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Abstract 

A fundamental problem in the theory of statistical disclosure control is the determination of 

the probability that an individual with certain identifying features is unique in the 

population. One of the aims of statistical disclosure is to avoid the publication of records of 

these unique individuals. In this paper an upper bound for the probability of uniqueness is 

derived. For this purpose the problem is stated in terms of urns and balls. The resulting 

optimization problem is solved by means of elementary and numerical analysis. 
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1. Introduction 

A central problem in the theory of statistical disclosure is the determination of the 

probability that an individual with certain identifying features is unique in the population. 

The reason for this is that individuals with unique identifying features are (relatively) easy 

to recognize. Therefore, to estimate the risk of disclosure that is involved when microdata 

are released it is useful to estimate the number of unique individuals in the population. In 

this paper an upper bound for the number of unique individuals in the population is derived 

for a given disclosure key. 

For convenience the problem is stated in terms of urns and balls instead of identifying 

features and individuals. Individuals correspond to balls and identifying features to urns. 

Each individual of the population has a probability pj to have identifying feature j (i.e. a 

specific score on a disclosure key). In terms of balls and urns: each ball has a probability 

Pj to be assigned to urn j. The balls are assigned to the urns independently. The problem is 

to find the probability distribution for which the expected number of individuals with 

unique identifying features is maximal. In other words we want to find the probability 

distribution for which the expected number of urns with exactly one ball is maximal. 

In Section 2 of this paper the problem is stated. In Section 3 some consequences of the 

Lagrangian are examined. Section 4 and Section 5 are rather technical. From these two 

sections an important result follows, namely that there are (at most) two possible solutions. 

In Section 6 bounds are derived in order to be able to compare the results from the two 

possible solutions without explicitly determining them. Numerical results are presented in 

Section 7. A short summary of the solution obtained is given in Section 8. 

2. The problem 

Suppose we have m urns and n balls. Each ball is assigned to an urn independently. The 

probability to assign a ball to the j-th urn is pj. The expected number of urns with exactly 

one ball can be expressed as a function of the probabilities pj. We are interested in the 

following problem: "How should the probabilities pj be chosen in order to maximize the 

expected number of urns with exactly one ball ?" 

In Section 1 we already noted that this problem is equivalent to a problem in the theory 

of statistical disclosure. If we let the possible identifying features correspond to the urns 

and the individuals to the balls, then we see that solution of our problem provides an upper 

bound for the number of unique individuals in the population. Here we assume that the 
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identifying features are distributed independently. This assumption is not always justified in 

practice. 

It is easy to calculate the expected number of urns with exactly one ball. This number 

is given by 

E - E npj(1 - Pj)""1. (1) 
J-l 

In the rest of this paper we will also use the function N defined by 

N - E/n 

We will refer to each of these funtions as the target function. We hope that this will not 

confuse the reader too much. The pj's must be larger than, or equal to, zero. They must 

also sum to unity. These constraints are expressed by 

Pj & 0 , for all j-l, 2, ..., m, (2) 

£ (3) 
J-l 

3. Consequences of the Lagrangian 

In order to find the maximum of (1) subject to (2) and (3) we begin by determining the 

Lagrangian L(p1,...,pm,X). 

L<Pi.P„,A) - E nPj(1 - Pj)""1 - X(E Pj - 1) (4) 
j-i j-i 

By differentiating L with respect to X we obtain that the sum of the p/s is equal to one. By 

differentiating with respect to pj we obtain 

n(l - Pi)""1 - n(n - 1^(1 - Pj)""2 - X. (5) 

This must hold for all i. Therefore we can conclude that the optimal pj's obey 

(1 - nPl)(l - Pi)"-2 - (1 - nPj) (1 - Pj)"-2 

This relation must hold for all i and j. 

(6) 



18 

Relation (6) suggests that it is useful to study the behaviour of the function defined by 

fn(x) - (1 - nx)(l - x)"-2 , 0 < x < 1. O 

We can make the following observations about this function : 

1. fn(0) = 1 

2. fn(D = 0 

3. fn(l/n) = 0 

4. f n(x) = (n - l)(nx - 2)(1 - x)»-3 

5. f'n(x) = 0 if x = 2/n or x = 1 

6. f’n(x) < Oifx < 2/n 

7. fn(x) > 0 if 2/n < x < 1 

This implies that the equation fn(x) = C has the following solutions for 0 < x < 1: 

S. If 0 < C < 1, then there is only one solution. For this solution x0 we have: 

0 < x0 < 1/n. In order words, for 0 < x < 1/n the function f is injective. 

