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ABSTRACT: The beta coefficient is the traditional measure of systematic risk in in¬ 

vestment and portfolio analysis. Typically beta estimates are generated by the ordinary 

least squares (OLS) method. However, the validity of this method is based on certain 

assumptions which have been challenged in a number of empirical studies. The purpose 

of this note is to apply a robust estimation procedure to estimating market model be¬ 

tas and compare its performance with results obtained by OLS. The results indicate 

that statistically significant differences in the beta estimates can be found between the 

two estimation procedures. The nature and significance of the differences varies with the 

number of observations available for each firm and may be construed as an “interval” or 

as a “firm maturity” effect. 
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1 INTRODUCTION 

The market model has been a focal point of research in finance. It has been therefore 

subjected to extensive testing. Beta estimates have been generated under alternative 

sample characteristics, including interval length and market proxies. For example, beta 

stability has been examined in terms of both its performance of mean and mean abso¬ 

lute deviations with varying conclusions about its performance; see, e.g., Alexander and 

Chervany (1980). Typically beta estimates are generated through some application of 

Ordinary Least Squares (OLS) estimation. Applying OLS techniques, however, requires 

that certain assumptions about the distribution of the error term be true. Unfortunately, 

these assumptions may not be justified. As a result there has been an increassed interest 

in robust estimation methods; see, e.g., Huber (1977). One such robust method of esti¬ 

mation is the Least Absolute Value (LAV)1 estimation; see, e.g., Bloomfield and Steiger 

(1983). The LAV regression method has become popular in recent years, largely due 

to the relative insensitivity of LAV estimators to outliers, and the development of fast 

algorithms for computing the estimators. In this paper, we apply the LAV estimation 

procedure to the estimation of market model betas. The principle question is: does the 

use of (LAV) approach, as an alternative to OLS estimation, make a systematic difference 

in the quantification of risk? 

According to the market model, the relationship between the return of an individual 

security and the market index is depicted by 

Rit = + PiRmt + C( (1) 

where Ra is the return on asset i (i = 1,... ,rc) at time t (t = 1,... ,N) and Rmi is the 

return on a market index. Assuming that the error term et, has zero mean and constant 

variance, then: E(Rit) = a; + 0iE(Rmt)- The total variance in the return of the asset is 

Var(Rit) = p?Var(Rmt) + Var(tt). (2) 

This last relation is fundamental in finance. The first component on the right-hand side 

represents the systematic or common risk. The second component is the non-systematic 

lLAV is not the only acronym used. Others include MAD (minimum absolute deviation), LAD (least 

absolute deviation), LAE (least absolute error), and LI norm. 
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risk, attributable to the peculiarities of the individual return. If the distribution of c. 

is symmetric with finite variance, then the non-systematic component can be reduced 

to a value not significantly different from zero, by diversifying the number of securities 

included in a portfolio; see, e.g., Evans and Archer (1968) and Fama (1965a). 

The distribution of et, however, is not necessarily symmetric with constant variance; 

see Kon (1984). Instead, a stable Paretian distribution with characteristic exponent S 

in the range 0 < 5 < 2 has been found by some researchers for et (e.g. for <5 = 1 and 

an index of skewness equal to zero, the Pareto distribution becomes a symmetric Cauchy 

distribution); see, e.g., Fama and Roll (1968, 1971). If d < 2, the variance of et does 

not exist. Also evidence has been reported that the distribution of security returns can 

be characterized by a Student t-distribution with few degrees of freedom. For example, 

Akgiray and Booth (1988) reject the stable law model for stock returns, finding that 

empirical tail shapes are thicker than those of a normal distribution but thinner than 

stable tails. These findings are corroborated by Nieuwland (1993), using extreme value 

theory. Hence, OLS may not be the appropriate estimation procedure. Indeed, Fama 

(1965b) suggests that a possible alternative procedure for estimating the relationship 

between returns on individual securities and the market is provided by the absolute value 

regression. The regression, according to Fama (1965b), estimates a set of coefficients so 

as to minimize the sum of absolute deviations between actual and predicted values of the 

dependent variable. This is an application of LAV. 

