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Abstract 

Compositional data can be regarded as vectors representing the distribution of 

proportions over D categories of some unit. Because elements of a compositions 

denote proportions, they are non-negative and they add up to one. Therefore com¬ 

positions can be regarded as vectors in the simplex, a constrained sub-space of the 

real space. 

Aitchison (1986) showed that there are very specific problems with the statistical 

analysis of compositions observed on the simplex. In the first place, compositional 

vectors have a degenerate covariance structure. This leads to several problems in 

the interpretation of the covariance matrix of a composition. In the second place 

the assumption of a multivariate normal distribution for compositional vectors is 

doubtful. Therefore standard multivariate statistical methods can lead to distorted 

inferences. In this article, four statistical methods, more appropriate for the analysis 

of compositional data, are reviewed and discussed. 
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1 Introduction 

Compositional data can be regarded as vectors representing proportions of some unit. Let 

vector po denote a D part composition: Pd = (pi|;,... ■ ■ ■ ,P.D|t)<- Vector pn denotes 

for instance the time allocation of person i over j = l,... , D activities in proportions 

(conditional on person i). Other applications are for instance time budgets, financial 

budgets or the chemical compositions of rocks expressed as proportions. Because the 

elements of po denote proportions, they are non-negative (p,|; > 0 Vj) and they add up to 

one (iVIjPji; = 1), the "unit-sum constraint”. Aitchison (1986) emphasized that due to 

the unit-sum constraint, standard multivariate methods are not applicable for the analysis 

of compositional data. In the first place, there are problems with the interpretation of the 

covariances between the elements of the compositional vector po because the covariance 

matrix of pd is degenerate. Aitchison showed that the elements of the correlation matrix 

of pn are subject to restrictions. From cov(/;ljt, Pj\i) =: 0 it can be deduced that 

—var(pi|,) = cov(Pi|iiPi|i)- Due to this, zero covariance (or zero correlation) between 

two components cannot be interpreted as absence of association. Other problems with 

the interpretation of the covariance matrix of pd are extensively discussed in Aitchison 

(1986), Ch.3. In the second place the assumption of a multivariate normal distribution 

for pd is doubtful, because the elements of composition po can only take values between 

zero and one. Standard multivariate methods like multivariate regression, MANOVA, 

principal components analysis or factor analysis, based on the covariance matrix of pd 

and on the assumption of multivariate normality of pd, can lead to distorted inferences 

(Aitchison, 1986). 

In this article, logratio analysis (section 2), seemingly unrelated regression equation 

models (section 3), latent budget analysis (section 4) and canonical correspondence anal¬ 

ysis (section 5) for the analysis of compositional data are reviewed and discussed. In 

de Leeuw, van der Heijden and Verboon (1990) and in van der Heijden and van den 

Brakel (1993), latent budget analysis, correspondence analysis and logcontrast principal 

component analysis are compared and applied on time budgets. 

2 Logratio analysis 

Aitchison (1986) emphasized that compositions po are, essentially d — D — l dimen¬ 

sional vectors because the last element of a composition is fixed, due to the unit-sum 

constraint. He emphasized that compositional data can be regarded as vectors observed 

on the simplex, defined by: 

Sd = {(pi|i,P2|i,---,PD|i) : Pl| > 0,...,pD|i > Ojpqi +P21H- ... + P£)|i = 1}. 
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Vectors observed on a constrained space such as the simplex do not have necessarily the 

same interpretation as vectors that can assume any values in the real space 7v': (Aitchison, 

1986). To get rid of these constraints, Aitchison proposed to transform the composition 

PD with a logratio transformation to a vector ya: 

The logratio transformation transforms the vector pn, observed on the constrained space 

of the simplex Sd to the space of real numbers TZd. The inverse of the logratio transfor¬ 

mation is the logistic transformation: 

Pj\i 

PD\i 

_expfe|;)_ 

exp(yi|,') + exp(j/2|i) + • • • + exp(j/<i|,) + 1 
_1_ 

exP(s/i|i) + exp(y2|,) + ... + exp(j/i|i) + 1' 

(.7 = 1)2,..., d) 

