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ABSTRACT 

When maintaining a consumer panel one is sometimes confronted with the 
question of how large the response burden can be. It is our experience that 
the larger the response burden (i.e. the number and size of the respondent 
tasks), the higher the panel attrition. Consequently, we have to solve a 
trade-off problem. In this paper we derive some rules for optimum respondent 
burden for change estimators under simple model assumptions. The consequences 
of these results for daily research design in frequently measuring panels are 
discussed. 
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OPTIMIZING RESPONSE BURDEN IN PANELS 

1. Introduction 

In budget surveys and consumer panels one has to deal with problems concerning 

response burden. The work load associated with filling out diaries is 

considered to be a major reason for the high initial non response rate for 

budget surveys compared to other household surveys (Lindstrdm, 1989, Lyberg, 

1991). An other effect of response burden is found in underreporting. It is 

common to find that the number of reported purchased products in the first 

week is higher than in the second week (Harrison, 1991; Nevraumont, 1991; 

Ribe, 1991). In consumer panels the response burden influences the panel 

attrition (Silberstein & Jacobs, 1989). Modern techniques, like bar scanning 

methods and electronic diaries (Saris et al, 1992) are applied to relieve the 

respondent's task. But in spite of these techniques a respondent still has to 

do a considerable amount of work, especially in panels that aim at continuous 

measurement of expenditures. It may be, however, unnecessary to collect the 

budget data for every week. When we take only a sample of weeks this may 

result in a relative small loss of precision. On the other hand, it may result 

in a lower attrition rate as less respondents become fed up with their task. 

In this paper we study the relation between response burden and the 

precision of estimators of change in consumer panels. Response burden is 

defined here as the number of weeks during a certain period (e.g. three months 

or a year) . Although it affects initial non response and underreporting as 

well, we will focus on the effect on panel attrition. Therefore we assume a 

simple model which describes the attrition as a function of the response 

burden. In exploring the effect of panel attrition to the precision of our 

estimators, we will concentrate on the effect to the variance, not the bias. 

Most literature on panel attrition deals with bias effects. Several methods 

have been developed to deal with attrition bias. Examples are the use of 

Markov-chain models for nonrandom non response to estimate gross flows in 

categorical data (Stasny, 1987), econometric regression analyses to correct 

for attrition bias (Hausman and Wise, 1979), bias reduction by sample designs 

(Van de Pol, 1989) and bias corrections by weighting techniques (Van de Pol, 

1993). We will assume that the households that dropped out of the panel are 
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immediately replaced using a quota sampling method (Van de Pol, 1989). 

Consequently the bias due to attrition is kept to a minimum, and the panel 

size is constant over time. 

We will study two models that correspond with two panel designs. Model 1 deals 

with a panel that is dedicated to measure expenditures on consumption goods. 

This is the case in most consumer panels. In model 2, however, the panel is 

also used for other purposes. An example of this is the Dutch Stichting 

Telepanel, where the burdensome questionnaires on expenditures are 

interchanged with questionnaire on a variety of other topics. The theory 

derived here is stated in general terms as to make it applicable to a more 

general situation. 

2. Preliminary notation and relations 

We are interested in estimates (e.g. of consumption or purchases of fast 

moving consumer goods) over a certain period of M weeks. Usually M is equal to 

13, a three month period, but we also may consider M=4, M=26 or M=52. In every 

wave (or week) we have n households from a much larger population of N 

households. It is assumed that there is a constant attrition p. For each week 

every panel member has a probability p to drop out of the panel independent of 

the other panel members and independent of what happens in other weeks. Hence, 

a respondent who is in the panel at week j has probability pk"J to still be a 

panel member at week k>j. Let 

Xjj* be the amount of purchases by household i in week j of period t. 

