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Abstract 

In this paper, we present the so-called precedence relation method. This method may be 

used to derive truncation models which produce bounds for the relevant performance meas¬ 

ures of a given Markovian queueing system. The truncation models may be defined such that 

the size of the state space is flexible in the sense that it depends on the choice of certain trun¬ 

cation parameters. The models obtained in this way are called flexible bound models and they 

may lead to efficient procedures for the determination of the performance measures of 

interest. The precedence relation method will be demonstrated for the symmetric shortest 

queue system. 
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1. Introduction 

For several queueing systems, the behavior is described by a Markov process on a multi¬ 

dimensional state space which is discrete and possibly infinite in one or more components. 

The relevant performance measures for such queueing systems usually may be obtained from 

the equilibrium distribution of the underlying Markov process. Therefore, in the queueing 

literature, much attention has been paid to analytical methods for the determination of the 

equilibrium distribution of Markov processes. This has led to many explicit results for Mar¬ 
kov processes with state spaces which are essentially one-dimensional, i.e. which are infinite 

in at most one direction. However, multi-dimensional Markov processes seem to be much 

harder to analyze analytically. To our knowledge, explicit results for the equilibrium distri¬ 

bution have only been obtained for two special classes of A'-dimensional Markov processes 
with general N>2 (see Basket! et al. [3] for the so-called product-form networks, and see 

[14] or the Chapters 2-4 of [13] for the second class); a few more results have been obtained 

for the case At = 2. 

Since many multi-dimensional queueing systems cannot be solved analytically, it is 

desired to have alternative methods to determine the equilibrium distribution, or at least the 

relevant performance measures. One alternative is constituted by the power-series algorithm, 

which is a numerical technique based on power-series expansions of equilibrium probabilities 

as a function of the traffic load (see e.g. Hooghiemstra et al. [6] and Blanc [4,5]). This 
method may be used to compute the equilibrium distribution and the relevant performance 

measures within a given accuracy, here, the accuracy that can be reached is restricted by the 

requirements with respect to the computational effort and the memory space. Another alter¬ 

native approach is constituted by using approximation models which: 

- can approximate the exact model as accurate as desired (think of truncation models for 

which the size of the state space depends on one or more truncation parameters); 

- can be solved exactly (or at least within a very high accuracy); 

- lead to bounds for the relevant performance measures. 

Such models are called flexible bound models. Note that bounds/approximations as well as 

error bounds may be obtained by combining a lower and an upper bound model; so, the 
relevant performance measures of a given queueing system may be determined by solving 
lower and upper bound models for increasing values of the truncation parameters until the 

desired accuracy has been reached. 

In this paper, we explain the main idea of a method that can be used for deriving 

appropriate flexible bound models. This method is described in Section 2 and it will be called 
the precedence relation method. In Section 3, the method is applied to the symmetric shortest 

queue system, and after that some concluding remarks are given in Section 4. 
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2. The precedence relation method 

In general, the relevant performance measures of a given Markovian queueing system may be 

determined by defining appropriate Markov cost models and computing the average costs. 

This property is exploited by the so-called precedence relation method, which is based on 

Markov cost/reward theory and which is similar to the technique used in the papers by Van 

der Wal [10], Van Dijk and Van der Wal [12], and Van Dijk and Lamond [11], In principle, 

the precedence relation method is an analytical method which is appropriate for comparing 
the average costs in two Markov cost models, where the state space of one model is a subset 

of the state space of the other model. In this section, we shall describe how the method may 

be used for the comparison between an original system and a truncation model. Here, without 
loss of generality we may restrict ourselves to the discrete-time case, since, (under some mild 

conditions) continuous-time Markov processes may be transformed to equivalent discrete¬ 
time Markov processes by using the uniformization technique. 

Consider a discrete-time, irreducible and positive recurrent Markov cost model with a 

possibly multi-dimensional and/or infinite state space M consisting of IV-dimensional vectors 
/»=(/«!,... ,mN) and with transition probabilities qmn and direct costs c(m). Let {pm} be 

the equilibrium distribution, which is the unique normalized solution of the equilibrium equa¬ 
tions. Finally, let g denote the average costs per period: 

8 = Z PmC(m). (1) 
m eM 

For the average costs g, we have the following property. Let v,(/n), t >0, denote the 

expected f-period costs, i.e. the expected costs in the next t periods when starting in state m; 
so vo(m) = 0, m eM, and for all t>0. 

v(+l(m) = c(m)+ ^ qm,nvt(n) ,meM. 
neM 

Then, because of the assumed irreducibility, 

lim 
8 r->°° t 

(2) 

(3) 

where m may be an arbitrary element of the state space M. 