The logratio transformed composition ya can assume any value in lZd. If ya follows a d- 

dimensional multivariate normal distribution with mean vector ft and covariance matrix 

S, the composition pn is said to follow a logistic normal distribution with the same 

parameters fi and S (Aitchison, 1986): 

yd — Af'V, S) <=> pd — S), 

with 

M = [p*] = [E(yJ,l)] = [E{ln } : i = 1,2,..., d] 

and 

Through the close relationship of the logistic normal distribution with the normal distribu¬ 

tion, all the powerful multivariate analysis methods (like multivariate regression analysis, 

MANOVA, logcontrast principal component analysis and factor analysis) based on the 

assumption of normality become applicable for compositional data. 

These methods are appropriate if each composition can be regarded as an indepen¬ 

dent replication. For example time budgets or financial budgets where individual persons 

specify how they spent their time or income over different categories. The logistic nor¬ 

mal distribution, together with the logratio covariance structure (E) define a powerful 

parametric class of distributions on the simplex, flexible enough to describe or model all 

possible dependency structures that can occur on the constraint space of the simplex. 

This class of probability distributions makes it possible to test hypotheses concerning 

model parameters, in order to investigate different kinds of research questions. 
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Aitchison (1986, Ch.5, Ch.9 and Ch.10) showed how different forms of statistical 

independency between the components of a composition can be investigated by testing 

hypotheses about the structure of X. In order to investigate how compositions depend 

on other explanatory variables, the logratio transformed composition y can be modeled 

with covariables in a multivariate linear regression model. Under the assumption that y 

is Afd(n, X) distributed, hypotheses concerning the significance of regression coefficients 

can be tested (Aitchison, 1986, Ch.7). 

Under the assumption that y is A/'J(/i, X) distributed, it is also possible to test the 

hypothesis that /x and/or X for two or more groups are different. If groups are significant 

different, a classification rule for new observed compositions can be constructed with 

logistic discriminant analysis (Aitchison, 1986, Ch.7 and Ch.12). 

To describe the observed variation in a composition with a smaller number of compo¬ 

nents, logcontrast principal component analysis can be used as data dimension reduction 

technique (Aitchison, 186, Ch.8). Only the most important methods proposed by Aitchi¬ 

son are mentioned here. For an extensive overview the reader is referred to Aitchison 

(1986). 

3 Seemingly unrelated regression equations models 

The idea to use seemingly unrelated regression equations (SURE) models for the analysis 

of budget data was raised by Pyndyck and Rubinfeld (1981). The analysis of SURE 

models was extensively discussed by Srivastava and Giles (1987). In SURE models, each 

element of the composition pd is modeled with the same explanatory variables in a linear 

regression model. The elements of the composition are the dependent variables. This 

leads to a system of regression equations: 

V\\i = C*1 + /?nZ;i + /3i2Zi2 + ... + PlkZik + • • • + 0\KZiK + til 

P2|i = «2 + 02\Zil + PaZa + . . . + PlkZik + ■ ■ • + PlKZiK + e>2 

Vj\i — ai + PjlZil -F PjlZil + ...-(- fijkZik + ■ • • + PjKZiK + Uj 

PD\i — aD + pDlZi\ + 0D2Z,2 + . . . + PokZik + • • • + f^DKziK + UD 

were 2;* denotes the fc'th explanatory variable for each category j of the composition pn: 

ctj the intercept of the j'th regression equation; fijk the regression coefficient for 2;* and ctJ 

the i'th value of the error term of the j'th regression equation. The unit-sum constraint 

implies the following additional restrictions for the regression parameters: 
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Eai = 1 (2) 
;=i 
D 

= ° {k=\,2,...,K) (3) 
i=i 
D 

S c0 = 0 (* = l,2,...,iV). (4) 
j=i 

Due to these constraints, the error terms (tJ are mutually correlated. Applying ordinary 

least squares estimation to this system of equations leads to inefficient parameter estimates 

because the correlation between the error terms of the regression equations are ignored. 

An efficient estimation procedure, which takes into account the correlation between the 

equations of the system, was devised by Zellner (1962) and is called Zellner Estimation. 