n 

Xjt> = Nn"1 £ XJJ*, the estimated population total for week j of t. 
i -1 

M 

X<t> - l Xjt) the estimated population total for period t 
J-i 

It is assumed that for given j and t the XJJJ are i.i.d. with variance a2 
for the households i. For different values of j and t we assume the X(J> to 

be homoscedastic (possessing equal variances). We focus our attention to more 

or less daily shopping routines. We assume that this is a stable process which 

is in equilibrium, although it may be different for each household. When there 
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is a regular weekly pattern in such purchases it is reasonable to assume that 

for a combination (j,t) * (k,u) we have 

cov(X{$> ,X(£>) = po2 

Of course, such an assumption is violated for a product which does not follow 

such a weekly pattern, e.g. when it is purchased on a two-weekly basis. Such 

types of variables are outside the scope of this paper. This may suggest that 

the assumptions are rather restrictive. When, however, broad categories are 

used like meat, green vegetables, fruit or candies, the assumptions apply, at 

least in the Dutch society, to the most important results that have to come 

out of a budget survey. 

Our main interest is to measure the changes from one period to another. The 

absolute consumption level of a product in itself is not a very useful figure. 

In terms of the variables defined above this means that we are interested in 

the precision of X(t+1)-X(t) (and, as a byproduct, of X(t>). Consequently, we 

require the covariances of the terms of which these quantities consist. Let 

nj k ke the number of panel members which are in both wave j and in wave k>j in 

a period t. Then njk has a binomial distribution with parameters n and pk"j . 

Assume that the panel members are numbered such that the first njk are in both 

waves. Then we can compute 

(X!t>,X^))=E covCX!6’ ,X^> |njk) + cov (EX<1 > , EX£ * > 1k ) 
J n j k n j k 

E — X cov(X<S> ,X<£>) 

jk 

N2pk $po2/n (1) 

This yields the following variance for X( 1 : 
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M 

var(X(t)) - var( £ Xj11) 

J-i 

- 1 I cov(Xj‘>.X^1>) 

j-1 k»l 

2p(M-l)p 2pp2(l-pM-i)] 

(1-p)^ J 

and for X(t+1)-X(t): 

(2) 

M M 

var(X(fc +1>-X(t >) - var( l X<t + 1>-X Xj>) 

J-i j-i 

- var (X( t + 1 > ) + var(X^)) 2X 

2N2g2 L + 2p(M-l)p 

n [ 1-p 
2ppz(l-pM~1) _ pp(l-pH)2j 

(1-p)2 (1-p)2 J 

These relations hold when the respondents are required to fill in the 

questionnaire during all M weeks of periods t and t+1. When the respondents 

are required to fill in the questionnaire during only m out of M weeks we can 

distinguish two different models, corresponding with two different panel 

designs. In model 1 we assume that immediately after the measurement a 

fraction q=l-p to drops out of the panel. In the weeks when no measurement 

with respect to the XJJ* takes place there is no attrition. This corresponds 

to a single purpose panel, in which in each wave the household budgets are 

measured. In model 2, in contrast, the panel attrition continues in the weeks 

when no measurement with respect to the XJJ* takes place. This is the 

typical case of a telepanel, which may be used for many purposes. Both models 

lead to slightly generalized versions of (2) and (3). We generalize our 

definition of Xj 11) to 

n 

Xj1’ - Mm“ 1 NrT 1 % X!$> W 
i = 1 
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So that X<t > -Mm"1Nn'12jXjJ> where j takes the values of only those weeks 

in which respondent i fills in a questionnaire. Then for model 1 we have 

var(X(11) 
M2N2CT2 f 2p(m-l)p 2pp2(l-2^lil] 

nm2 T ' (1-P)^ J 

(5) 

and 

varCXO^’-X'**) 
2M2 N2 a2 ( 2p(m-l)p 2pp2(l-p"-1) 

nm2 r ' (1-P)^ 

^P^-P”)2] (6) 

(1-p)2 J 

For model 2 we have 

var(X<l>) 
MN2g2 L + 2p(m-l)p 

1-p 
nm '• 

m-1 2pp2(l-pM~1)1 

M-1 (1-P)^ J 

(7) 

and 

var(X<t + 1>-X"-’) - 

2MN2g2 fM + 2p(m-l)p m-1 2pp2(l-pM~1) _ m-1 pp(l-pM)21 

nm [ 1-P ' M-1 (1.p)2 M-1 (1.p)2 J 

provided that the sampling design is balanced with respect to first and second 

order inclusions of the weeks in the sample, i.e. every week j and every 

combination (j,k) of weeks appears in the sample with the same frequency. This 

is proved in the appendix. 

