIC(rrij) — maximum log likelihood on mj — kj, 

where kj is the dimension of the model m3 (i.e. the number of free parameters 

in rrij). To choose a model by means of the AIC criterion, we select m, so that 

AIC(m.j) is largest. We note here that the objective of AIC is to find a model 

which maximizes the mean expected log likelihood, which is a somewhat dif¬ 

ferent objective from searching for the minimal true model. 

Following the introduction of the AIC by Akaike, a lot of attention has been 

given to the development and properties of criteria which resemble the AIC, al¬ 

though their motivation might be quite different. Because of the informational 

nature of AIC, such criteria are very often referred to as information criteria. 

Below we summarize several information criteria, with a brief description of the 

rationale behind each. 

The BIC criterion was introduced by Schwarz in 1978 and arises as leading 

terms in an asymptotic expansion of the (logarithm of the) posterior probability 

that a model is the minimal true model. The point of view here is that each model 

has a prior probability (such as for example />(f/i) and PiH^) in equation (1)) 

and defines a prior distribution for the parameters. Given those priors, a Bayesian 

approach to model selection would select that model with the highest posterior 

probability of being the minimal true model. The criteria BIC, BIC and BICR, 

which we are about to define, are designed to approximate this Bayesian approach. 

Indeed, under some regularity assumptions, as well as some assumptions on the 

models and the priors (see Schwarz (1978), Haughton (1988), Dudley and Haughton 

(1995)), asymptotic expansions of the (logarithm) of the posterior probability that 

a model is the true minimal model can be derived, and the expressions for the 

BIC, BIC', and BICR given below appear in the expansion. Note that the 

BIC contains terms of order n or log n, while BIC' and BICR contain terms of 

constant order as well. The BIC, to be maximized to select a model, is defined 

as: 

BIC(m.j) = maximum log likelihood on m, - -kj logn. 
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Extensions of the BIC, to more general models and including more terms 

in the posterior probability that a model is the minimal true model, have been 

developed notably by Haughton (1988), Haughton, Haughton and Izenman (1994) 

and by Dudley and Haughton (1995). These include: 

* 1 71 
BIC*(m,j) = maximum log likelihood on nij — ~kj log —, 

2 27t 

and, 

BIC Rfaj) = max log lik on nij - \kj log + log /„rior(0;) + i log det IFIM(dj), 
Z Ztt Z 

where fprior denotes a prior density for the unknown parameter vector on the model 

mj, and I FI M denotes the inverse Fisher information matrix calculated in terms 

of the free parameters on the model m.j (see Dudley and Haughton (1995)). Note 

that BIC and BIC* do not depend on the priors. The prior density fpTior in 

BICR must be non-zero on the model rrij and smooth. If not much information 

is known a-priori about where the parameter vector is likely to be in model mj, 

a non-informative prior might be desirable (see, for example, Box and Tiao 

(1973)). 

Introducing a log n term to obtain a consistent criterion (see Bozdogan (1987) 

p. 358), Bozdogan defined the criterion: 

CAIC(m.j) = maximum log likelihood on mj — -kj(\ogn -f 1). 

Note that log n could be replaced by any sequence a„ which converges to infinity 

as n goes to infinity, and such that an/n converges to zero as n goes to infinity; 

the consistency of the criterion would be preserved (see e.g. Bozdogan (1987), 

Haughton (1988)). 

A criterion with a„ = log log re was proposed by Hannan and Quinn (1979) 

in the context of autoregressive (AR) models. In that paper, Hannan and Quinn 

show that log log re is the sequence with the slowest possible rate of increase which 

still makes the criterion consistent. 