Let us now consider a truncation model of the above original model. A truncation 
model is obtained by first defining a truncated state space M'cM (M' is usually defined such 

that it contains the states where most of the probability mass is expected to be present) and 
next modifying the transitions of the original model such that the states outside M' become 

transient (initially, all transition probabilities q'm n of the truncation model are taken equal to 

the transition probabilities qm n of the original model). This means that each transition start¬ 
ing in a state meM' and ending in a state n outside of M', must be redirected to a state 

n'(m,n) inside M' (the probability q'm n is set equal to 0 and q'my(m,n) is increased by qm n). 
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Let c\m), {p'm}, g' and v',(m) denote the direct costs, equilibrium distribution, average costs 

and r-period cost functions, respectively. Assume that c'(m) = c(m) for all m eM’. Further, 

assume that the constructed truncation model is irreducible. Note that for the truncation 

model, relations similar to (2) and (3) are valid; a relation similar to (1) holds if the truncation 

model is also positive recurrent. 

Now, suppose that the truncation model is expected to lead to a lower bound for g (since 

it seems that the transitions ending in states outside the truncated state space have been 

redirected to ’more favourable’ states), i.e. that it is expected that g' ig- Then, by (3) and the 

corresponding relation for g \ it suffices to prove that for some m eM and m eM , 

v',(m') < v,(m) for all t>0. 

Because of the resemblance between both models, it seems reasonable to try to prove that this 

relation holds for some states msM and m'eM' with m=m'\ further, if it holds for some 

state tiieM' that v't(m)<v,(m.) for all r >0, then probably this also holds for all other states of 

M'. Therefore, we shall focus on trying to prove that g'<gby showing that 

v',(m) < v,(m) for all meM' and r>0. (4) 

The inequalities stated in (4) may be proved by using the precedence relation method. 

The main idea of this method is that the comparison of the f-period costs v',(m) in the trunca¬ 

tion model to the corresponding r-period costs v,(m) in the original model may be simplified 

by first performing a preliminary step, in which on the basis of a precedence relation for the 

r-period costs v,(m) an ordering for the states of the original model is derived. The pre¬ 

cedence relation method consists of the following two steps: 

1. Derive a set P consisting of precedence pairs (m,n) of states m,n eM, which satisfy the 

precedence relation 

v,(m) < v,(n) for all r>0. (5) 

This relation states that in the original model, state m has precedence over state n with 

respect to the r-period costs, or equivalently, state m is more attractive than n, or n is less 

attractive than m; 

2. Exploit the precedence pairs derived in step 1 to show that (4) holds. 

Step 1 usually requires most of the work. This step may be performed by first defining a set P 

which is expected to consist of precedence pairs, and next proving by induction with respect 

to r that (5) holds for all (m,n) of this set P. Note that, since vi(m) = c(m) for all meM, all 
pairs (m,n)EP must satisfy the condition that c(m)<c(rr). Typical precedence pairs that can 

be derived if the components of the states represent queue lengths and if c(m) is non¬ 
decreasing in each component, are pairs of the type ini.m re,). where is the i-th unit vector. 

Step 2 is further explained in the next paragraph. 

In step 2, we must prove that (4) holds. The inequalities v',(m)<vf(m), meM', hold for 

t = 0 by definition. It appears that, by using induction with respect to r, they can be proved to 
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hold for all r >0, if the following condition is satisfied: 

for all m eM' and n e MW' with qm n > 0, it holds that the state n'(m,n) to which 

the transition from m to n has been redirected, is more attractive than the state n, 
i.e. if(n'(m,n),n)eP. 

If this condition is satisfied, then the induction step reads as follows: 

v't+iim) = c(m)+ ^ 9m,n v',(n) + £ 9m,n''',(n'(m,n)) 
neM' ne\f\M' 

< c(m)+ 2 qminv,(n)+ £ qm,nVt(n'(m,n)), 
neM' neM\M' 

< c(m)+ 2 qm,nv,(n)+ £ 9m,„ v,(n), 
neM' neM\M’ 

= v,+i (m), m eM', 

This completes the description how the precedence relation method may be used to prove that 

a truncation model leads to a lower bound for the average costs g in the original model. In a 

similar way, the precedence relation method may be used to prove that a truncation model 
leads to an upper bound for g; in that case it is required for all meM' and neM\M' with 

9m,rt > 0, that the transition from m to n is redirected to a state n'(m,n) which is less attractive 
than n, i.e. for which (n,n'(m,n))eP. 

