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Abstract 

The Bayesian framework for statistical inference offers a possibility of 

taking expert opinions into account, and is therefore attractive for many 

practical decision problems, e.g. concerning inspection and replacement of 

technical systems. However, the use of a single prior distribution fails to 

indicate the amount of information on which subjective probabilities are 

based, and leads to problems when combining the opinions of several experts. 

The introduction of imprecise prior probabilities solves these problems, 

and can lead to simpler and clearer elicitation of prior information. Recent¬ 

ly, a semi-Bayesian theory has been suggested in which imprecise prior proba¬ 

bilities are updated with control of imprecision related to the amount of in¬ 

formation. Also some problems concerning elicitation of lifetime distribu¬ 

tions, combination of opinions, introduction of statistical models and calcu¬ 

lation of bounds on expected loss within the theory have been analyzed and 

solutions proposed. In this short note, intended to serve as an eye-opener to 

the theory, a possible application of the concept to an age replacement pro¬ 

blem is described. 

This short note has been presented at the symposium ’Reliability: A competi¬ 

tive edge’ of the Society of Reliability Engineers (Arnhem, October 1993). 

The author would like to thank Martin Newby and a referee- for their sugges¬ 

tions to improve the presentation. 
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1. Introduction 

The theory of imprecise probabilities (Walley, 1991) is a useful and ne¬ 

cessary generalization of the classical theory of subjective probability (De 

Finetti, 1974), with lower and upper probabilities describing personal betting 

behaviour. A bet on event A is such that the owner receives 1 if A occurs 

and 0 if not (Walley (1991, section 2.2) presents a method, using lottery 

tickets, to overcome the well-known problems if utility is expressed in terms 

of money). Your lower probability for event A, (P(A), is the supremum of all 

prices for which you want to buy the bet, your upper probability P(A) the in- 

fimum of all prices for which you want to sell the bet, assuming that you only 

want to buy or sell a bet if you expect profit. Remark that in the classical 

theory of subjective probability you are forced to P(A)=P(A), leaving no tool 

to represent how certain you are. This creates the obvious problem that, for 

example, a single probability P(head)=\/2 when tossing a coin is used if you 

have no information about the coin at all as well as if you know that the coin 

is perfectly symmetrical. So the forced use of a single probability destroys 

important information, especially if probability is used as a language to ex¬ 

change knowledge about uncertain events in decision problems (French, 1986), 

and also creates problems in the elicitation and combination of opinions (the 

use of higher-order probabilities only pushes the problem ahead (Walley, 1991, 

section 5.10)). For a survey of literature on imprecise probabilities and a 

presentation of axioms we refer to Walley (1991, section 1.8 and 2.7). 

A simple degree of imprecision about (the bet on) A is A(A)=P(A)-P(A). 

In this concept A(A) is assumed to depend on the amount of information about A 

available to you. On the basis of some simple requirements Walley (1991, sec¬ 

tion 5.3) proposes /(A)=A(A)''-1 as a measure of the amount of information 

about A in the imprecise probabilities. This measure plays an important role 

within the model used in this paper, but although Coolen (1994, section 2.2) 

provides a theoretical argument in favour of this relation between imprecision 

and information, more research is needed. The important role of imprecision 

in reporting the amount of information on which betting behaviour is based 

makes the distinction between our theory and robust Bayesian analysis (Berger, 

1990). The fact that we explicitly control imprecision, as related to infor¬ 

mation, through additional parameters in case of updating leads to a concept 

that can be called semi-Bayesian. 
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In this paper Bayesian decision theory is applied to an age-replacement 

problem, the lifetime of a deteriorating unit is a random variable. The pro¬ 

bability distribution of the lifetime is assumed to depend on one parameter, 

and opinions of experts are entered by the use of imprecise prior probabili¬ 

ties, following the concept of intervals of measures (DeRobertis and Hartigan, 

1981). The special form of the set of prior densities and the theory of upda¬ 

ting these priors in the light of new information are discussed by Coolen 

(1994), where the information measure 1(A) plays a crucial role in case of 

updating. The model and the advantages for elicitation and combination of 

expert opinions are briefly discussed in the example in section 2. 

The use of a set of prior probabilities does not lead to indecisiveness. 

The difference with the classical Bayesian decision theory is that we cannot 

give one value of the expected loss related to a decision, but (the sharpest) 

bounds on the expected loss can be calculated easily (Coolen, 1994), and the 

distance between these bounds depends on imprecision. To reach a decision one 

needs an additional criterion to compare these bounds. It is believed that 

the use of one precise value for expected loss related to a decision is re¬ 

markable if you do not have perfect information, which is an argument in fa¬ 

vour of our method when decision theory is applied to practical problems. 

