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INVESTIGATING SEVERAL ALTERNATIVES FOR ESTIMA¬ 

TING THE LEAD TIME DEMAND DISTRIBUTION IN A 

CONTINUOUS REVIEW INVENTORY MODEL 

L.W.G. Strijbosch & R.M.J. Heuts1 

ABSTRACT 

Using Monte Carlo experiments this paper analyzes the cost differences between several 

alternative approximations for the Lead Time Demand Distribution (LTDD) in a continu¬ 

ous review (s,Q) inventory model. The information on LTDD is assumed to be composed 

of two components: demand per time unit and lead time. Enumeration methods, simula¬ 

tion and parametric approaches are used to obtain compound information on LTDD given 

the above components. Three important conclusions are: 

a) The simulation approach is simple and able to take into account certain peculiari¬ 

ties in the lead time distribution in the most proper way. 

b) Lack of lead time information should be avoided as much as possible by a good 

infonnation system. It is shown that enlarging the lead time information leads to 

drastic cost reductions in the inventory model used. 

c) The gamma distribution appears to be a good approximation for the LTDD in 

many cases. 

‘Both authors are affiliated with Tilburg University, Faculty of Economics, P.O. Box 
90153, 5000 LE TILBURG; Tel: *31 13-663233 
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1. INTRODUCTION 

The approximation of the Lead Time Demand Distribution (LTDD) is explored extensive¬ 

ly in the literamre on inventory modelling (see e.g. Bagchi et al. (1984) for an overview). 

Lead Time Demand (LTD) can be considered a single random variable when data is 

gathered directly on demand during lead time. This variable can be estimated by a 

combination of two variables, i.e. demand per time unit and lead time, or a combination 

of three variables: order intensity, order size, and lead time. Even when data is available, 

in most practical situations one is dependent on relatively small sets of empirical data to 

estimate the LTDD. The literature offers the practitioner not much guidance in choosing a 

general approach for a reliable estimation of the LTDD in case of certain peculiarities 

such as having a thick-tail or two modes in the LTDD. Strijbosch and Heuts (1992) 

consider the simation where empirical data is available as a sample of LTD-values and 

investigate parametric estimations of the LTDD versus a specific non-parametric estimati¬ 

on, the so-called kernel-density estimation. An extensive Monte-Carlo study indicated that 

always using a carefully constructed kernel-density approximation is a safe strategy. 

This paper studies several alternatives to approximate the LTDD based on empirical 

information on the demand per time unit and lead time. As will be explained in section 3, 

the investigation has been restricted to so-called ’fast movers’. Let the lead time demand 

be given by: 

L 

LTD = 52 Dj, (1) 
i»l 

where L is the lead time in periods and D; , is the demand in period i. L is a positive 

discrete random variable and D;, i=l,..,L are independent identically distributed non¬ 

negative discrete random variables. Empirical information is supposed to be available as a 

sample of lead times and a sample of demands per time unit d!,..,dk. The advanta¬ 

ge of having empirical information on the lead time and the demand per time unit 

separately as compared with having information on demand during lead time directly, is 

that the LTDD can be approximated more precisely, since: 

a) Empirical information contained in the individual components is taken into account 
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explicitly as suggested by Bagchi et al. (1984). This way, more detailed informa¬ 

tion of underlying processes is used. However, it is possible to lose some informa¬ 

tion when compounding the individual components as they have to be restricted to 

certain distributions for convolution reasons. This loss of information may be 

prevented by using suitable computer generating routines as indicated in the next 

sections. 

b) Certain peculiarities especially in the lead time (lead times exhibit significant 

variability in many cases, c.f. Bagchi et al. (1986)), can be given necessary 

attention. 

The paper proceeds as follows. Section 2 presents several estimation procedures for the 

LTDD. The third section provides information on several Monte Carlo experiments, 

whereas the conclusions are summarized in section four. All results mentioned have been 

obtained with PASCAL-programs running on a VAX-station 3100 (model 30). 