9. If fn(2/n) < C < 0, then there are two solutions Xj and x2 between 0 and 1. For 

these solutions we have: 1/n < Xj < 2/n en 2/n < x2 £ 1. In other words, for 

1/n < x < 1 the function f is not injective. 

10. If C = fn(2/n), then there is only one solution: x = 2/n. 

This reveals that the optimal pis can have at most two different values. Moreover, we 

know that when the optimal solution has two different prvalues, then one value lies 

between 1/n and 2/n and the other is larger than 2/n. We also know that if one p; is smaller 

than 1/n, then all the pis have the same value. This implies that if m > n then the optimal 

solution is given by pj = 1/m for all i. From now on we therefore assume that n > m. 

In order to have a visual "proof” of the observations 8, 9 and 10 we have plotted 

function f. In Figure 1 the function f is drawn for the case n = 4. From Figure 1 one can 

clearly see that observations 8, 9 and 10 hold in this case. 
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Figure 1. The plot of the graph of the function f4(x) = (1 - 4x)(l - x)2 

4. Parametrisation of conjugated values 

We know that the solutions of the set of equations given by (6) have at most two different 

values for 0 < pj < 1. From now on we will call these two values conjugated values. In 

this section a parametrisation of conjugated values is derived. To simplify the notation 

somewhat we use 1 - p; instead of Pj in this section. 

Suppose we have two conjugated values pj = 1 - Q and p2 = 1 - R. We suppose 

that R = nQ. From the set of equations (6) we obtain relation (8) between R and Q: 

nQ"'1 + (l-n)Qn-2 - nR”'1 + (l-rOR"'2 (8) 

If we substitute R = nQ in (8), then we find a parametrisation of Q in terms of n- 

(n - 1) (1 - n"'2) 
Q - n (i - n"'1) , o < n < i (9) 
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If ^ = 0, then Q is equal to (n-l)/n. The associated probability p, is therefore equal to 

1/n. R is equal to 0 if ^ = 0. The associated probability p2 is equal to 1. When n 

approaches 1 then Q tends to (n-2)/n. The associated probability p, tends to 2/n. R tends to 

(n-2)/n when /t approaches 1. The associated probability p2 tends to 2/n. 

The behaviour of function Q is maybe a bit difficult to understand without some visual 

aid. In Figure 2 the function Q is drawn for the case n = 5. 

Figure 2. The plot of the graph of the function Q = 4(1 - /*3)/5(l - /i4) 

The derivative of Q with respect to n is given by 

dQ (n - 1) (n - 1)(1 - /in-2)n"-2 - (n - 2)(1 - m”'1)#*”'3 

djl ’ (1 - p"'1)2 
(10) 

This derivative is less than 0 if 0 < /x < 1. The parametrisation of Q and R by means of 

H is therefore 1-1. By the way, to see that the derivative of Q with respect to n is less than 

zero we do not have to calculate this derivative explicitly, but we only have to look at the 

function f. The derivative of R with respect to /x is larger than 0 if 0 < p < 1. 
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5. The number of urns with the same probability 

5.1 An important set of equations involving conjugated values 

Now we make use of the fact that there are at most two (conjugated) values p and q for 

the optimal probabilities. We suppose that there are z urns with probability p and m - z 

urns with probability q. Implicitely we hereby assume that n > m and therefore (cf. 

points 8 and 9 of Section 3) that both probabilities are larger than 1/n. Note that z = m, 

or z = 0, corresponds with the situation that all probabilities are equal. As the reader will 

remember we have already established that the optimal probabilities are all equal to 1/m in 

case n < m. 

Now we will try to find the optimal value of z for the target function N. We do this by 

substituting z and the optimal conjugated values p = p(z) and q = q(z) in the target 

function N. This gives us another function which will be denoted by M(z). For p and q 

relation (6') and relation (11) hold. 

(1 - p)n-2(l - np) - (1 - q)n-2( 1 - nq) (6') 

and 

zp + (m - z)q - X. (11) 

For the moment we do not demand z to be an integer between 0 and m. Instead z may 

be any real value between 0 and m. We will first solve the problem for z assumed to be a 

real value, and later we will modify this solution to obtain the solution for z being integer. 

5.2 The solutions of the equations 

In this section we show that the set of equations (6') and (11) has at most three different 

pairs of solutions (pi(z),qj(z)). These pairs are differentiable with respect to z. The proof 

of this statement is elementary, but rather long and tedious. Therefore, we do not go into 

all the details of the proof. 