Geweke and Meese (1981) propose a model selection criterion BEC (Bayesian 

Estimation Criterion Function) for linear regression models, to be minimized to 

select a model, which adds a penalty function to the maximum likelihood estimator 
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d2 of the unknown error variance (note that the BIC criterion amounts to adding 

a penalty function to log d2, and that log cr2 equals —2/n times the maximum 

log likelihood, plus a constant). The BEC and BfC are found to perform about 

equally well at the task of retrieving the minimal true model in the simulation study 

conducted by Geweke and Meese (the study assumes that the true parameter vector 

lies in at least one of the analytic models). Terasvirta and Mellin (1986) follow up 

on the simulation study of Geweke and Meese in order to compare criteria such as 

AIC or BfC with sequences of tests of hypotheses. The BIC is found to perform 

well at the task of retrieving the minimal true model, and the test sequences are 

found to be a viable competitor. Terasvirta and Mellin note that the choice of a 

significance level for the test would however be crucial. Sawa (1981) proposes a 

criterion for regression model selection which adds a penalty to log d2 (as AIC and 

BIC do), is inspired by AIC principles, and does not assume that at least one of 

the analysis models contains the true parameter vector. 

We also note that corrections to the AIC for small sample sizes have been 

proposed by Hurvich and Tsai (1989) and Hurvich, Shumway and Tsai (1990) for 

regression and time series model selection. 

A new direction in the area of information criteria is that of complexity- 

based information criteria, introduced by Bozdogan (1990). The idea is that the 

number of parameters kj may be too simple a measure of the complexity of a 

model. Bozdogan (1990) introduced a new class of criteria called the ICOMP, of 

the following form: 

ICOMP(mj) = maximum log likelihood on my — complexity of the model , 

where complexity is defined as follows. Given a k by k positive definite matrix A, 

the complexity of A is given by (Van Emden (1971), Bozdogan (1990)) : 

C{A) = ^log[^i^] - \\og[det(A)]. 

Note that C(A) is equal to the Kullback-Leibler distance between the joint density 

and the product of the marginal densities for the components of a normal vector 

with covariance matrix A, maximized over all orthogonal transformations of that 

vector (see Bozdogan (1990)). One can show that C(A) > 0 for every positive 
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definite matrix A and that C(A) = 0 if and only if ^4 is a multiple of the identity 

matrix. 

A rationale for combining a maximum likelihood on a model with the complex¬ 

ity defined above is given in Bozdogan and Haughton (1995): basically ICOMP 

seeks to minimize the (approximated) sum of two Kullback-Leibler distances, one 

of which is a measure of the badness of fit of the model, and the second of which 

measures how much dependence there is among the components of the estimated 

parameter vector. 

Two approaches to the ICOMP have been introduced and investigated in a 

variety of situations by Bozdogan. If a model gives rise to an estimated param¬ 

eter vector 6 and estimated residuals e, as for example in linear (or non-linear) 

regression, the ICOMP can be defined as: 

ICOMP(mj) = maximum log likelihood on rtij — [C(Ej) + C(Se-)], 

where Ej is the estimated covariance matrix of the estimated parameter vector 

and E,- is the estimated covariance matrix of the estimated errors. Note that 

C^Ej) -f C(Ec-) measures the (approximate) amount of dependence among the 

components of the the vector 6 added to the (approximate) amount of dependence 

among the components of e. Another version of the ICOMP can be defined as: 

ICOMPiFiM(m.j) = maximum log likelihood on mj — C(IFIM), 

where IFIM is the estimated inverse Fisher information matrix, equal to the es¬ 

timated asymptotic covariance matrix of the estimated parameter vector. This 

second definition of the ICOMP can be applied to any modelling situation where 

suitable regularity conditions hold to ensure that IFIM is the estimated asymp¬ 

totic covariance matrix of the estimated parameter vector. 

Asymptotic behavior of AIC and BIC. 

We now explain what the asymptotic behaviors of AIC and BIC are as the 

sample size n gets large. Consider two models mj and m2. The following holds 

(see Haughton (1989)): 
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If 0 is in raj but not in m2, then, almost surely, for n large enough, 

BIC selects mi, and AIC selects mj. 