An important property of the method described above is that the introduction of the pre¬ 

cedence relation leads to simple sufficient conditions for obtaining lower and upper bound 

models. Therefore, the precedence relation method may also be used for deriving bound 

models, and especially for deriving flexible bound models. The precedence relation method 
for deriving flexible bound models consists of the following two steps: 

1. The derivation of a set P of precedence pairs for the original model, i.e. the derivation of 

a set P consisting of pairs (m,n) of states m,n 6 M which satisfy (5); 

2. The definition of flexible lower and upper bound models: to obtain a flexible lower 

(upper) bound model, first a flexible truncated state space M' must be defined, and next 

each transition from a state meM' to a state neMW' must be redirected to a state 

n'(m,n)eM' which, according to the precedence pairs derived in step 1, is more (less) 
attractive than the state n. 

Note that, once the set of precedence pairs has been derived, a whole set of flexible bound 

models can be obtained. In the next section, this method will be demonstrated for the sym¬ 
metric shortest queue system. 
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3. Application to the symmetric shortest queue system 

The symmetric shortest queue system has extensively been studied in the literature. Only for 

the case with A = 2 servers, explicit expressions have been found for the equilibrium distribu¬ 

tion and the mean waiting time. For the case with general A >2, there are some algorithms 
available with which the mean waiting time can be determined numerically; see, for example, 

Blanc [4], Lui and Muntz [7] (see also [8]), and Adan et al. [1] (see also [13]). Up to now, the 

largest systems, viz. systems with up to A = 50 servers and workloads up to 0.95, have been 

solved by the numerical procedure developed in [1], In this section, we shall derive the two 

flexible bound models on which this procedure is based; for simplicity, we shall restrict our¬ 

selves to the case A = 2. 

The two-dimensional symmetric shortest queue system consists of two parallel servers, 

which both have their own queue. Jobs arrive according to a Poisson stream with intensity 

\>0, and an arriving job always joins the shortest queue (ties are broken with equal probabil¬ 

ities). All service times are exponentially distributed with parameter p > 0. Assume that 

A. + 2|i=l. In order to have an ergodic system, the workload p = X/(2\i) is assumed to be 

smaller than 1. 

Assume that the servers always work, but that a service completion is only attended by a 

departure of a job if there is a job present in the corresponding queue. Then the behavior of 

the system may be described by the discrete-time Markov process on the time instants right 

after job arrivals and service completions, and with states (mi,m2), where and m2 
represent the lengths of the shortest queue and the longest queue, respectively. So, 

M = { m=(m i ,m2) | 0<m] <m2 }. The transition probabilities qm n are depicted in the first 

diagram of Figure 1. 

We are interested in the mean W of the normalized waiting time, which is defined as the 

waiting time divided by the mean service time. By Little’s formula, W=Z.M,/(2p), where Lw 

denotes the average number of waiting jobs in the system. Define the direct costs c (m [ ,m 2) 

by the number of waiting jobs in state (m i ,m2), so 

c(m1,m2) = max( m|-l,0 ] + max{ m2-l,0 ) , (m1,m2)eM. (6) 

Then Lw is equal to the average costs g in the corresponding Markov cost model. 

For the given cost function, the following set P can be proved to consist of precedence 

pairs (prove that (5) holds for all these pairs by using induction with respect to t): 

P = { ((m1,m2),(m1 + l,m2)) | 0<m! <m2 } 

U {((»![,m2),(mi,m2+l)) | 0<m] <m2 } 

U { ((mi,/M2),(/?i1-l,m2+l)) | Ocm! <m2 } . (7) 

The pairs in the first two sets state that it is more attractive to be or to start in a state with one 

job less at one of the two servers. The pairs in the last set state that it is more attractive to be 
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in a state with more balance, i.e. in a state with a smaller difference between the queue 
lengths. 

Since the shortest queue routing causes a strong drift to the states on the diagonal, the 
original system can be closely approximated by truncation models with state space 

AT = {(m i,m2) I 0<m i <m2 Smi+T }, where T is some positive integer; T is called the 
threshold parameter. For this truncated state space, for all m ] > 1, we must redirect the tran¬ 

sition from the state (m\,m\+T) to the state (mj—l,mi+F). According to the precedence 

relation method, we obtain a lower bound model by redirecting this transition from 

(m |-l,m i+T') to the more attractive state (mi.mi+r-l), which is equivalent to letting a job 

jockey from the longest to the shortest queue. Therefore, this model is called the Threshold 

Jockeying (TJ) model. An upper bound model is obtained by redirecting the transition to the 

less attractive state (m\,m\+T) itself, which means that in this state a service completion at 
the shortest queue is not accompanied by a departure and the job in service has to be served 

once more. It is easily seen that (because of the memory-less property of the exponential ser¬ 

vice times) this is equivalent to letting the server at the shortest queue be blocked in state 
(m i ,m i+T"), and therefore this model is called the Threshold Blocking (TB) model. For both 

truncation models, we have depicted the redirections in Figure 1. 