3. Models for response burden and attrition 

In this paper we will assume that there is a relation between attrition and 

response burden. We will study the behaviour of var(X(t+1}-X(tJ) as a function 

of the attrition. The value of var(X(t)) is trivial, because this variance is 

mimimal when we have as many as possible independent observations; 

consequently, it decreases when attrition increases. This makes the behaviour 

of var(X(t)) less interesting not only from the substantive but also from the 
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statistical point of view. When we measure differences between intervals, 

however, it is well known that dependent observations may give higher 

precision than independent observations. 

The response burden is defined by m, the number of measurements in a 

given period of M possible measurements. In model 1, such a relationship is 

already implied by its definition as each measurement causes a fraction q=l-p 

to leave the panel. Realistic values for q range from 0.1% to 5%, depending on 

the subject matter and the time horizon. Such values of q are sufficiently 

small to justify a linear approximation of formulas (5) and (6) for reasonable 

values of m, as is illustrated in figure 1. Throughout this paper we use 

linear approximations in order to change complex relations into simpler ones. 

In some cases optimum values for m are intractable for the variance functions 

that we study, but not for their linear approximations. Figure la shows the 

situation of 13 weeks in a quarter with 1% attrition each week and p=0.7 for 

formula (6). In this region var(X(t+15-X<t5) and its approximations are almost 

equal. Note that in model 1, M only serves as a cut-off value. It does not 

influence the proportions of the variances as a function of m. Figure lb shows 

that the first and second order approximation for q=2% and p=0.5 begin to 

diverge from say, m=-15. This divergence is stronger in the unrealistic 

situation of 5% attrition and measurements over 1 year as is shown in figure 

1c. Note that the second order approximation takes a maximum, just like f(m) 

between m=20 and m=40, whereas the first order approximation linearly goes to 

infinity. When also p is rather small, the first order approximation takes a 

minimum where f(m) and its second order approximation keeps decreasing, as 

shown in figure Id. 

Before we continue to discuss figure 1, we first give the formulas for the 

first order approximation as derived in the appendix (we omit the second order 

approximations as the formulas are complex and give little new insight). The 

linear approximation formula for var(X(t)) is 
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Figure 1. Var(X<t+1>-X(1>) as the function f(m); 

approximations for q in model 1. 

first and second order 
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var(X(t>) 
N2MZ 

-( 1 + (m-l)p - (m2-l)pq/3 (9) 

The second term of this formula represents the well known cluster effect due 

to the fact that repeated measurements take place on the same respondents 

(Kish, 1965). The third term decreases this cluster effect because of the 

attrition: an expected proportion of q panel members is replaced every week. 

For m>0 (9) is a decreasing function of m. So, clearly, it is optimal to have 

as many measurements as possible. This need not be true if a replacement of a 

panel member comes with a price. This will be discussed in section 4. 

For the variance of X(t+1>-X*fcJ, in the appendix the following first order 

approximation is derived 

var(X<t + 1>-X't)) ~ 2N^2g2 |l-p + (2m2+l)pq/3j (10) 

By differentiating (10) with respect to m, it is shown that in this 

approximation the variance takes a minimum for 

m o 
ihp + i 
2 pq 2 (11) 

So the optimum value of m0 decreases with both p and q. This makes sense. 