This property follows from the fact that almost surely (with probability 1), 

for n large enough, we have 

max log likelihood on mi — max log likelihood on m2 > cn 

for a positive constant c. This means that the difference in log likelihoods will 

overcome the AIC or BIC difference in penalty functions (see Haughton (1989)) 

when n goes to infinity. It implies that for both AIC and BIC (as well as 

BIC", BICR, and CAIC), the probabilities of underfitting converge to 

0 as n goes to infinity. In fact, it is actually true that the probabilities of 

underfitting become less than or equal to Ce-“n as n becomes large, where C and 

a are positive constants (see Haughton (1989)). So the probabilities of underfitting 

are likely to become small quickly as n becomes large. 

We now look at the question of overfitting. Consider a situation in which 9 

is in both mi and m2 and the dimension of m2 is less than the dimension of m,. 

The key fact here is that, by the law of the iterated logarithm, one can show (see 

Haughton (1989)) that almost surely for n large enough: 

|max log likelihood on mi — max log likelihood on m2| < Clog log n, 

for a positive constant C. So the BIC penalty, because it contains a log n term, 

will overcome the difference in maximum log likelihoods as n becomes large. This 

implies that the probability that BIC overfits converges to zero as n goes 

to infinity (the same is true of BIC*, BICR, and CAIC). The fact that 

the probabilities of underfitting or overfitting with BIC converge to zero as n goes 

to infinity is called consistency. Regarding overfitting, it is in fact true that the 

probability that BIC overfits becomes less than or equal to C/nk as n goes to 

infinity, where C and k are positive constants (see Haughton (1989)). 

With respect to overfitting, the AIC behaves quite differently from the BIC. 

The AIC penalty function, which does not depend on the sample size, may not be 

able to overcome the difference in maximum log likelihoods. In fact, it is known in a 

variety of situations that the probability that AIC overfits converges to a constant 
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probability, as n goes to infinity. The limiting overfitting probability will depend 

on the competing models. For the case of regression models, we refer the reader 

to Nishii (1984). Limiting overfitting probabilities are also given by Woodroofe 

(1982), under some mild regularity conditions. There it is assumed that a set 

of nested models is given, with mo of dimension 0, mi of dimension 1, • • •, rnj of 

dimension J. For example, if the true dimension is 5, and the maximum dimension 

is 10, the asymptotic probability that AIC overfits is .265 (see Woodroofe, 1982). 

So, the asymptotic probability that AIC overfits is in general a pos¬ 

itive (but less than 1) probability which depends on the models. 

To summarize, when one of the entertained models is the true model, asymp¬ 

totically, 

• The AIC will overfit, but only some of the time, 

• The BIC will overfit less and less often as the sample size increases. 

A question arises: what might the asymptotic behavior of the AIC 

and BIC be if none of the entertained models is the true model? This 

is a common situation, for example in regression models, where one is likely to 

be missing a variable. It is also felt to often be the case for structural equations 

modelling (see, e.g., McDonald (1989)). A recent simulation study by Bozdogan 

and Haughton (1995), to be discussed later in this paper, involves a true linear 

regression model M5 with five variables, and four analytic models Afj, M2, M3, 

and M4 with 1, 2, 3 and 4 variables respectively. It is shown in that paper that, as 

the sample size goes to infinity, the probabilities approach one that the AIC (or 

the BIC) selects the largest model M4. However, for finite sample sizes (even large 

ones, such as 1000), sometimes the AIC (and the BIC) will try to choose 

larger and larger models as n increases, but sometimes they will not. 

In order to illustrate the asymptotic underfitting and overfitting properties 

of AIC and BIC, we give a simple example where probabilities can be evaluated 

analytically. 