Zellner suggests that efficiency in estimation can be gained by application of generalised 

least squares (GLS) estimation to a group of seemingly unrelated regression equations. 

Suppose that N compositions pd are observed. For each composition K explanatory 

variables are observed. The aim is to explain the relationship between the composition 

and the explanatory variables in a linear regression model. Every category of the compo¬ 

sition forms a linear regression equation with the same K explanatory variables. This D 

regression equations can be expressed compactly in matrix notation: 

P — I0 ® Z/3 + e, (6) 

where pd is the N x 1 vector which contains the N observations of category j from the 

composition po; Z is the N X (K + 1) matrix with the explanatory variables for category 

j (the first column of Z contains ones for the intercept); /T is the (K -)- 1) X 1 vector 

with the regression parameters for category j. The first element of /F corresponds to the 

intercept parameter £J is a Ar X 1 vector with the error terms for the observations of 

category j; P is a (N D x 1) vector consisting of the D vectors pd; Iq is the DxD identity 

matrix; /3 is a (K + 1) 1) x 1 vector consisting of the D regression coefficient vectors /J1; 

c is a ND x 1 vector consisting of the D error vectors e* and ® denotes the Kronecker 

product. 
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Restriction (4), causes interdependence between the error terms of the D equations: 

cov(ej, ej ) = Estimating (6) as a SURE model, the following assump¬ 

tion is made: 

E(e) = 0, 

cov(e) = £(66*) 

^ oiiIn 

ozi In 

o'uIn ^idIn n 

02£>In 
E ® In = 41, 

\ O’DiIn ^DjIn • • ■ <7£>£>In / 

where £ is the D x D matrix with elements <r3j<. Note that the variance of etJ and the 

covariance between e,j and e,y are assumed to be constant for all i and that the covariance 

between Uj and are zero for all j and for all j'. 

For a given E the best linear unbiased estimator (BLUE) /3qls for the regression 

coefficients /3 is obtained by applying GLS estimation: 

/3gls = [(Id ® Z)*(E ® In)’1^ ® Z)]-1^ ® Z)*(E ® In)-^- 

The variance covariance matrix of $gls can bo estimated as 

(7) 

V(/9Gls) = [(Id ® Z)*(E ® In)-1^ ® Z)]"1. (8) 

In the general case, BLUE for the regression coefficients are provided by Zellner esti¬ 

mation (Zellner 1962). Because the dependent variables are all modeled with the same 

explanatory variables, the GLS estimates turn out to be equivalent to the OLS estimates 

for the regression coefficients (Srivastava and Giles 1987, Ch.2). When the Kronecker 

products in (7) and (8) are worked out it follows that: 

0GLS = lD®(Z‘Z)-1ZtP, 

V(/3Gls) = £®(Z‘Z)-\ 

Note that the SURE model reduces to a multivariate regression model (Mardia, Kent and 

Bibby, 1979, Ch.6). 

The elements of E can be estimated by 

E = 

e5 = 

Because the dependent variables are restricted to the hyperplane = U the 

parameter restrictions (2), (3) and (4) are automatically fulfilled. Due to the restriction 

Pi], = 1 it follows that Ejo = 0 (with jo a D dimensional vector with each element 

1). Therefore, the covariance matrix E ® In will be always singular. In fact the system 

6^* 

1 331 [(W-K) 

— Z^qLS- 

■ j = 1,2,...,D 
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of regression equations is completely determined by £> — 1 regression equations. The last 

regression equation is known by the restriction that the dependent variables are on the 

hyperplane Pj\i = 1 and the parameter restrictions (2), (3) and (4). 