2. ESTIMATING THE LTDD 

2.1. The procedure of Lau and Zhao (1989) 

Lau and Zhao (1989) (LZ for short) published an algorithm written in FORTRAN for the 

determination of the true LTDD when the distributions of L and D are given. Their 

procedure is based on an efficient enumeration of all possible demand combinations 

(’index combinations’) for each possible lead time with corresponding probabilities, thus 

building the LTDD. It can also be used with empirical distributions for L and D. With 

increasing empirical information, the LTDD thus produced will approximate the true 

LTDD ever better. Consequently, it is useful to analyze the computational properties of 

this algorithm. 

The practicability of the algorithm presented is mainly determined by the Number of 
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Index Combinations (NIC) involved. The required CPU-time is proportional with NIC. 

NIC is determined by the number of different periodic demands (not the values), nD, and 

the values of the possible lead times. Consider a situation where the lead times can vary 

from LT[ to LT2. The number of different index combinations is given by 

NIC(LT1,LT2,nD)=X; 
Hn+i-l 

(2) 

We used here the combinatorial property that there are 
nD+i-l 

i 
unordered samples of 

size i out of % with replacement. It is clear that the algorithm has an exponential time 

complexity, and thus for practical problems, the method can only be used in an approxi¬ 

mate manner. For example NIC(10,10,10) = 92378 and NIC(13,13,13) = 5,200,300. A 

few runs with a PASCAL-version of the LZ-algorithm indicate that each 10,000 index 

combinations costs approximately 2 seconds. Thus the evaluation of the LTDD correspon¬ 

ding to the case LT, = 1, LT2=13 and nD = 13 (1,13,13) costs approximately 2000 seconds 

(NIC(1,13,13) = 107), or 33 minutes, and, for example, the cases (1,14,14) to (1,17,17) 

lead to CPU-times of 2.2, 8.6, 33.4 and 129.6 hours, respectively. 

LZ consider the very large case (1,50,50) and conclude that the memory requirement for 

such a case is only 50*50=2500 real variables without mentioning the required CPU¬ 

time. The observation that each 10,000 index combinations require approximately 2 

seconds and (2) indicate, however, that a complete determination of the corresponding 

LTDD would require somewhere between a billion and a trillion years of CPU-time, far 

most of the time spending to the determination of negligible contributions to the LTDD. 

This discussion makes clear that calculating the LTDD with the LZ procedure is infeasi¬ 

ble for most combinations of LT and nD. Since the LTDD will only be used in the context 

of a certain inventory model, it is not necessary to perform such a calculation fully. 

Several studies indicate that using only part of the information contained in the empirical 

data sets in an inventory model with low stock-out risk can be satisfactory (c.f. Lau and 
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Zaki (1982)), that is, not necessarily leads to larger average total relevant costs. LZ 

suggest to reduce nD to at most 10 frequency classes, and converting the lead time range 

(from days to weeks, e.g.) such that the maximum lead time is 10 periods. Consider the 

situation where observed lead times vary from LT, to LT2 and nD different periodic 

demands d1,...,dn (in increasing order) are registered with frequencies f,,...,f . A 

reduction of nD to a smaller number nD can be performed in many ways. We choose the 

following method. Write nD=nD*a+b, where 0<b <nD, a>0, a,b integer. Then let 

Uj 

(3) 

(4) 

where lj=j(a+l)-a and u^a+l) for j = l,..,b; 

lpb+ja-a+1 and u^b+ja for j=b + l,..,nD. 

The next numerical 

procedure: 

example with nD = 16 

2 2 6 5 8 4 3 

1 2 345 7 10 

8 19 7 

/4 78/19 58/7 

and nD=7 (so that 

2 1 11 

15 16 20 30 

3 2 

46/3 25 

a=b=2) clarifies this 

11 11 

60 100 200 400 

2 2 

80 300 

Note that classifying original observations histogram-like (according to a previously fixed 

classification) is not the same and would result in a larger loss of information in general. 