Example: Let AT], X2, • • • ,X„ be i.i.d. according to a Ar(0,1). Consider the 

two models: 

m0 : p = 0, 
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and 

mi : fi arbitrary, 

where /i is the mean of the normal distribution of the X,. Note that the standard 

deviation is one for both models Too and mi. It is then easy to calculate: 

max log likelihood on mi — max log likelihood on m0 = ~ V2, 

where X is the sample mean of the observations Xi, • ■ •, Xn. Then we have: 

P(AIC overfits) = P(^X2 > 1) = 2P(VnX > V2) = 2(1 - <I>(%/2)) « .158, 

where $ is the cumulative distribution function for the standard normal A"(0.1). 

So, if we simulated 1V(0,1) data and used AIC to select between m0 and mi, 

we would expect AIC to overfit (select mi) about 15.8% of the time. Note that in 

this simple case the probability .158 does not depend on the sample size. 

On the other hand, 

P(BIC overfits) = P^X2 > ^logn) = 2P(y/nX > \J\og n) = 2(1 — <P(^/logn)), 

which converges to zero as n goes to infinity. In fact one can show by using an 

expression which is asymptotically equivalent to 1 — 4>(x/log n) that: 

P(BIC(mi) > BIC(m0)) ~ . C. , 
v og log n 

as n goes to infinity, where C is a positive constant (see Dudley, 1989, p. 352). 

Here ~ means that the ratio of the left-hand-side to the right-hand-side converges 

to one as n goes to infinity. 

Let us note here that the concept of consistency we have discussed represents 

one among several possible desirable asymptotic features of model selection criteria. 

Another type of analysis (see Shibata, 1980, 1981) assumes that the number of 

variables is infinite or increases with the sample size (in linear regression), or that 

the order is infinite (for autoregressive models). Shibata proposes a criterion which 

adds a penalty function to the estimated variance a2 of the random errors in a 

linear regression model or an autoregressive model and is asymptotically efficient, 

in the sense that it asymptotically minimizes the mean square error of an estimated 

predictor (see Shibata, 1980, 1981). Shibata’s criterion is asymptotically equivalent 

to AIC, so AIC is asymptotically efficient (and BIG is not) in the sense of Shibata. 
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Regression models when none of the entertained 
models is the true model: a simulation. 

In a recent simulation study by Bozdogan and Haughton (1994), the following 

true model was considered: 

Y\ = .Y,,1 + + 04^fi,4 + PsXi,S + ft, 

where i = 1, • • • ,n. So the true model is a linear regression model with 5 variables, 

and the e; are assumed to be i.i.d. according to a N(0,o2). In the analysis, we 

only entertained the following 4 models: 

Mj: model with the variable Xi only, 

M2: model with the two variables Xi and X2 only, 

M3-. model with the three variables Xi, X2, X3 only, 

M4: model with the four variables Xi, X2, X3, and X4. 

Note that in this case there is no such thing as the smallest model which 

contains the true parameter vector. Instead we define as best model that esti¬ 

mated model whose Kullback-Leibler distance to the true model is smallest. So, 

in the same spirit as the AIC, we consider that minimizing the Kullback-Leibler 

distance is an ideal procedure, which of course cannot be implemented in reality 

since we do not know the true model. Several interesting conclusions emerge from 

the simulation study: 

• While the probabilities converge to one (as the sample size goes to infinity) 

that the Kullback-Leibler distance selects model M4 (see Bozdogan and Haughton 

(1995)), for finite sample sizes (even large, such as 1000), minimizing the Kullback- 

Leibler distance between each estimated model and the true model does not always 

choose the largest available model M4. 

• Complexity based criteria (ICOMP) tend to agree with Kullback-Leibler 

decisions more often than the AIC or BIC. 

• While the probabilities converge to one (as the sample size goes to infinity) 

that the AIC (or BIC) selects model M4, for finite sample sizes (even large, such 

as 1000), the AIC (or BIC) does not always select the largest model M4. 

We refer the reader to Bozdogan and Haughton (1995) for more details. 
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Application: harmonic regression models. 