Following Fama’s suggestion, estimates of beta from the market model are generated 

applying both OLS and LAV techniques. The next section of this study describes the 

current state of the theory that underlies LAV estimation. It is followed by a discussion 

of the data and methodology employed in our study. The results are explained and the 

appropriate conclusions are drawn in the last sections. 

2 LEAST ABSOLUTE VALUE ESTIMATION 

Traditional approaches to model estimation are predicated on certain assumptions about 

the nature of the underlying error distribution, which are rarely tested empirically. Some 

work in finance suggests that these conditions do not uniformly exist; see, e.g., Fama 
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(1965b). Alternative approaches to estimating relationships exist that do not rely on 

minimizing the sum of squared errors. For quite some time analysts have known that 

by minimizing the sum of absolute deviations between a hypothesized model, such as 

the linear regression model, and data results in robust parameter estimates. Neverthe¬ 

less, several important problems have prevented LAV approaches from being utilized by 

researchers. 

The initial problem was computational. Unlike OLS estimation, there is no closed form 

formula based solution to the problem of minimizing the sum of absolute deviations. This 

changed when Charnes, Cooper and Ferguson (1955) demonstrated that LAV estimation 

could be accomplished directly through an application of linear programming. Consider 

the multiple regression model 

Yt = ^2,PkXt,k V tt, (t = l,...,N), (3) 
k 

where Yt is the tth observation of the dependent variable, Xt,k is the tth observation of 

the kth independent variable, /3k is the parameter associated with the kth independent 

variable, and N is the number of observations. The LAV estimates for Pk, 0k, are those 

which minimize 

(4) 
1 k 

and the linear programming problem that generates a solution is 

Minimize Z = ^^(pt + 9t) (5) 
t 

subject to 

Yt-Y,foXt,k+Pt-qt = 0, (< = 1,... ,1V) (6) 
k 

Pt,qt > 0, (i = l,... ,1V) (7) 

where 0k, (k = l,...,r), are unrestricted in sign, and where pt and qt are the posi¬ 

tive and negative deviations associated with the tth observation. The problem stated 

in equations (5)-(7) can be solved directly with the revised simplex algorithm though 

several researchers have developed specialized codes for dealing with this problem; see, 
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e.g. Barrodale and Roberts (1978). Accompanying the above theoretical developments, 

computer codes for implementation have be written, and diffused. Since 1979, SAS has 

made available P ROC LAV in its user supplemental library for LAV multiple regression 

analysis. Though there are still problems associated with estimation2, these developments 

essentially make it possible to calculate LAV estimates for multiple regression analysis 

quite easily. 

A second problem in using LAV estimates is that until recently little was known about 

the sample distribution of the estimates. Various simulation studies have demonstrated 

that LAV estimates are more efficient than traditional OLS estimates for small samples 

(^=10 and 50) where the residuals have Cauchy, Laplace, stable Paretian distributions 

with the characteristic exponent less than or equal to 1.5, and certain contaminated 

normal distributions; see, e.g., Rosenberg and Carlson (1977) and Bloomfield and Steiger 

(1983). These results are significant in that they suggest that situations where error 

distributions have “fat-tails” (e.g. Cauchy, Laplace distributions) or “long-tails”, LAV 

estimates will be more efficient than OLS estimates, hence generating smaller confidence 

intervals. 

The small sample results generated through simulation studies have been supported 

by the development of large sample asymptotic properties for LAV estimates; see Bassett 

and Koenker (1978). The essence of this result is that for large samples, the sampling 

distribution of the LAV regression estimates are asymptotically normal with a mean 

given by the true parameter value /3 and a variance-covariance matrix <r2(A’'A’)_1 where 

a/s/N is the asymptotic standard deviation of the sample median for random samples 

of size N taken from the residual distribution, and X is the matrix of all values of Xttk, 

the independent variables. Estimation of a is problematical though in a summary paper 

Dielman and Pfaffenberger (1982) demonstrate one approach that results in a consistent 

estimator. 