2. An Age Replacement Problem 

An age-replacement rule (e.g. Tijms, 1986, section 1.2) prescribes the 

replacement of a unit (system, component) upon failure or upon reaching the 

age 7, whichever occurs first, where 7 is a control parameter. To show the 

possible use of Bayesian decision theory with imprecision an example is pre¬ 

sented, with restriction to 7e)3,6,9,..} months. For the random variable 7>0, 

the lifetime of the technical unit of interest, we assume a cumulative distri¬ 

bution function Fjft|0), depending on a scale parameter 0>O (this restriction 

of the parameter space is not essential to the theory but for ease of the 

example). A generally accepted loss function is the expected cost per time- 

unit over infinite time for decision 7, 

1 + (c- 1)Ft(7|0) 
m\&) = —j---■ 

f (l-jyt |0))dt 
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The cost of preventive replacement is assumed without loss of generality to be 

1 and ol is the relative cost of corrective replacement. The assumption that 

c is precisely known may not be realistic, but generalization of the theory to 

ce [c^,c ] is quite easy because the comparison of the decisions T is based on 

the bounds of the expected value of £(?|6) over the possible distributions for 

0, and in case of c.*c the lower bound is accepted for costs c. and the upper 

bound for costs c^. 

Under the above assumptions the remaining problem is that 0 is unknown, 

and we assume that the only information available is expert opinion about the 

lifetime T. Bayesian decision theory (Lindley, 1973; French, 1986) offers a 

means to reach a decision if a distribution for 0 is given, as well as a 

method for updating this distribution in light of new information. However, 

as 0 is unobservable we propose to elicit the opinions of the experts by as¬ 

king questions about T, and we give possible results of such an elicitation 

process, together with some methods to combine these opinions and to translate 

the information about T into sets of prior distributions for 0. It is impor¬ 

tant for practical application of this (as any) concept of decision making 

that elicitation is studied in real-life cases by groups of researchers from 

several disciplines. So far we know of only one case-study of a decision pro¬ 

blem using imprecision (Walley and Campello de Souza, 1990) where the concept 

is used as sensitivity analysis rather than to relate imprecision to the 

amount of information available. This last interpretation of imprecision is 

especially interesting if new information becomes available, which was not 

discussed in that case-study. 

If a single prior distribution 7t(0) is assumed, the optimum decision is 

that 7 which minimizes the expected loss 

ELJ?) = f 2(710)7t(0)d0. 
71 0J 

Here, instead of one prior a set IT of probability densities is assumed. For 

each possible decision 7 let 

g2n(7) = {EL%m\nen) 

be the set of possible values of expected loss. To choose an optimal decision 

we compare these sets using only the lower expectation 

g2n(7) = inf g2n(7) 

f2n(7) = sup g2n(7). 

and the upper expectation 
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Using the intervals of measures method, we restrict ff to the form: 

oo 

n = { 7t I 71(0) = 9(0)/^, O<f(0)<9(0)<u(0) for all 0, C^J <,(0)d0 }, 

where lower prior density l and upper prior density u are given. Remark that 

in our terminology a density does not necessarily integrate to 1, whereas a 

probability density does. To avoid some marginal problems we restrict the 

discussion to l and u such that 

Further, for ease of calculation when updating, t is assumed to be a member of 

a conjugate family, and u-l is also assumed to be proportional to a member of 

such a family. The numerical calculation of the corresponding £!£^(T) and 

is easy (Coolen, 1994, section 3.3). Interpretation of the set IT is 

possible only through the related imprecise predictive cumulative distribution 

functions (cdf’s) as used in the following example. 

Example 

For this example gamma distributions are used, they are mathematically 

attractive and describe the randomness of lifetimes of deteriorating units 

reasonably well. We further assume that the shape parameter of the gamma dis¬ 

tribution of T is equal to 3, leaving a one-dimensional non-negative scale 

parameter 0 in the model; 

F7ft|0)=Fet(3)/2, 

and the probability density function is 

/yft 10)=0‘Vexp(-0t)/2. 