The first solution is, of course, given by p(z) = q(z) = 1/m. From now on we 

concentrate on the case that p(z) is unequal to q(z). Without loss of generality we assume 

that p(z) < q(z). Instead of relation (11) we use the following relation 



22 

z(l - p) + (m - z)(l - q) - m - 1. 

For (1 - p) we can substitute the expression given in (9), and for (1 - q) we can 

substitute /x times that expression. So, the problem of finding solutions to the set of 

equations (6') and (11) translates into the problem of finding the roots of the function h(^) 

defined by 

h(p) - z ^ (1 - p"'2) + (1-z) ^ Ml - M'2) - (m-l) (1 - M”'1) (13> 

for 0 < jx < 1. Now we will list some properties of the function h. 

It is easy to see that for n = 0 and n = 1 we have 

1. h(0) = z(n - l)/n - (m - 1) 

2. h(l) = 0 

The function h(ji) can be studied by examining its first and second derivative. The first 

derivative is still a complicated expression, but for ^ = 0 and n = 1 we obtain two 

simple terms: 

3. h'(0) = (m - z)(n - l)/n 

4. h'(l) = (2m - n)(n - l)/n 

The second derivative is given by: 

5. h"0i) = (n-2)(n-l)((m-l)/m-(l-z)(n-l)/n)pn~3 - ((n-3)(n-2)(n-l)z/n),xnJ* 

So, it is very easy to determine when h"0x) is positive and when it is negative. 

Combining these, and other, facts about the function h(/x) we are able to draw the 

following conclusions. 

If n > 2m, then h(/x) has one root between 0 and 1 

If n < 2m, then h(/t) has at most two roots between 0 and 1 

The first case is not very interesting. We can make the remark, however, that the pair 

(p(z),q(z)) associated to the root /x(z) is the optimal solution for given value of z. To see 
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this we can consider the target function N(p,q), which is of course defined by 

N(p,q) - (m - l)p(l - p)"'1 + q(l - q)"'1. (14) 

where q = 1 - (m-l)p. We are seeking the maximum of this function. One possible 

solution is the pair (p(z),q(z)) associated to ^(z). The second derivative of N(p,q) with 

respect to p is given by 

(15) 

This function is positive for the only other possible solution, p = q = 1/m, in case 

n > 2m. Therefore, the target function has a local minimum for p = q = 1/m. So, the 

only remaining possible solution for the maximum is the pair (p(z),q(z)) associated to p(z). 

We will describe the second case, n < 2m, in more detail. If there is at least one root, 

then there is one root ^(z) for which the associated p(z) converges to 1/m when z tends to 

m. If there is a value z0 for which there are two roots, then there is one root /*i(z) which 

exists for all z0 < z < m, while the other root /i2(z) exists for 

z0 < z < n(m-l)/(n-l), but not for z > n(m-l)/(n-l). This root n2 is equal to 0 for 

z equal to n(m-l)/(n-l). For larger values of z would become smaller than 0, which is 

not allowed. 

By applying the "implicit function theorem" we can show that for each value of z 

between 0 and m for which they exist the pairs (p(z),q(z)) are differentiable with respect to 

z. We only have to determine the determinant of the Jacobian of the set of equations (6') 

and (11). This determinant has to be unequal to zero in order to be able to apply the 

implicit function theorem. After some, not too difficult, calculations it becomes clear that 

the determinant is indeed unequal to zero. 

5.3 Implications of the solutions of the important set of equations 

Now we will use the (differentiable) functions p(z) and q(z) to determine the possible 

optimal values of z. We substitute the pair of functions p(z) and q(z) into the target 

function N. This gives us another function M(z). The function M is given by 

M(z) - zp(1 - p)”-1 + (m - z)q(l - q)”'1. (16) 

Because relation (11) is valid for all z, we can differentiate with respect to z. We arrive at 

the following result. 
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(,« - Z) - - q - p - z - (1/ 

Now we are able to determine the derivative of M with respect to z. This will enable us 

to deduce the possible optimal values for z for the target function N. Finally, we have to 

compare the possible optimal values of N to find the true optimal value. By applying the 

chain rule, relation (6') and relation (17) we can show that the derivative of M with respect 

to z is given by (18). 

^ - [(n-1) <p2(l - p)”-2 - q2(l - q)n'2) ] |z 

Using (6’), or equivalently relation (6), again we find relation (19). 