The TJ model leads to a lower bound L™(T) for Lw, and therefore also to a lower bound 
Wtj(T) = k'J(T)/(2p) for W. The TB model leads to upper bounds L™(T) and 

Wtb(T) = L™(7y(2p). Further, it may be expected that both Wtj(T) and Wtb(T) tend to W, 
as T —» °o, since for 7' = °o both truncation models are identical to the original model. By con¬ 

sidering the bound models with threshold parameter T as truncation models of the bound 

models with threshold parameter T+l, it can be proved that the lower bounds Wtj(T) are 

monotonically increasing and that the upper bounds WTB (T) are monotonically decreasing. 
So, we find that 

VFry(r)TlT and WTBlW, as r->oo. (8) 

It is noted that, although the TJ model is not identical to the M |M |2 queueing system, 

it does lead to an equivalent Markov process and therefore to the same values/behavior for 

several performance measures, among which the average number of waiting jobs in the sys¬ 
tem and the mean normalized waiting time. So, a direct consequence of what we have proved 

is that the mean normalized waiting time W in the symmetric shortest queue system is larger 

than or equal to the mean normalized waiting time WM \m \ 2 in the related M \ M \ 2 system. 

The result stated in (8) leads to the following exact method for the determination of IV. 
The mean normalized waiting time W can be determined within an arbitrary, given accuracy 

by computing Wtj(T) and Wtb(T) for increasing values of T\ here, for both truncation 

models, the equilibrium distribution, and therefore also the bounds for Lw and W, can be 
determined efficiently by using the matrix-geometric approach, as described by Neuts [9]. 
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Threshold Jockeying Threshold Blocking 

Figure 1. The original model and the two flexible bound models (with T = 3). 

p 7 WTj(T) Wtb(T) W A(T) 

0.1 

0.2 

0.3 
0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

0.95 

0.98 

0.99 

2 

2 

2 

3 

3 

4 

5 

6 

7 

9 

11 

12 

0.0176 0.0177 

0.0651 0.0664 

0.1405 0.1472 
0.2578 0.2597 

0.4237 0.4307 
0.6806 0.6842 

1.1075 1.1103 

1.9552 1.9587 
4.4744 4.4831 

9.4865 9.4914 

24.4946 24.4985 

49.4983 49.5028 

0.0177 0.0001 

0.0657 0.0007 

0.1439 0.0034 
0.2587 0.0010 

0.4272 0.0035 

0.6824 0.0018 

1.1089 0.0014 

1.9570 0.0018 

4.4787 0.0044 

9.4890 0.0025 

24.4965 0.0020 
49.5006 0.0023 

0.0101 0.0076 

0.0417 0.0240 

0.0989 0.0450 

0.1905 0.0683 

0.3333 0.0939 
0.5625 0.1200 

0.9608 0.1481 

1.7778 0.1792 

4.2632 0.2156 

9.2564 0.2326 

24.2525 0.2440 

49.2513 0.2493 

Table 1. The mean normalized waiting time W for increasing values of p (£„*, =0.005). 

We finally present some numerical results. We have developed a numerical procedure 

which, for a given value of p, determines W within a given absolute accuracy Eabs by comput¬ 

ing WTj(J) and Wtb(T) for 7=1,2, • ■ • . For each 7, (Wtj(T)+Wtb(T))/2 is used as an 

approximation for W and A(T) = Wtb(T)-Wti(T))/2 is used as an upper bound for the abso¬ 

lute error of this approximation; the computation process is stopped as soon as A(7) < zabs. In 

Table 1, we have listed the numerical results obtained for eaij =0.005 and increasing values 

of p. The values in the second column, denoting the smallest values for 7 for which the 
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absolute accuracy ea),s is reached, show that the truncation models lead to sufficiently accu¬ 

rate approximations for W for already small values of T. It is noted that the numerical results 

for W can be used, among other things, to investigate the difference between the symmetric 
shortest queue system and the M \ M \ 2 system (the last column in Table 1 shows that there is 

an interesting behavior for the difference between the mean normalized waiting times in both 
systems). 

4. Concluding remarks 

In this paper, we have briefly described the precedence relation method; for a more extensive 

treatment, see Chapter 5 of [13] or [15], The method has been applied to the two-dimensional 
symmetric shortest queue system, for which we have derived two flexible truncation models 

leading to lower and upper bounds for the mean normalized waiting time. These flexible 
bound models have resulted in an efficient numerical procedure for the computation of the 

mean normalized waiting time within a given accuracy. The method also has led to success¬ 

ful flexible bound models for the W-dimensional symmetric shortest queue system with gen¬ 
eral N>2 and the symmetric longest queue system and it seems to be promising for several 
other queueing systems (see [1,2,13]). 
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