Completing the model in the context of Bayesian theory with imprecise prior 

probabilities, we assume lower and upper prior densities 

f(0)=^Vexp(-x£0)/r(lO) 

and 

u(0)=f(0)+c^a(0). 

with Cq>0, and 

a(0)=T|Vexp(-Ta0)/r( 10). 
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These gamma distributions are conjugate priors for the gamma scale parameter 

0, leaving hyperparameters xf, Tq and Cq in the model to be chosen to make it 

fit well with expert opinions. To this end we compare lower and upper cdfs 

resulting from elicitation with the ones resulting from the model. The impre¬ 

cise cdfs for T resulting from the model are (Walley, 1991, section 4.6): 

fy(x)dx 

and 

F^t): 

00 
fj.(x)dx + J Uyi 

Uj-(x)dx 

,(x)dx 

Uy(x)dx + | f j.(x)dx 

where lj and u,j, are Bayesian predictive densities based on the priors and 

therefore depending on the hyperparameters: 

f7<t)=Jt/7<t|e)f(0)de 

and 

t)—f jft)+C^Ctyf t) 

with 

aJ<t)=Jt/7<t|0)a(0)d0. 

It is also possible to drop the assumption that the shape parameters of these 

gamma priors are known, but this leads to more hyperparameters and more calcu¬ 

lations when fitting the model to subjective data. In practical applications 

it would be sensible to perform sensitivity analyses with regard to these as¬ 

sumptions. 

For this example, we assume that there is one Decision Maker who wants to 

know the opinions of three experts. Walley and Campello de Souza (1990) sug¬ 

gest to use imprecise cdfs for T in the elicitation process, and we continue 

with the example assuming that we obtained the following results 

(F7<0)=F7f0)=0 and F7<«)=F7f~)=l): 



23 

t: A 
Expert A: F^.(t): .04 

F^(t): .15 

Expert B: F^(t): .05 

F^(t): .17 

Expert C: F^(t): .11 

F^(t): .47 

12 18 24 

.22 .46 .66 

.42 .68 .83 

.20 .41 .60 

.42 .63 .78 

.32 .55 .80 

.76 .89 .96 

The correct interpretation of these numbers is in terms of the above bet¬ 

ting theory for events of the type 7<t, but for ease of thought one may also 

think that, based on the amount of information available to expert A at this 

moment, he thinks that 0.04<P(7’<6)<0.15 and does not want to make any further 

distinction. Experts A and B have similar ideas about the lifetime of the 

unit, whereas expert C is much more pessimistic and also less sure, which can 

be seen from the imprecision in the above numbers. If these numbers are in¬ 

terpreted using betting behaviour, both experts B and C would be pleased by a 

bet on the event 7~<24 for price 0.79 (where B sells the bet to C). 

To fit the model to subjective data of this kind (per expertjsuitable 

values for the hyperparameters are to be determined. To reduce the amount of 

numerical calculations Cq is set equal to 2&max/0-&max)' with ^max the maxi¬ 

mum of the imprecision for an event T<1 according to the subjective data 

(Coolen, 1994). Thereafter values for and are determined such that the 

imprecise cdfs fit well to the expert’s cdf’s in the points where these are 

given. Here the distance between the lower cdf’s (and for the upper cdf’s) is 

defined as the expected squared distance of the discretized cdf’s (over the 

intervals used in elicitation), where the expectation is with regard to the 

subjective lower distribution. Then and ta were determined by minimization 

of the sum of these expected squared distances of the upper and of the lower 

cdf’s. The hyperparameters for the models that fit to the above expert’s 

cdf’s are: 

C0 Tl Tq 

Expert A: 0.56 57.6 52.2 

Expert B: 0.59 66.9 43.2 

Expert C: 1.57 48.7 27.2 
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To calculate the bounds on the expected loss according to the above theo¬ 

ry, the cost of corrective replacement is set to c=10. The results are (for 

decisions 7, with T=300 months is effectively no replacement): 

S’: 3 6 9 12 15 18 21 24 27 30 36 300 

Expert A: e^n:.34 

e5n:.34 

Expert B: £ff!n:.34 

eZn:.34 

Expert C: ggj-p.34 

WIn:36 

.18 .13 .11 .10 .10 

.18 .14 .12 .12 .12 

.17 .13 .10 .09 .09 

.18 .14 .12 .12 .12 

.18 .14 .12 .11 .11 

.23 .22 .23 .24 .26 

.10 

.13 

.09 

.12 

.12 

.27 

.10 

.13 

.09 

.13 

.12 

.28 

.10 

.13 

.09 

.13 

.13 

.29 

.10 

.14 

.09 

.14 

.13 

.30 

.11 

.15 

.10 

.14 

.14 

.31 

.16 

.20 

.14 

.19 

.19 

.35 

From such a scheme it is obvious that an additional criterion is needed 

to reach a final decision, for example, one could choose a decision per expert 

that minimizes the maximum expected loss, where the problem arises that these 

will often differ per expert. Nevertheless, from the above scheme it seems 

that there are some good arguments in favour of decisions 7=12 or 7=15, but 

the final choice is for the Decision Maker. 