2One problem that remains is that the linear programming solution may not be unique. Most codes 

can determine the uniqueness of the solution by examination of the dual variables at the optimum. In the 

case of SAS’s P ROC LAV the output indicates if the solution is unique. Other approaches to estimation 

of LAV exist, such as iteratively weighted LS, but these only result in approximate solutions and give 

no indication as to the potential existence of alternative optima. 
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The value of LAV estimation then is best understood as an alternative to OLS in 

situations where the error distribution is thought to be non-normal. In particular, when 

empirical tests for normality of residual distributions generated by OLS regression result 

in rejection, this suggests that LAV estimates could be more efficient. This would result in 

tighter confidence intervals around each parameter estimate, and smaller standard errors. 

LAV estimates are unbiased estimates of the conditional median but biased estimates of 

the conditional mean. Consequently, in the presence of skewed error distribution, or error 

distributions with fat tails it would mean that median regression is a superior approach to 

summarizing and modelling than traditional conditional mean regression. Another value 

of LAV estimation is that LAV parameter estimates will not be as strongly affected by 

outliers in a data set since these observations will not be as heavily weighted as in OLS 

estimation. This feature is particularly useful when estimating the market model (1) since 

it is known that estimates of beta, using only a small number of historical observations 

which can be obscured by outliers, tend to lack stability. In fact, LAV is a member of 

two important classes of robust regression estimators, M and R\ see, e.g., Huber (1977). 

3 DATA, METHODOLOGY AND RESULTS 

This study utilized monthly returns for 90 firms, selected randomly from the 

COMPUSTAT tape. The tape includes monthly return data from 1962 through 1986. 

The exact dates of coverage for each firm selected, varied, with 57 companies containing 

over 200 observations, 14 companies containing between 100 and 199 observations, and the 

remaining 19 firms with fewer than 100 observations. One firm had only 2 observations 

and was not used, leaving a total of 89 firms. The highest number of returns generated 

in the sample was 287, while the lowest was 11. As a market portfolio, the Standard and 

Poor’s 500 Composite Average was used. 

For each firm, relation (1) was estimated using both the OLS and the LAV methods of 

estimation. In terms of testing the applicability of the market model: the OLS procedure 

generated estimates of beta that were statistically significant at the 1% level in 47 cases, 

at the 5% level 14 more times and at the 10% level for an additional 7 firms. Overall, 21 

firms did not have statistically significant betas when applying OLS procedures. Similar 
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Table 1: Description of slope differences (OLS slope - LAV slope). 

Average 0.0350 
T—ratio for average 0.8477 
Standard deviation 0.3890 
Coefficient of variation 1112.8900 
Number of times OLS > LAV 57.0000 
Number of times LAV > OLS 32.0000 
Skewness -3.6684 
Kurtosis 26.4605 
Maximum 1.3057 
3rd quartile 0.1690 
Median 0.0699 
1st quartile -0.0226 
Minimum -2.6301 
Sign rank test statistic 824.5000 

Non-parametric test Hq: Mean=0 
P—value O.0007 

results were obtained for the LAV procedure. Using the large sample theory developed 

above, 48 firms had statistically significant LAV beta estimates at the 1% level, 12 at the 

5% level and 6 at the 10% level. There were 22 firms where the LAV beta estimate was 

not significant. Generally the decision to accept or reject the hypothesis that the beta is 

zero was the same firm by firm, regardless of the estimation procedures. 

Table 1 describes the distribution of the difference between the two slope estimates. 

The mean difference was 0.0350. Statistically, this difference was not significantly different 

from zero at the 5% level but the measures of skewness and kurtosis suggest that the 

distribution of differences is not symmetric. Since the number of observations available 

per security varied considerably and the distribution of differences is skewed, further 

examination of these differences was warranted. 

Table 2 examines this distribution cumulatively by iteratively slicing away cases based 

on sample size. This table includes both the average and median differences between OLS 

and LAV estimates, plus for each grouping a test for normality was conducted. Once the 

three firms with less than 20 observations are removed from the sample the mean difference 

become significant and positive. The differences change as the various classes of firms are 

considered. The average and median difference increases initially, but starts to decline 
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after all firms with less than 140 observations (12 years) have been removed. These results 

suggest a relationship between the extent to which OLS and LAV estimates differ and 

the sample size used in the estimation. Despite the theoretical evidence that for small 

sample sizes LAV estimation leads to smaller confidence ellipsiods (see, e.g., Bloomfield 

and Steiger, 1983, p. 51) than OLS estimation, this was only noticed for four series 

having N <100. 