When q goes to zero it is desirable to have a large m because attrition is low 

and we can profit from the fact that we have correlated single source data 

which are well suited for measuring differences. When p goes to zero, we have 

no reason to be careful to keep single source data for measuring differences, 

so we may just as well measure as often as possible, regardless of the 

attrition. If, on the other hand, p goes to one, the optimum value of m 

becomes less than one, so m=l is the best possible value. From this one 

observation we can with certainty predict the values of X}J) at other 

moments. 
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So far it was assumed that there is no direct relation between q and m. 

However, especially with burdensome surveys like a budget survey the 

respondents may drop out not only because of a questionnaire in the past, but 

also because of the prospect of the trouble they face in the future. A 

reasonable assumption is that q may have the form of 

q - Am“ 

This implies that the expected attrition in M weeks (q small) is of order ct+1, 

i.e. linear when a-0, quadratic when a-1 etc. To explore the consequences of 

this assumption we substitute q in equation (10). This leads to 

var(X't+1>-X'6*) = 
2N2 M2 a2 b + A(2m“ + 2+mQ: )p/3 (12) 

This equation has analytic minima for a=0 (when A=q) , a=l and a=2. For a=l the 

minimum is 

f— 
k Xp 1 

and for a=2 the minimum m0 satisfies 

(13) 

12 144 2Ap 
(14) 

The interpretation of (13) and (14) is similar to (11), where A has taken the 

role of q. By taking the respective roots, the values of m0 decrease when a 

increases. In figure 2 the values of m0 are plotted as a function of p for 

A=0.01 and A=0.001. For a small value of p the optimum value m0 is high; for 

p->l m0 goes to zero. Since the effect of response burden increases with a, m0 

decreases with a. 

In the formulation of model 2 there is no direct causal relation assumed 

between q and m. This is reflected in the approximation formulas for the 

variances which are derived in the appendix. 
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var (X( *• >) 
N2M2ct2 

1 + (m-l)p(l 
M+l J q)J (15) 

Figure 2. Optimum values of m as a function of p for a—0, 1 and 2. 

and 

var(X[< -X't)) 
„N2M2c m-1 

in 
2MZ+1 

q) (16) 

Both (15) and (16) are decreasing functions in m: we measure more accurately 

when more weeks are observed. This changes, however, when we assume a 

relationship between q and m. A reasonable assumption (and also one of the few 

tractable assumptions) is that q is of the form 

q = a + Am. 

This corresponds to the situation where other projects on the panel, which are 

considered to be given here, cause an attrition level a. This attrition level 

is raised by the budget survey with a term Am. Substitution in (16) and 

differentiation with respect to m leads to the optimum number of observed 

weeks 
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m o 
3(M-1) + p(3-a(2M2+l)) 

Ap(2M2+l) 

(17) 

Figure 3. Var(X<t+1>-X<t>) as the function f(m); first order 

approximations for q in model 2. 

It is obvious that m0 decreases with A: the more attrition associated with the 

budget survey, the smaller the optimum number of observed weeks. Given A, m0 

also decreases with a. 

Examples of formulas (8) and (16) are given in figure 3a for p-0.7. With 

a-0.005 and A-0 the attrition is constant over time; it is clear that there is 

no minimum. The first order approximation (16) is close to (8) for m<10. In 

figure 3b the results are given for a=0, A=0.005 and M=13. Here both functions 

take a minimum. The first order approximation performs rather poorly for m>5. 

For this approximation we have m0~6, whereas the real minimum is somewhere 

near 9. This minimum, however, is rather flat. Consequently, a suboptimal 

design does not give results that are much worse. 
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4. Practical considerations 