Another approach is to combine the information from the experts first, 

and then perform one analysis based on these combined opinions. Some methods 

are (weighted) averaging the values per expert (there is no theory of weights 

for combining imprecise probabilities) and two combination rules mentioned by 

Walley (1991, section 4.3), that result directly from the betting interpreta¬ 

tion of the imprecise probabilities. The first one defines the new lower pro¬ 

bability as the minimum of the lower probabilities per expert, and the new 

upper probability as the maximum of the upper probabilities per expert. This 

lower probability can be interpreted as the supremum of the prices for which 

all members of the group are willing to buy the bet. The second one defines 

the new lower probability as the maximum of the lower probabilities per ex¬ 

pert, and the new upper probability as the minimum of the upper probabilities 

per expert, with interpretation that the group wants to buy or sell a bet if 

at least one member of the group wants this. Note that this second method of 

combination can lead to incoherent group betting behaviour since there may be 

a price at which the group would be willing to buy as well as to sell the same 

bet (in our example this would be caused by the disagreement between experts B 

and C on the event 7'<24). The fact that this method actually indicates such 
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disagreement between experts is useful in practice, and is not provided by the 

classical Bayesian theory (where experts always disagree, except if they 

assess exactly the same precise values). 

An important consideration for decision theory is the possibility of 

incorporating new information. The updating methodology of the classical 

Bayesian framework is adopted here, but as this is not suitable for updating 

imprecision something more is needed, where the information measure plays an 

important role. In case of additional data consisting of n observed indepen¬ 

dent failures of the technical unit, with failure times t- (i=l,..,n) and to¬ 
ri 1 

tal time on test tt= V t-, Coolen (1994) proposes updating by replacement of 
i=l 1 

the hyperparameters of the densities l and a according to the classical 

Bayesian theory (here the choice of conjugate densities leads to simple calcu¬ 

lations) together with replacing Cq by 

c0 
cn ~ T+K/E,’ 

where the additional parameter E, is to be chosen by the DM, and can be inter¬ 

preted as the amount of additional data that provides an equal amount of in¬ 

formation as the prior (subjective) information does. Both parameters and 

c, relate to imprecision, and so to the amount of information, and can be quite 

easily assessed, and since Cq is related to the prior imprecision, and q to 

the value of new data compared to the subjective data, we conjecture that im¬ 

precision cannot be correctly taken into account with less than two additional 

parameters. 

To emphasize the possibilities of this updating theory we end this exam¬ 

ple with another set of hypothetical subjective data with much imprecision, 

and analyse the updates in light of new information for two cases: 

(I) ti=10, tt= 150; 

(II) n=20, «=180. 

If the subjective data are 

Expert D: F^(t): 

F^(t): 

_6_ 

.03 

12 

.17 

.76 

.34 

.89 

24 

.54 

.96 .51 
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the hyperparameters to fit the model to these data are 

cn = 2.92, T. = 69.8, T =31.5. 
0 1 a 

We further assume that the weight of new information compared to the prior 

information is indicated by ^=5. A table of the bounds on expected loss, for 

the prior situation and the two posterior situations is then: 

T. 3 6 9 12 15 18 21 24 27 30 36 300 

Expert D: 62^:.34 .17 

e2n:.36 .23 

(I): £2n:.34 .18 

l\2n:.34 .18 

(H): ££n:.34 .20 

g2n:.35 .21 

.12 .10 

.22 .22 

.13 .11 

.14 .13 

.17 .16 

.18 .19 

.09 .08 

.23 .25 

.11 .11 

.13 .13 

.17 .19 

.20 .21 

.08 .08 

.26 .27 

.11 .11 

.14 .14 

.20 .21 

.23 .24 

.08 .08 

.28 .29 

.12 .12 

.15 .16 

.22 .23 

.26 .27 

.09 .13 

.30 .33 

.13 .19 

.17 .23 

.25 .30 

.29 .33 

It is seen that the data reduce uncertainty strongly. Again, a Decision Maker 

can use such a scheme, that explicitly reports lack of perfect information, to 

arrive at a final decision. 

3. Comments 

In this paper the possible use of a semi-Bayesian decision theory with 

imprecise probabilities is briefly shown, and some attractive features of the 

framework are presented. The paper is only meant to serve as an eye-opener to 

new ideas about the role of imprecision related to the amount of information 

available, and the way such a relation can be exploited in a Bayes-like theory 

to update imprecise prior probabilities. For many technical details we refer 

to recent literature. It is obvious that practical application is necessary 

for insight into the real value of the suggested theory as well as to solve 

some important open questions, e.g. about elicitation and combination of 

imprecise probabilities. 
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