It is well known that the presence of heteroskedasticity in the disturbances of an 

otherwise properly specified linear model leads to consistent but inefficient parameter 

estimates (whatever the estimation method) and inconsistent covariance matrix estimates. 

As a result faulty inferences may be drawn when testing statistical hypotheses in the 

presence of heteroskedasticity. To test for homoskedasticity of errors the Goldfeld-Quandt 

test is used. It requires that the observations are ordered according to increasing error 

variance, assuming that heteroskedasticity does exist. Next two regressions are run, one 

using the first (jV —c)/2 observations and the other using the last (N — c)/2 observations. 

Here c denotes the number of middle observations. Then, assuming that the errors are 

distributed normally, the two residual sum of squares are compared using an F test. 

Taking c = Af/3, the results of the Goldfeld-Quandt test exhibit that only six of the 89 

stocks rejected the hypothesis of no difference in the subsample pure residual variances at 

the 10% level. The second test of heteroskedasticity is the Spearman’s rank correlation 

coefficient. The results of this test indicate that only seven of the 89 stocks tested showed 

significant correlation at the 10% level. Following the above test results it is reasonable 

to claim that only 7% of the stocks under study illustrate evidence of heteroskedasticity 

in the pure residual error. Therefore, no effort has been made to correct the stock prices 

for the presence of heteroskedasticity. Moreover, this would lead to the estimation of 

(G)ARCH processes (see, e.g., Bollerslev, Chou and Kroner, 1992) which lies beyond the 

scope of this paper. 

Table 3 presents the results of a regression relating the difference between the two 

estimation approaches (OLS slope - LAV slope) and the number of observations per 

security. This is done for all firms (n=89) as well as for firms having more than 200 

observations (n—57). According to the estimated parameters, increases in the number 

of observations per firm are associated with increases in the difference between the OLS 
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Table 2: Slope differential and number of observations per firm. N > indicates that 

the firms included in the calculations had a number of observations greater than 20,...; * 

indicates all mean and median differences are statistically different at a 5% level. 

N > No. of 
firms (n) 

—20 86 
40 83 
60 77 
80 74 

100 72 
120 71 
140 71 
160 70 
180 61 
200 57 
220 48 
240 27 
260 23 
280 19 

Average* Median* P—value 
difference difference II0: Normality 

0.0589 01)720 <0^1 
0.0624 0.0740 <0.01 
0.0833 0.0782 <0.01 
0.0947 0.0776 <0.01 
0.1029 0.0806 <0.01 
0.1044 0.0831 <0.01 
0.1044 0.0831 <0.01 
0.1040 0.0807 >0.15 
0.0739 0.0740 >0.15 
0.0647 0.0612 0.193 
0.0771 0.0720 0.899 
0.0592 0.0699 0.952 
0.0704 0.0740 0.846 
0.0801 0.0740 0.360 

Table 3: Slope differences and number of observations: Regression results. Differences(i) 

= /?o + /3i(Observations(i)) + e(i); * indicates statistical significance at a 5% level. 

OLS+ T—ratio Trimmed++ T—ratio 
Parameter Estimate (Ho'- 0j=O) OLS Estimate (H0: /3j=0) 
Intercept A) -0.2271 -2.198* -0.0469 dh280 
Slope & 0.0013 2.748* 0.0011_1.982* 
Note: + these estimates are based on n=89, F—value—7.553, i?2=0.0693; 

++ trimmed 4 outliers, n=57 (N >200), lt2=0.0489. 

Table 4: Slope differences, number of observations, and firm assets; Differences(i) = A) 

+ A(Observations(i)) ^(Firm Assets (i)) -(- e(i). 