SURE models seem to be appropriate to relate the components of a D part composition 

to K explanatory variables in a linear regression model. However, it should be emphasized 

here that only the restriction of the unit-sum constraint is incorporated in the SURE 

model and that the restriction that each component is non-negative is not used. SURE 

does not model compositional data observed on the simplex Sd, but data observed in 

a hyperplane in the space of 1Z°, defined by the unit-sum constraint. A consequence 

of this is that after having estimated the regression parameters, it is possible to predict 

compositions outside the range [0,1], This is not problematic if S is small enough and the 

elements of po are not to close to the boundaries of the simplex. However, if there are 

many compositions that take values close to the boundaries of the simplex, it is better to 

transform the compositions po with the logratio transformation (1) and to model these 

transformed compositions in a multivariate regression model (section 2). The advantage 

of the use of SURE models for the analysis of compositional data instead of logratio 

analysis is that the interpretation of the estimation results is less complicated because no 

non-linear transformation is applied. 

4 Latent budget analysis 

The methods described in section 2 and 3 are appropriate if from each object a composition 

is obtained which can be regarded as an independent replication observed on the simplex. 

However, compositional data can also arise in a completely different way from contingency 

tables. Let the I x D matrix N denote a contingency table. The rows correspond with 

I objects and the columns correspond with D different categories of a composition. For 

example by time budget analysis, the rows correspond with I persons or groups of persons 

and the columns correspond with D different activities of time spending. Counting at 

random points in time which of the D activities, the different objects are doing, gives 

information how these objects spend their time over these activities. If these counts can 

be regarded as independent observations, & I x D contingency table N arise and can be 

assumed to be generated by a product multinomial distribution. From contingency table 

N, for each object (row) a budget that specifies the proportions of time spent at each of 

the D activities can be obtained by dividing each element of N by its row total. Note 

that the elements of these budgets are conditional probabilities which can be regarded as 

compositions because they are non-negative and add up to one. 

The Latent Budget Model (LBM) was originally proposed by Clogg (1981) for the 

analysis of square social mobility tables. The (LBM) was also proposed by de Leeuw 
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and van der Heijden (1988) and by de Leeuw, van der Heijden and Verboon (1990) for 

the analysis of time budgets. The basic data are a contingency table N with I rows 

(corresponding with I objects) and D columns (corresponding to the D categories of 
the composition). Element n,j denotes the number of times that object i is observed in 
category j. For each object i there is a (unknown) budget ttq = (ttii,-, ..., ttjj;,..., Troj,)1. 

This budget can be estimated by Pd = (pi|;,... .. • ,P£>|.)‘ with p^, = n;j/n,+ (ni+ = 
J2f=i n,j). The budgets (or compositions) ttd are the probabilities over the D categories 

conditional on object i. 
The LBM tries to explain the budgets ttd (estimated by po) with a mixture of K 

latent or typical budgets: 

K K 

7Tj|i = s(t = 1,2,j = 1,2,... ,J;fc = 1,2,...,A"). 
k=l k=l 

with the constraints: 
K 

X>*|. = 1 (* = 1)2,... /; A: = 1,2,... ,K), 
k=\ 

= 1 &l*>0 0 = 1,2,... J; & = 1,2,..., K). 
j=i 

The latent budgets are defined by parameters (/li|t, /Salt, ■ ■ ■, Polk)*- These are also con¬ 
ditional probabilities, specifying latent or typical distributions over the D categories con¬ 

ditional on latent budget k. For each object there are K parameters These are the 
mixture parameters for the K latent budgets. Parameter at|, is a probability conditional 

on object i and specifies to what extent latent budget k explains the budget of object i. 
Under the assumption of a product multinomial distribution as a sampling model for 

data matrix N, maximum likelihood estimates of the parameters can be obtained with 

the EM algorithm (Dempster, Laird and Rubin, 1977). See de Leeuw, van der Heijden 

and Verboon (1990) for expressions of the maximum likelihood estimates for a/t|, and 

On the a and /? parameters of the LBM, different types of parameter constraints can be 

posed; e.g. equality constraints, fixed value constraints and multinomial logit constraints. 

These constraints are important for several reasons. First, imposing constraints simplifies 

the model because it reduces the number of parameters to be interpreted. Second, sub¬ 
stantive research questions can some times be formulated in terms of constraints on the 

parameters of the LBM. Testing the constraints then provides answers to these research 
questions. Third, constraining the parameters reduces the standard errors of the uncon¬ 

strained parameter estimates. These parameter constraints are extensively described in 

van der Heijden, Mooijaart and de Leeuw (1992). 