In this section we abandon mathematical rigor, and we discuss what the 

practical implications are for decisions about the research design for the 

budget survey. We start with an issue that is traditionally considered in the 

classical textbooks on sampling theory (Cochran, 1977, Kish, 1965), namely 

cost considerations. For the calculation of optimum stratification or 

optimum cluster size usually a variance is minimized under some budget 

restriction involving costs per unit. For model 1 such a problem could look 

like: minimize (5) or (6), or a first order approximation like (10) under the 

budget restriction 

Cj^n + Cj^nmq + c2nm = C (18) 

where c1 is the cost of finding and installing a new panel member, c2 is the 

cost of processing one questionnaire and C is the total budget. Graphically, 

such problems can easily be solved, see figure 4. The trick is to write n as a 

Figure 4. Var(X(t+1J-X(fc>) with budget restriction (18) in model 1 

C=106, c1=103, c2=10 

function of m, substitute this function into (5), (6) or (10) and then let the 

computer generate a plot. In almost all cases, however, there is no analytic 
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expression for the minimum m0, especially when q also is a function of m. In 

many practical situations it is irrelevant to solve such a problem under 

budget restriction (18) because the sample size n is already fixed. This is 

especially true in case of a commercially exploited Telepanel, which is 

marketed as a panel of 1000 or 2000 households. This leaves us with the theory 

of the previous section. 

In order to apply the results of section 3 many relevant data are missing. 

What do we know? 

- the time periods j are weeks; the data are reported each quarter, so M=13. 

- in the test period of one quarter, the respondents filled in the 
questionnaire twice (m=2) 

- the attrition rate in the test period is approximately 0.5% each week 

- other surveys may be a source of attrition; we do not know to what extent 

- demographic developments are a source of attrition 

- the correlations between measurements of the relevant product categories 
are between 0.4 and 0.7 

Figure 5. Var (X( t +1)-X( 11} ) in model 2 as assumed in the Telepanel 

f<*>T 

0.5 

if*Ko = 0.7 

i»Ho=0.4 

5 

X = o.ooi 
io 

a O.003; M 13; 

m-> 
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So we guess that we have to use model 2 with a-0.003 and A-0.001. In figure 5 

we show Var(X(t+1)-X(fc}) both for p=0.4 and p=0.7 as a function of m. In this 

case there is no optimum value m0 . Both functions are very similar. It is 

clear that in this situation the variance hardly depends on p. For m>7, the 

decrease in variance is very limited. Under the (heroic) assumptions given 

above, the most efficient decision therefore seems to be to have the 

respondents fill in the questionnaire for half of the weeks. 

5. Summary and conclusions 

In panel research, especially with a telepanel, research design is a difficult 

problem, because there are many factors to be considered. Even in a perfect 

world, where all respondents happily fill in their questionnaires without 

measurement error and without being bored by the many detailed questions about 

products, expenses, quantities etcetera, there are complex optimization 

problems because products are bought in different patterns, for which 

different sampling schemes are optimal. In this paper we restricted ourselves 

to global product categories for which it is reasonable to assume that they 

follow more or less the same patterns each week. We did not assume, however, a 

perfect world, but respondents who may become overloaded with their task. 

Under some very strict model assumptions we were able to calculate the 

variance of difference scores between two periods. Under even stricter model 

assumptions we could give expressions for m0 , the optimum number of weeks to 

be observed in a quarter or a year. In our practical situation it seemed 

reasonable to have the respondent fill in a questionnaire for one of every two 

weeks. The data on which these conclusions are based, however, are not very 

adequate. 

There is still a world to be discovered in this field. In the first place 

the assumption that all respondents drop out of the panel with equal 

probability is not very realistic. It is more likely that there is a group of 

faithful respondents who, if it were up to them, would stay in the panel for 

life, and another group who drops out very rapidly. In the second place there 

are products that are bought with longer intervals than one week. When the 

purchasing process of such products is fitted to some statistical model, a 
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pattern of correlations between different weeks may come out that would not 

necessarily lead to intractable results. In the third place other classes of 

estimators (like composite estimators) may improve on the results we have 

given here. In the fourth place, models to correct for measurement error 

(which have not been considered in this paper), may have their impact on 

sampling design and estimation. Finally, time series models from which 

empirical Bayes estimators can be derived, can be used for optimum estimation 

of consumption. 
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APPENDIX. 