An alternative approach would be a modification of the LZ procedure such that negligible 

contributions to the LTDD are skipped systematically. Based on our experience (results 

not given) it turns out, however, that such a modification leads to a much more compli¬ 

cated algorithm, while underestimating the -most important- right tail of the LTDD. 
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2.2. A simulation approach 

A procedure which automatically attains the required effect of skipping negligible 

contributions to the LTDD is simulation. When using a simulation approach, it is likely 

that no time is spent to an index combination which occurs with low probability. With 

standard procedures (e.g. of the NAG-library) a program for the approximation of the 

LTDD by simulation can be very simple (see Appendix). A sample of size m is drawn 

with replacement from the (empirical) distribution for the lead time: f’1,..,f’m. Then, for 

i=l,..,m, a sample of size l’, is drawn with replacement from the (empirical) distribution 

i\ 

for the demand per time unit: d’^.-.d’^,. Accumulating frequencies of J^dL, i=l,..,m 
j-i 

and dividing the frequencies by m, yields, already with relatively small values of m, a 

very close approximation LTDDsim to the LTDDlz which can be obtained by employing 

LZ’s procedure. Let, for example, Prob(L=5)=0.1, and Prob(D = 10)=0.1. Then, for 

some i, the probability of selecting f’^5 and d’8 = 10, j = l,..,5, equals ICf6 which is at 

the same time the corresponding contribution to Prob(LTD=50). Some try-outs clarify 

that a few minutes of simulation suffice to produce an LTDDsim showing a close likeness 

with the LTDDlz based on the same data and obtained after 50 hours calculating. In other 

words, as m grows to infinity, LTDDsim converges to the LTDDlz based on the same 

data, but the convergence rate is very high. Figure 1 illustrates the process of producing 

the LTDDsim approximation. 

Section 3.1 describes a Monte Carlo investigation which compares LZ’s procedure and 

the simulation approach in the context of an (s,Q) inventory model. 

2.3. A parametric approach 

Still another alternative is the fit of a standard theoretical distribution e.g. based on 

estimated mean, variance, skewness and kurtosis. Several papers have been published 

with formulas for the first four moments of LTD, given the first four moments of L and 

D. Lau and Zhao (1989) refer to Wan and Lau (1981) who present correct third and 
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Theoretical distribution 

for the lead time 

(cf. Table 1) 

I sample (size t) 

Empirical information 

on lead times 

I sample (size m) 

Theoretical distribution 

for the demand per time unit 

(normal or gamma distribution) 

t 
I sample (size k = ) 

i = l 

Empirical information 

on demand per time unit 

1 sample (size ^ IV) 

i 

LTDDsim by determining relative 

r 
frequencies of 7^ d*,, (i=l,..,ni) 

j-i 

1_I 

Figure 1. Illustration of the process of producing the LTDDsim approximation. 

fourth central moments. Furthermore, correct results of the first four central moments of 

LTD were already obtained by Carlson (1964), c.f. Heuts et al. (1986). Carlson (1964) 

used cumulant generating functions, and from his results it is easy to derive the four 

central moments. Kottas and Lau (1979a and b), however, give incorrect third and fourth 

central moments of LTD. 

An example of a distribution which is characterized by four parameters is the Schmeiser- 

Deutsch (SD) distribution (c.f. Schmeiser and Deutsch (1977)). From empirical data these 

parameters can be estimated using the first four empirical moments. Several authors have 

studied the SD distribution in the context of inventory modelling (c.f. Strijbosch and 

Heuts (1992), Lau and Zaki (1982), and Kottas and Lau (1980)). As the gamma distribu¬ 

tion is widely used (c.f. Burgin and Norman (1976), Boothroyd and Tomlinson (1963), 
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Burgin (1972), and Das (1976), personal communications with Philips managers) for the 

approximation of the LTDD, we included in our study a strategy based on a gamma 

distributed LTDD with parameters determined from the empirical data. Note that all 

empirical information is reduced in this case to two figures: mean and variance. 