Fixed value constraints specify that specific parameters are equal to certain values. 

These constraints can be used to test whether an estimate of a parameter is different from 
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values that are of theoretical interest. In many circumstances such values will be zero or 

one. The constraint = 0 (or 1), tests the hypothesis that the budget for object i is 

not (or completely) explained with latent budget k. The constraint [}j\k = 0, tests the 

hypothesis that latent budget k does not participate in category j. 

Equality constraints specify that certain parameters are unknown but equal to each 

other. These constraints can be used to test if two or more parameters are different. An 

important application is the test for identity of two budgets 7td (at.|l = ak^,,yk). 

Additional information about the objects (rows) or categories (columns) can be used 

to constrain the a or parameters. Because the parameters o^i, and are conditional 

probabilities, the multinomial logit model is an appropriate model. This idea is proposed 

and worked out in van der Heijden, Mooijaart and de Leeuw (1992). 

Let Vim denote the variables containing additional information for the objects i (m = 

1,2,..., M). The a parameters can be modeled using these variables by the multinomial 

logit model: 

, M . 
exP( £ 

xm=l 7 

a*l‘ K / M , ’ 
£ exp( £ vimjmk) 

*=1 \n = l ' 

were the ~fmk are parameters. This model can be identified by constraining ~/ml = 0,Vm. 

In a similar way the {3 parameters can be modeled using additional information in a 

multinomial logit model. Let variables wjk containing additional information about the 

categories (A = 1, 2,... H). The multinomial logit model for the /? parameters reads as: 

exp (^£ wjhxl>hk) 

Pi\k = 

£ exp ( £ wjhipkk) 
j=l Vi=l 7 

were the ifthk are parameters. This model can be identified by constraining iphi = 0,V^. 

Because the a and ft parameters are conditional probabilities, the interpretation is 

very easy, also for non-statisticians. A disadvantage is that the model assumes a product 

multinomial distribution as sampling model. In many applications this requirement is not 

met, which limits the application of the model. 

Related appropriate models are latent class models and loglinear models with latent 

variables because both assume a (product) multinomial distribution as a sampling model 

(Haberman 1979, Ch. 10 or Hagenaars 1990). 

5 Canonical correspondence analysis 

Correspondence Analysis (CA) is popular as an explorative data analysis technique and 

may be regarded as a tool to obtain a low-rank approximation of a data matrix. This 
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CA application is used to study the relationships between rows and columns of two-way 

contingency tables graphically. Although CA is mainly intended for two-way contingency 

tables, it can be used for the analysis of any two-way matrix with non-negative entries. 

For this reason CA seems to be an appropriate analysis technique for compositional data. 

The low-rank approximation can be obtained with least squares or with maximum 

likelihood. A least squares approximation has the advantage that no assumptions about 

the form of a sampling model of the matrix (or contingency table) are required. Up to now, 

maximum likelihood requires a Poisson or (product)multinoimal distribution as sampling 

model. One of the advantages of a maximum likelihood approach is that hypotheses about 

parameter constraints of the model can be tested if the assumptions are met (Goodman 

1985 and 1986, Gilula and Haberman 1986). Only the least squares approximation is 

discussed here. 

In CA the relationship between rows and between columns of the data matrix is 

studied in an explorative way. For discussion of correspondence analysis, the notation of 

Greenacre (1984) is used. Consider the I X D data matrix N with non-negative elements 

n.j. Data matrix N can be scaled to the so called I x D correspondence matrix P with 

proportions in each of its elements ptj. Thus = ntj/n++ with n++ = nij 

and J2i=i Pij = 1. Let r be the vector of row sums of P and let c be the vector of 

column sums of P. Let Dr be the I x I diagonal matrix with the elements of r and let 

Dc be the D x D diagonal matrix with the elements of c. 

In CA differences between the rows of P are measured by the chi-squared distance 

between the so called row profiles, defined as the rows of the I x D matrix R = D^’ P. 

Scaling the row vectors of P to row profiles R makes comparison between the rows easier. 