Consider observations y(l),y(2), • • •, K(n) with 

k 
Y(t) = a0 + ^[aj cos(2ttfjt) + (3j sin(27r/7<)] + e(t), 

i=i 

where the two first terms, involving unknown parameters a0, oi, • ■ ■ ,a*, fit, ■ ■ ■, fik, 

f\, - ■ •, fk make up a non-random sinusoidal regression function with frequencies 

fi, - •• ,fk in [0,1/2], and the random errors e(f) are i.i.d. according to a N(0, o2) 

with an unknown variance <r2. A model such as we have just described is often 

referred to as a harmonic regression model; when, as we assume here, the 

frequencies are unknown, the harmonic regression model is a non-linear model. 

Harmonic regression models are suitable for data with some periodicity built in, 

such as temperature data, for example. The question of interest to us is: How 

many frequencies are there really in the data? In other words, what is 

kl 

Techniques to fit harmonic data are presented in Haughton, Haughton and 

Izenman (1994), where information criteria as well as complexity based criteria are 

applied to the problem of deciding how many frequencies to include in models to fit 

two well known series - the signed sunspot numbers, the magnitudes of a variable 

star - as well as a series of Budapest temperatures. The paper also presents a 

simulation study involving the following true model: 

K(0 = 15 + 9 cos(27r.lt) + 6 sin(2x.l()+ 

3 cos(27t.34<) — 2sin(27r.34f) + 1.5 cos(27r.35f) + 5sin(27r.35t) + e(f). 

Variances cr2 of .25, 1 and 4, sample sizes of 50, 100 and 1000 were used in the 

simulations, and 100 replications were run in all experiments. 

Overall, the following conclusions emerged: 

• The simulations show that the model fitting and model selection procedures 

work quite well for sample sizes of at least 100 (for all variances considered). For 

fewer observations (50 for example) the procedures are less successful, notably 



65 

Information Criteria for Model Selection 

at distinguishing between the two close frequencies .34 and .35 in the simulation 

study. 

• A parsimonious model with 6 frequencies was obtained for the sunspot 

data by using BIC with its penalty function multiplied by 2. If the BIC penalty 

function is multiplied by 4, a model with two frequencies is selected. 

• Even though two frequencies, .034483, and .041667 explain 99.9% of the 

variability of the star magnitude data, the information criteria tend to select larger 

numbers of frequencies, such as 16 or 21 frequencies. 

• In general, the criteria selected one frequency, the yearly cycle, to fit the 

Budapest temperature data. Our estimation procedure gave a very precise identi¬ 

fication of this yearly cycle (12.0003 months). 

We refer the reader to Haughton, Haughton and Izenman (1994) for more 

details. Details are given in that paper on an iterative procedure which allows 

to decide which “candidate” frequencies to consider for inclusion in harmonic re¬ 

gression models. One key ingredient of the procedure is an Amplitude Density 

Function, which behaves a little like a periodogram: the location of its peaks 

helps select “candidate” frequencies. 

Conclusion. 

Let us first note that, while the area of model selection is a large area of 

mathematical statistics with an extensive literature, this paper is not meant to 

give an exhaustive review of all techniques and results. Instead, one of our objec¬ 

tives was to help clarify certain questions, notably about the asymptotic behavior 

of information criteria, which have arisen in the structural equation modelling 

literature. 

A particular focus was given to the probabilistic aspect of some of the results: 

for example, AIC has a certain asymptotic probability of overfitting which is 

neither zero or one in most cases where at least one of the analytic models contains 

the true parameter vector. We have also shed some light on what happens when 

none of the analytic models contain the true parameter: in that situation, while 

the asymptotic probability of selecting the largest available model may equal one 
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for the AIC (or BIC) in some cases such as the regression set-up presented here, 

that does not imply that in practice larger sample sizes will yield larger models. 

It is quite likely that in many situations, even when none of the analytic models 

contain the true parameter vector, the asymptotic probability of selecting the 

largest available model will in fact not equal one (for the AIC or the BIC). 
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