Section 3.2 describes a Monte Carlo investigation which compares LZ’s procedure and 

the two parametric approaches mentioned above in the context of an (s,Q) inventory 

model. 

3. MONTE CARLO INVESTIGATIONS 

Via Monte Carlo methods we are going to analyze the effect of using several alternative 

estimation procedures for LTD in an (s,Q) inventory model of an expected average costs 

per unit time minimization type (see Strijbosch and Heuts (1992) and Wagner (1975) for a 

more detailed analysis), where s and Q are simultaneously optimized. 

3.1. The (s,Q)-model 

The (s,Q) policy is defined as follows: The total available on-hand plus on-order 

inventory minus the back-orders (called the inventory position) is monitored. When it 

reaches the reorder point s, a batch of size Q is ordered from the replenishment source. 

The following model is used: 

hO ” (5) 
EAC(s,Q,F) = -^M+cM+h(^-MX+s)+—2552 [ (q-s)dF(q), 

where EAC(s,Q,F) is the Expected Average Costs per time unit given the decisions s and 

Q and F(q), the cumulative distribution of demand during the lead time, M the expected 

demand per time unit, X the expected lead time, h the inventory holding cost per unit per 
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unit of time, /3 the backlogging cost per unit short just before a replenishment order 

arrives, A+cQ the ordering cost per order, , Qlm is the maximum value 
h 

of Q for which the partially differentiated EAC(s,Q,F) with respect to s can be deter¬ 

mined. 

In practice one has to work with a parametric or non-parametric estimation F of F on the 

basis of empirical information. Minimizing EAC(s,Q,F) leads to the optimal values s' and 

Q', while minimizing EAC(s,Q,F) leads to the estimations s and Q. As an inventory 

model with a cost criterion is used, this paper investigates the cost-effect EAC(s,Q,F)- 

EAC(s*,Q*,F) of using a particular estimator F instead of the true F, which is 

unknown in practice. For detailed information on the determination of s and Q in 

various cases see Strijbosch and Heuts (1992). As an exact determination of F in the case 

of a compound LTD with known distributions of L and D is mostly infeasible (c.f. 

section 2.1), F has been approximated very accurately by the method of simulation (c.f. 

section 2.2). 

3.2. Design of the simulation study 

Before setting up a Monte Carlo study, we have to reflect on the simations to be 

simulated. Inspired by several observed real life data three theoretical distributions for the 

lead time are constructed as mentioned in Table 1. These theoretical distributions are used 

to obtain empirical information on lead times The demand per time unit is a 

combination of the order intensity and the order size (cf. section 1). When only fast 

moving items are considered, it appears reasonable to assume a normal or, for example, a 

gamma distributed demand per time unit. This is justified by a central limit theorem 

effect: time unit (e.g. 1 week) can be supposed large as compared to the average time 

(e.g. 1 hour) between successive orders. As the true order size distribution will often be 

rightly skewed, the demand per time unit will show skewness to the right (like a gamma 

distribution). 



66 

Table 1. Theoretical distributions for the lead time L used for the Monte Carlo 

study. 

Prob(L=£) 

lead time t 1 2 3 

1 0.23 0.05 

2 0.29 0.10 

3 0.16 0.30 

4 0.09 0.10 

5 0.07 0.05 

6 0.03 0.03 

7 0.04 0.07 

8 0.04 0.20 

9 0.03 0.07 

10 0.02 0.03 

0.50 

0.50 

The skewness will disappear according to the ratio between time unit and average time 

between successive orders. Therefore, we based the theoretical distribution for the 

demand per time unit on a sample with size k=10,000 from a normal distribution 

(ignoring negative sample values) with /i=200, ct=70 (A), or from a gamma distribution 

with ja=200,a=140 (B). These theoretical distributions are used to obtain ’empirical’ 

information on the demands per time unit di,..,dk. The six combinations A1,B1, A2,B2, 