The chi-squared distance between the row profiles i and i' (in the metric D(71) is defined 

6,,' = E . '■f 
Pi±y 
Pi'+) 

(9) 
= 1 P+j Pi+ 

Note that the elements r,j of R are non-negative and that the elements of R add 

up to one row wise. Thus R corresponds with the characteristics for compositional data 

mentioned in section 1. Because the row profiles correspond with the compositional 

vectors, CA seems to be well suited for compositional data analysis. 

In a similar way differences between the columns of P are measured by the chi-squared 

distances between the column profiles, which are the rows of the Dxl matrix C = D”1?1 

The chi-squared distance between the column profiles j and j' (in the metric D”1) is 

defined as: 

°jj' 
Pii 

P+j 

PH' ^ 

P+j'' 
(10) 
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Let M denote the rank of the centered correspondence matrix P — re4 (M < min(7 — 

1,77 — 1)). Principal axes that maximize the chi-squared distances between the row 

profiles (9) and the chi-squared distances between the column profiles (10) are obtained 

by performing a Generalised Singular Value Decomposition (GSVD) on the centered 1 

correspondence matrix P — rc4 in the metrics D“ 1 and D,,1 (Greenacre, 1984, Ch.4): 

P — rc4 = ADUB4, AtD;1A = BtD-1B = 1. 

The columns of the I x M matrix A correspond to the M left singular vectors a]. a2...., 

3m and form an orthonormal basis for the columns of P — rc4. The columns of the 

D x M matrix B consists of the M right singular vectors bi, b2,..., Lm and form an 

orthonormal basis for the rows of P — rc4. The M x M diagonal matrix Du contains the 

singular values U\ > u? > ... > «m-i > UM > 0. 

Let F be the I x M matrix that contains the principal coordinates of the row profiles 

with respect to the principal axes of B. The right singular vectors bi, b2,..., b^ define 

the principal axes for principal coordinates of the row profiles. Now the principal coordi¬ 

nates of the row profiles in F with respect to the principal axes of B in the chi-squared 

metric D^1 can be shown to be (Greenacre, 1984, Ch.4): 

F = Dr-1ADu. (11) 

Because B is orthonormal in the metric D”1 the euclidean distance between the row points 

of F is equivalent to the chi-squared distance between the row points of R. The beauty 

of the GSVD is that an optimal m*-dimensional sub-space (in a least squares sense) for 

the row profiles is provided by the first m* columns of F (Greenacre 1984, Ch.3). Let 

the 7x2 matrix Fp] contain the first two columns of F. A plot of the row points of Fm 

provides a graphical display of the approximate chi-squared distances between the row 

profiles (in a least squares sense). Thus a plot of Fpj provides a graphical representation 

of the differences between the row profiles R expressed as chi-squared distances (9) and 

thus express the differences between the rows of N or P. The greater the chi-square 

differences between the row profiles, the greater the euclidean distance between the row 

points in the plot of Fpj. 

The left singular vectors ai,a2,...,aM define the principal axes for the principal 

coordinates of the column profiles. The principal coordinates of the column profiles in G 

with respect to the principal axes of A in the chi-squared metric D"1 can be shown to 

be (Greenacre, 1984, Ch.4): 

1The corresponding matrix P is centered by subtracting rc4 (the expected proportions of the inde¬ 

pendence matrix). If P is not centered, the first singular value and the first left and right singular vectors 

in the GSVD are always the trivial solutions ui = 1, = r and b j = c. For this reason, the trivial 

solution is removed by centering of P. 
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G = D-1BDU. (12) 

An optimal two-dimensional sub-space (in a least squares sense) for the column profiles 

is provided by the first two columns of G. Let the D x 2 matrix Gp] contain the first 

two columns of G. A plot of the row points of Gpj provides a graphical display of the 

approximate chi-squared distances between the column profiles (in a least squares sense). 

Thus a plot of the row points of Gpj provides a graphical display of the differences of the 

column profiles C expressed as chi-squared distances (10) and thus express the differences 

between the columns of N or P. Column points that are close together are more alike 

than column points that are fax apart. 