Parameter_Estimate T—ratio (H0: A=0) 
Intercept A> -0.1771 0.0935 
Observations A 0.0011 2.2450* 
Firm Assets A 0.0000005 0.0900 
Note: n=87, P-value=2.655, R2=0.0595. 



Table 5: Calibration of LAV and OLS slope; LAV Slope(i) = fio V Pi OLS Slope(i) + 

/?2(Observations(i)) -f e(i); * indicates statistical significant at a 5% level. 

OLS+ T-ratio LAV Trimmed++ 
Parameter Estimate [Hq: /3,—0) Estimate OLS Estimates 
Intercept fiQ 0.43221 087^ 0.07153 0.06188 
OLS Slope Pi 0.81975 11.782',‘ 0.89832* 0.89292* 
Cases p2 -0.00131 -2.829* -0.00014 -0.00007 
Sample size_89_89_85_ 
Note: + these estimates are based on n=89, Jt2=0.6217; 

-j-+ trimmed 4 outliers, n=85, -R2=0.9085. 

and iAV-estimated market model slopes (betas). There are several possible explanations 

for this result. One is related to asymptotic sampling behavior of the estimates. The 

larger the samples the more likely differences in distributional factor can be detected, 

hence differences between conditional mean and median estimates become larger. An 

alternative explanation is that the sample size is a surrogate for other important factors 

related to risk, age or maturity of the company for example. 

Table 3 also indicates that the dependent variable used in the regression, number of 

observations, accounts for a very small portion of the variation in the differences between 

the slopes. The use of the particular dependent variable reflected only indirectly on specific 

firm characteristics. The availability of a long time series may be viewed as evidence for 

firm maturity. There is justification, then, for inclusion of explanatory variables explicitly 

reflecting specific firm characteristics. One such variable is the size of the firm. Empirical 

studies have indeed attempted to explain the higher average returns accruing to small 

listed firms. For instance, according to Roll (1981), this difference in average returns may 

be due to improper measurement of these returns. The hypothesis of this study is that 

differences in the estimated returns is explained by the use of the OLS approach. To test 

this hypothesis, a size variable is included in the regression. The inclusion of firm total 

assets results in the estimations presented in Table 4. According to the table, however, 

the size variable employed does not contribute to the explanation of the slope differential. 

The final analysis of data attempts to answer the question: is there a difference between 

OLS and LAV estimates of beta coefficients-market risk? Table 5 reports the results of 
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a model that relates the LAV estimate to both the OLS estimate and the sample size. 

Straight OLS regression analysis of this relationship does not take into account the outliers 

present in the conditional error distributions, consequently both a “trimmed” OLS and a 

LAV estimation were also done for this proposed relationship. The results indicate that 

there is no fixed bias or effect of sample size. Essentially the results indicate that the LAV 

estimate is 89% of the OLS estimate. Testing the hypothesis that the OLS and LAV 

are equal (f.e. /3i=l) results in rejection at the 1% level. LAV estimates systematically 

reflect less market risk than do OLS estimates. 

4 CONCLUSIONS 

The theoretical and practical importance of beta coefficients necessitate the deployment 

of the most appropriate estimation techniques. To estimate betas, the use of OLS has 

prevailed by default. The results of this study revealed that there are small, but note¬ 

worthy, differences between the estimates generated by OLS and those associated with 

LAV. One qualification of the study may arise from the use of individual security, rather 

than portfolio, beta estimates. It should be emphasized, however, that the interest of 

this study is in the differences between OLS and LAV estimates, and not in the charac¬ 

teristics of each estimate. According to the approach followed in this study, statistically 

significant differences in the slope estimates generated by OLS and LAV can be found. 

The nature and significance of these differences varies with the number of observations 

available for each firm. This could be construed as an “interval” effect or even as a “firm 

maturity” effect. The association between firm size and slope differential, however, was 

not verified. An interesting follow-up of this paper, would be to investigate the difference 

between LAV and OLS beta estimates, given a certain portfolio optimization model. For 

the Tokyo stock market, such an investigation has recently been carried out by Konno 

and Yamazaki (1991) employing the classical Markowitz’s model. 
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