A.1 Design of model 2 

Let the n individuals be randomly assigned to groups Gj , G2 , . . . , GL The 

group of individual i we denote by G(i). The groups correspond to the sets of 

weeks Pj, r2■ .... PL• Each set P, consists of m out of the M weeks. The 

design is such that for every week j we have |{i:jePG(j,)| - nm/M and for 

every combination (j ,k) of weeks we have | { i ■ j .k€PG ^ j j } | — nm(m-l)/(M(M-l)) 

or, in each week with a fraction m/M of the respondents the budget survey is 

held and in each combination of weeks a fraction m(m-l)/(M(M-l)) of the survey 

is held. Now let X!$> be the amount of purchases by household i in week j of 

period t if jerG(1). This definition is a slight generalization of the 

definition in the main text. Now let us calculate the variance and the 

covariance of Xj(t>, defined according to (4). 

var (Xj (>) 

and for k>j 

N2M2 l var(XiJ<‘>) 

i:j erG(Lj 

n2m 
-a 
ran 

2 

covCXj^ ,J ) 
N2M2 l cov(XiS>,X<{>) 

i:j,kGrG ( Lj 

N2M(m-1) 
ran(M-1) 

po2pk“j 

from which identities (7) and (8) are easily derived. 
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A.2 First order approximations of model 1 

We start with model 1 from formula (5). Writing q-l-p and Cj—N2M2a2/n we can 

write for the variance of X(t} 

var(X<11) - — L + - ^(l-q)2(l-E°-i) 

m2 ^ q q2 

Cl f 
-m - 2p(m-l) - 2p(l-(l-q)"-1) 

m2 ^ 

+ [2p(m-l) + ^p{l-(l-q)m”1)]/q 

- 2p(l-(l-q)”-1)/q2j 

2p(m-l) 2p(m-l)q 

+ 2p (m- l)/q + iplt^q-C^1] q2)/q 

- 2p(r-1)q-(m-1)q2 + r31)q3)/q2) 

- —1 + (m-l)p - (m2-l)pq/3 

In a similar way we can approximate the covariance of X( 11} and X(t + 1)) 

ci 
cov(X(fc)fX«t+1>) - — p(l-q){l-(l-qm)2}/q2 

m2 

--p{(l-(l-qm)2}/q + p[(l-Cl-q™)2}/q2 
m2 ^ J 

“ —[^)q)2/q + Qq- Qq2 )2/q2] 
m2 ^ ' 

ci 
~ —(pm - pm2q) 

m 

This enables us to compute the first order approximation of the variance of 

X<t+i)_X<t>: 
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2c, 
var(X<t + 1>-X'1’) = -(1-p + (2m2+l)pq/3) 

m 

A.3 First order approximations of model 2 

We start with formula (7). Writing c2-N2Mcr2/n we can write for the variance of 

X(t) . 

varCX'1*) [M + 2(m-l)p(^3 - (1-q) 
1-(l-q)M-1 

(M-l)q2 ^ 

c2 f i 
— M + 2 (m- l)p [— - 1 

1 fM - I'v /"M - l-v 2 . 3 i 

-([ 1 Jq-L 2 J'l +(- 3 Jq 1 
(M-l)q2 

2 , rM-li pM-l- 

(M-l)q 
(l x Jq-C 2 Jq2) - jn: (-i Jq]J 

- f 2m [ 
c2^ il + (m-l)p(l-^q) 

In a similar way we can approximate the covariance of X(fc} and X(t+1) 

covCX'*’ ,X<t+1>) - — p(l-q)U-(l-qM)2)/q2 

C2 m-1 fl , M pM-v 2>2 lrM-v2 : 
” in /> -fyq-yq ) - iQ q‘ 
m v-nz 

C2 m(m'1)pfri(1"Mq) 

so for the variance of X(t+1)-X(t} we find 

varCX't-^H-X'1’) = 2c2|jj[l - p{l-2M^+1q) ] 
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