Additional information about the row profiles can be incorporated with so called 

canonical correspondence analysis (CCA), developed by ter Braak (1986). Here the scores 

for the row profiles are restricted to be a linear combination of covariables. Let Q be an 

IxM matrix of covariables variables pertaining to the row structure of the IxD matrix P. 

The matrix Q may contain continuous and/or discrete variables. In CCA representations 

of the rows and columns of P are sought under the restriction that the row representation 

is a linear combination of Q. The canonical correspondence analysis of the row and col¬ 

umn profiles of the correspondence matrix P under the restriction that the row profiles are 

a linear combination of the additional variables in Q is obtained by performing a GSVD 

on the centered correspondence matrix P — re* in the metrics (QtDrQ)“ and D^1: 

P - rc‘ = ADUB\ At(QtDrQ)“A = BtD“1B = I, 

where (QtDrQ)_ is the Moore Penrose pseudo-inverse of QlDrQ (in many cases rank(Q) 

< M). Note that CA is the special case of CCA obtained for Q = I. 

Principal coordinates of the row profiles are obtained from (11) where Dr 1 is replaced 

by (QtDrQ)_. Principal coordinates of the column profiles are obtained from (12). 

To study the relationships between rows and columns of P, the plots of the principal 

coordinates of the row profiles and column profiles from F and G respectively should not 

be merged into one plane. Distances between points from the row profiles or between 

points from the column profiles are explicitly defined in terms of weighted chi-squared 

distances and can be visualized graphically in plots of the principal coordinates of F and 

G respectively. Distances between points from row profiles and column profiles are not 

defined. Relationships between rows and columns of a matrix can be studied graphically 

in one plot with the so-called biplots (Gabriel (1971) and Gabriel (1981)). A biplot is a 

graphical display of an IxD matrix N of rank M by means of m x 1 vectors ki, k2,. . ., kj 

for its rows and m x 1 vectors li, Is,..., Id f°r its columns. These vectors are chosen in 

such a way that the inner products k[lj represents the i, jth element nq of N (Gabriel 

1971). Any IxD matrix N of rank M can be factorised as: 
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N = KL\ (13) 

where K is an / X M matrix, which rows correspond with the vectors ki,k2,...,ki 

representing the rows of N and L is an I) X A/ matrix, which rows correspond with the 

vectors li, I2, ■ •., Id representing the columns of N. The matrices K and L are both of 

rank M. The factorisation (13) assigns vectors ki, k2,..., ki, one to each of the rows of 

N and vectors li, I2, • • •, lj, one to each of the columns of N. These 7+7 vectors of order 

M provide a representation of N in a A7 dimensional space. The vectors kj, k2,..., kj 

may be regarded as row effects of N and the vectors li,I2, • • •, lj as column effects of N. 

If matrix N is of rank 2, the vectors kj, k2, •.., ki and li, I2, • • •, lj are vectors of order 

2. A plot of these I + J vectors provides in an exact representation of the IJ elements 

of N by means of the inner products of the corresponding row effect and column effect 

vectors. Element n,y of N is represented as the inner product of vectors ki and lj. The 

inner product of two vectors ki and lj may be interpreted visually as the product of the 

length of one of these vectors times the length of the other vectors projection onto it 

(Gabriel 1971). 

Matrices of ranks higher than two cannot be represented exactly by a biplot. With a 

GSVD a two rank least squares approximation Np] of N can be obtained. A biplot of 

N[2] provides a least squares approximation biplot of the original matrix N and makes it 

easy to study the main relationships between the rows and columns of matrix N. 

In CCA the correspondence matrix P is decomposed as: P = QtDrQ( J + FD"1 Gt)Dc 

(J is an 7 x 7) matrix with each element 1). This is called the reconstitution formula and 

is the result of the decomposition of the centered correspondence matrix P — rcl, obtained 

with a GSVD (Greenacre 1984, Ch. 4). With the biplot a joint representation of the row 

and column points of N can be obtained. The reconstruction formula can be rewritten 

as: (QtDrQ)_(P — rct)D~1 = FD„1Gt. Three natural candidates for the factorisation 

matrices K and L of (13) are possible: 

1. An asymmetric correspondence analysis display where the rows of N are displayed 

in principal coordinates F and the columns of N in standard coordinates GD^1: 

K = Fpj, L = GpjD'pj. 