A3 and B3 (resulting from combining the three lead time distributions of Table 1 and the 

two parametric distributions for the demand per time unit) lead to ’true’ LTDD’s 

(LTDDa1 to LTDDb3) which are approximated by the method of LTDDsim with very large 

m (e.g. m=500,000 leading to approximately 10 minutes CPU-time). It would have been 

impossible of course to determine these LTDD’s with the procedure of LZ. Figure 2 

displays these six LTDD’s. The shape of the LTDD is determined both by a central limit 

theorem effect and the shape of the underlying distributions for L and D. The unstable 

character of the distributions seems to be inherent to the compound lead time demand 

distribution. 
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Figure 2. Theoretical lead time demand distributions A1,B1, A2,B2, A3 and B3 

obtained by using the simulation approach with a large sample from the 

lead time distribution (m=500,000). 
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3.3. A comparison between the nonparametric procedures LTDDlz and LTDDsim 

The first part of this study is a Monte Carlo comparison between LTDDlz and LTDDsim 

(cf. section 2.1). Several interesting issues can be formulated: 

(i) What is the cost-effect of reducing nD by the method described in section (2.1); 

(ii) Which strategy reduces the costs more: 

reducing nD such that the determination of LTDDlz costs no more than a 

fixed u seconds of CPU-time (usage of (2) and the observation that each 

2,000 index combinations cost approximately 2 seconds CPU-time make it 

possible to determine nD), or 

spending the same u CPU-seconds (controlled for by m, which is determi¬ 

ned by measuring the used CPU-time each, say 0.01 second) to obtain 

LTDD5im. 

The Monte Carlo setup for the comparison of LTDDlz and LTDDsim will be described 

now. For each of the six combinations the following is repeated T times. 

a) A sample of lead times and a sample of demands per time unit d,,..^, 

t 
where k = J^fi, is taken. 

i»i 

b) Vary the required CPU-time u from 0.04 to 1 second in steps of approximately 

0.01 second (1 second turns out to be sufficiently large as will be clarified by the 

discussion of the results presented in Figure 3). 

c) Calculate for each pair of samples and each value of u both LTDDlz and 

LTDDsim. 

Based on these approximations of the LTDD and on the ’true’ LTDDxi (X=A,B; 

i = 1,2,3) the Mean Relative Bias (MRB) of the expected total relevant costs can be 

determined now for both the sim and the LZ approach. The MRB characteristic (as %) is 

defined as follows: 

MRB = 100—^ (EACk~EAC) 
Tfrr EAC 

(6) 
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EAC = EAC(s*,Q*,F) is the true cost, k is the simulation step and EACk =EAC(sk,Qk,F)is 

the cost corresponding with the (generally not optimal) decisions sk, Qk based on the 

approximated LTDD, Fk, in step k. Note that the third parameter of EACk is F and not 

Fk- 

MRB for both approaches is plotted against varying values of u and for three different 

values of t, viz. 5,10,20, in Figure 3. We only present the results for combination A1 as 

the results for the other combinations are comparable. The values for h, A and c are 0.2, 

50 and 0, respectively. The value for 0 is such that the true service level is approximately 

90%. 

MRB 

50 

45 

40 

35 

30 

25 

20 

15 

10 

5 

°|_ 

0.0 

sim 

LZ 

(t=5) 

(t=10) 

(t=20) 

—i-1-1-1-1-1-1-r 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

CPU (sec.) 

Figure 3. Comparison of the mean relative bias when estimating the expected total 

relevant costs (cf. (6)) for both the procedure of Lau & Zhao (dotted line) 

and the simulation approach (solid line), three different sample values t, 

and varying values of the required CPU-time. The lead time demand 

distribution of combination A1 is used (cf. Figure 2). 
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The values for t are taken small as lead time information in practice tends to be sparse. T 

is chosen as 500 for this Monte Carlo experiment. The computations cost about 3 hours 

of CPU-time for the described simulation study. 