This biplot can be interpreted as a graphical display of the rows of F in a weighted 

average of the columns of GD"1. 

2. An asymmetric correspondence analysis display where the rows of N are displayed 

in standard coordinates FD"1 and the columns of N in principal coordinates G: 

K = FpjD'pj, L = Gpj. 

This biplot can be interpreted as a graphical display of the rows of G in a weighted 

average of the columns of FDjj1. 
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3. Or a symmetric correspondence analysis display: 

K = FpjD'l,, L = GpjD'l,. 

In this symmetric biplot display there is not such a straight forward interpretation 

as by the two former asymmetric biplot displays. 

6 Discussion and conclusions 

In this article four different methods for the analysis of compositional data were reviewed. 
The statistical inferences with the methods proposed by Aitchison are very powerful. Be¬ 

cause Aitchison starts with the simplex Sd as the sampling space and the logistic normal 

distribution Cd(n, S) as an appropriate probability density to model compositions, the 
whole range of multivariate statistical methods based on the multivariate normal distri¬ 

bution becomes applicable for compositional data analysis. Aitchison emphasized that 
D part compositions are essentially d-dimensional vectors. In order to analyze composi¬ 

tions with these standard statistical methods, they must be transformed with the logratio 
transformation from the constrained space of Sd to 1Zd. The disadvantage of this methods 

is that due to the application of this non-linear transformation the interpretation of the 

estimation results becomes more complicated. 
The advantage of SURE models is that no non-linear transformations are applied. This 

simplifies the interpretation of the estimation results. Theoretically, SURE models are not 
a completely appropriate analysis methods for compositional data, because the restriction 

that the compositions are elements of the simplex Sd is replaced by the restriction that 

compositions are elements of the hyperplane in 1ZD defined by the unit-sum constraint. 

The restriction that the components of the composition only take values in the range 

between zero and one and the dimensionality of compositional vectors is ignored. A 
consequence of this is that after having estimated the regression coefficients, it is possible 

to predict proportions that are negative or greater than one. This method is applicable if 
the values of the components of the composition do not take values close to the boundaries 

of the simplex and if the variance of the error terms is not to large and if the residuals 

are tested for normality. 
If it is reasonable to assume that the observed data follow a product multinomial 

distribution, the Latent Budget Model is an appropriate analysis method. Because the 
parameters of the LBM can be interpreted as conditional probabilities, the interpretation 

of the results of this model is very simple. Many substantive research questions can be 

answered by testing restrictions, that can be posed on the parameters of the LBM. A 

disadvantage of the LBM is the assumption of a product multinomial distribution as a 

sampling model. Because this assumption often is unfounded, the applicability of the 
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LBM is limited. If it can be assumed that the data are generated by a product multi¬ 

nomial distribution, a second advantage of the LBM in comparison with the methods 

proposed by Aitchison is that differences between the objects can be studied. The rea¬ 

son is that in the LBM there are for each object (the rows of the data matrix) specific 

parameters (a), explaining the observed budget as a mixture of K latent budgets (ft). 

This is possible because for each object a budget is estimated on the basis of n,+ inde¬ 

pendent observations. By Aitchisons methods there are no such row-specific parameters 

because each observed budget is regarded as one independent observed replication drawn 

from a logistic normal distribution. Using Aitchisons methods for the analysis of budget 

data, generated by a (product)multinomial sampling model, has the disadvantage that 

the number of independent observations reduces from n++ to I and it is no longer possible 

to investigate differences between the individual objects. 

In Correspondence Analysis differences between the rows and columns of the data 

matrix are expressed as chi-squared distances between row profiles and between column 

profiles. Because the row profiles are also the compositional vectors, CA seems to be 

very well suited for compositional data analysis. Because there are no model assumption, 

CA is always applicable as an explorative analysis method, to investigate relationships 

between rows and columns of a data matrix. However, the inferential side of CA is not 

very well developed. 
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