The results are partly surprising. Spending more CPU-time to the approximation of the 

LTDD leads to lower average total relevant costs (as expected), but the effect of more 

CPU-time is negligible after spending a few tenths of a second, which is (e.g. for t=20) a 

very little fraction of the time required to obtain LTDDlz based on the same data (with 

large nD). A second result is that the difference between the approximations LTDDlz and 

LTDDsim tends to disappear very fast for increasing computation time u. The higher 

values for small u obtained with LTDDsim indicate that the simulation approach should not 

be used with small m (e.g. <500; m=500 roughly corresponds with 1/2 CPU-second in 

our study). For too small values of m the effect of the simulation error is larger than the 

effect of the statistical error caused by the empirical distributions of L and D. A conclusi¬ 

on of this investigation is that the procedure of LZ is usefiil in practice but can be 

approximated very well by the much simpler simulation approach. Further, lead time 

information appears to be very cost-effective. Figure 3 makes clear that the relative cost 

difference with 20,10 and 5 observations for the lead time, equals 10, 21 and 45% 

respectively. So, the information system in practice should be such, that enough lead time 

information is carefully collected and updated. 

3.4. A comparison between a non-parametric (LTDDlz), and two parametric procedu¬ 

res (LTDD, and LTDDsd) 

The second part of this study is a Monte Carlo comparison between LTDDlz, LTDD, and 

LTDDsd. For the determination of LTDDlz in this case, using the results of section 3.3, 

we reduce in all cases nD to a smaller number nD such that calculation time is less than 1 

CPU-second. We compare three strategies for handling the empirical data: LZ, a non- 

parametric way of estimating the LTDD (within 1 second calculation time), 7, fitting a 

gamma distribution using the estimated mean and variance of the LTD, and SD, fitting a 

Schmeiser-Deutsch distribution. Section 2.3 refers to the literature where formulas can be 

found for the estimation of the first four empirical moments of LTD given the first four 
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empirical moments of L and D. In order to investigate the effect of various values of h, /3 

and A, we choose for h and A the combinations (0.1,10), (1,10), (0.1,500) and (1,500) 

while, again, the value for /3 is such that the true service level is approximately 90% and 

c is fixed at 0. The value for T is 200 for this Monte Carlo experiment. The computations 

cost about 4 hours of CPU-time for the described simulation study. 

Analyzing Table 2, which reports the results, we may formulate the next findings. The 

best of the LZ and y strategies is almost always better than the SD strategy. Obviously, 

the possible advantage of a better fit through the 4-parameter character of the SD 

distribution is destroyed by the typical properties of that distribution. Furthermore, it 

turns out that applying the promising procedure of LZ can enlarge the costs unnecessari¬ 

ly, especially when the sample size of the empirical distribution for the lead time is small, 

or when the LTDD can be very well approximated by a gamma distribution. Always 

using the y strategy seems to be a safe strategy, except for one situation: when t is not 

too small and the LTDD is far from gamma-like, then LZ’s procedure can be advantage¬ 

ous (c.f. A2). Having low holding costs (h), high ordering costs (A) and much informati¬ 

on on lead times (t) is a situation where MRB is low independent of the approach for 

determining the LTDD. When one or more of these figures are growing in opposite 

direction, the sensitivity of the choice on LTDD approximation becomes more tangible 

and MRB can easily attain inadmissable values. 

4. CONCLUSIONS 

In this study it is assumed that empirical data are available on both the lead time in 

certain time units and on the demand per time unit. There are many situations where a 

gamma distribution is a safe choice to approximate the LTDD based on the empirical 

data. When the empirical distribution for the lead time indicates that lead time has one 

mode and a relatively large mean, the LTDD can be reasonably fitted by a gamma 

distribution in general. One has to be careful, however, in using the gamma distribution 

in some cases. When the maximum lead time is relatively small, the shape of the LTDD 
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Table 2. MRB (cf. (6)) values for various inventory model settings and 

three different approaches for the determination of the LTDD. 

h=0.1 h=l 

LTDD t A /5 LZ 7 SD /5 LZ 7 SD 

A1 5 10 3.4 

500 8.8 

10 10 3.4 

500 8.8 

20 10 3.4 

500 8.8 

78 49 91 

15 14 15 

34 24 41 

8 8 7 

9 7 10 

4 4 3 

30.9 130 43 231 

42.8 41 32 42 

30.9 40 18 92 

42.8 20 18 20 

30.9 12 8 30 

42.8 766 

A2 5 10 2.0 

500 7.9 

10 10 2.0 
500 7.9 

20 10 2.0 
500 7.9 

37 38 43 

14 18 15 

10 17 12 

5 8 5 

4 13 6 

2 4 2 

15.3 57 42 92 

30.1 26 30 28 

15.3 11 17 19 

30.1 8 14 9 

15.3 5 13 10 

30.1 3 10 4 

A3 5 10 

500 

10 10 

500 

20 10 

500 

8 7 7 

3 3 2 

4 4 4 

111 

2 2 2 

111 

12.8 11 

24.0 6 

12.8 6 

24.0 3 

12.8 3 

24.0 1 

9 14 

5 5 

5 10 

3 3 

2 7 

1 1 

B1 5 10 4.1 

500 9.3 

10 10 4.1 

500 9.3 

20 10 4.1 

500 9.3 

65 45 83 

18 18 18 

20 16 27 

8 7 7 

9 7 12 

4 4 4 

40.9 117 56 275 

50.5 41 34 42 

40.9 27 18 77 

50.5 15 13 16 

40.9 11 8 27 

50.5 868 

B2 5 10 

500 

10 10 

500 

20 10 

500 

28 26 37 29.6 

12 13 12 40.5 

11 12 14 29.6 

676 40.5 

577 29.6 

233 40.5 

34 28 90 

21 21 22 

12 12 28 

9 10 10 

5 7 16 

4 6 5 

B3 5 10 2.5 

500 8.3 

10 10 2.5 

500 8.3 

20 10 2.5 

500 8.3 

18 15 17 

8 7 7 

10 8 9 

4 4 4 

4 3 6 

2 2 2 

21.8 20 16 34 

34.2 14 12 12 

21.8 11 8 16 

34.2 867 

21.8 5 4 10 

34.2 334 
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is mainly determined by the shape of the distribution for D, which may be far from 

gamma-like. Further, peculiarities such as having several modes in the lead time 

distribution will be reflected in the LTDD. Using a fitted gamma distribution (or another 

parametric distribution) could have unwanted effects on the costs. In all such cases where 

it is reasonable to doubt on the Gauss or gamma-like shape of the LTDD, we recommend 

the LZ procedure (or, equivalently, the corresponding simulation approach). Furthermore, 

the Monte Carlo experiments indicate strongly that sample sizes for the lead time should 

not be smaller than 10. Otherwise, costs can be easily more than 30% higher on the 

average as compared to the costs corresponding with the optimal choices for the inventory 

parameters s and Q. Spending a little more costs on improving lead time information will 

in general lead to large costs reductions in the inventory model. So, this is an investment 

which pays off! In short the main conclusions are: 

(i) The simulation approach is effective in capturing any idiosyncrasies in the lead 

time demand distribution; 

(ii) Finer lead time information may lead to significant cost savings in the inventory 

model; 

(ii) The gamma distribution may be a reasonable approximation for the distribution for 

the demand during lead time in many instances. 

APPENDIX 

An algorithm for the approximation of the ’true’ LTDD via simulation based on the 

theoretical distributions for L and D, or on the corresponding empirical distributions can 

be very simple as the following algorithm illustrates: 

Algorithm for the approximation of an LTDD by simulation: 

k : = 0; 

repeat 

k := k+1; 

LT := {a drawing with replacement from the distribution of L}; 

LTD : = 0; 
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for i : = 1 to LT do 

begin 

d : = {a drawing with replacement from the distribution of D} 

LTD := LTD+d; 

end; 

LTDD[LTD] := LTDD[LTD] + 1/m; 

until k=m; 

The drawings with replacement can be done easily by using the NAG-procedures 

G05EXF and G05EYF, or other equivalent procedures. 
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