(18) 

1 - np 
(1 - q)”-2 - (1 - p)"-2 r—^ (19) 

When we substitute this into (18) we finally arrive at 

dM 
dz 

'(n - 1)(1 - p)n 

1 - "q 
(p - q)(p + q - npq) (20) 

Now we have succeeded in finding an expression for the derivative of M with respect 

to z. We can therefore determine the optimal z. This turns out to be very easy, because 

dM/dz has a fixed sign. 

Without loss of generality we assume that p < q. This is of course equivalent to: 

1 - p > 1 - q. We know that p - q < 0 and 1 - nq < 0 (see the conclusions of 

Section 3). So, to establish the sign of dM/dz we only have to determine the sign of 

p + q - npq. This may seem a hard problem, because p and q both depend on the value 

of z. However, by using the parametrisation of p and q we can demonstrate that the sign of 

dM/dz is independent of the actual value of z. 

We can rewrite p + q - npq to obtain 

p + q - npq - -n(l-p)(l-q) + (n-l)(l-p) + (n-l)(l-q) + (2-n) . (21) 

From (21) and the parametrisation of 1 - p and 1 - q we can derive 

p + q - npq - - (1 _ ^„-1)2 ^ (F(M) - GOO). (22) 
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Here F(^) and G(/x) are given by 

F(/i) - (1 - /in”1)((n - Dud - m"'2) - ^ (1 - /i”-1)), (23) 

G(M) - (1 - Mn"2)((n - 1)M(1 - /i""2) - (n - 1)(1 - /j”'1)). (24) 

Because 1 - /zn‘' > 1 - /in 2 and n(n - 2)/(n - 1) < n - 1, we find that F(/i) is 

larger than G(jx) when 0 < /x < 1. In other words, p + q - npq is larger than 0 when 

0 < fi < 1. This result is independent from z. Therefore we can conclude that dM/dz is 

larger than 0. This implies that in order to optimize the function M we have to make z as 

large as possible. This, in turn, implies that in order to optimize the target function N we 

have to make z as large as possible. The actual optimal (real) value of z is determined by 

the constraints, but we know that the largest value of z that satisfies all the constraints is 

the optimal value. 

So far we have allowed z to be any real number between 0 and m. Now we remind 

ourselves that z must be an integer between 0 and m. We know that if p < q, then z must 

be as large as possible. 

We have the following cases: 

a. If n < m, then the optimal solution is the uniform distribution. 

b. If n > 2m, then the uniform distribution is a local minimum. The optimal real value 

for z is n(m-l)/(n-l), which is larger than (m-1), but smaller than m. Therefore, the 

optimal solution is given by a non-uniform distribution with (m-1) small probabilities and 

one large probability. 

c. If m < n < 2m, then there are two possibilities: either the optimal solution is the 

uniform distribution or the optimal solution is a non-uniform distribution with (m-1) small 

probabilities and one large probability. However, it is not clear for which combinations of 

m and n the uniform distribution is the optimal solution and for which combinations of m 

and n the non-uniform distribution is the optimal solution. In Section 6 this case, i.e. 

m < n < 2m, is further investigated. 
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6. General remarks about the solution 

The solution for n < m is given by p; is equal to 1/m for all i. For n > 2m the solution 

has m-1 probabilities smaller than 2/n and one probability larger than 2/n. In case 

m < n < 2m the solution is not clear. In this section we make some remarks about this 

case. 

We start by making the observation that if the non-uniform distribution, i.e. (m-1) 

probabilities equal to p (1/n < p <2/n) and one probability equal to q (2/n < q < 1; 

q = 1 - (m-l)p), is better than the uniform distribution for a certain number of balls n0, 

then this non-uniform distribution is better than the uniform distribution for all n > n0. 

The proof of this assertion is quite simple. To make the dependency on n more explicit we 

use the notation: 

N(p,q;n„) - (m - l)p(l - p)""'1 + q(l - q)"0'1 (25) 

Now, let us suppose that for a certain n0 the non-uniform distribution is better than the 

uniform distribution. In other words, we have the following relation 

N(p,q;n0) > (1 - l/m)n°'1 (26) 

We have to prove that a similar inequality for n0 + 1 instead of n0 holds. We can do this 

by making use of the inequality for n0, and by rewriting the expression for N(p,q;n0+1). 

So, we write N(p,q;n0+1) in the following way 

N(p,q;n0+1) - N(p,q;n0) (1-1/m) + (m-l)p(l/m - p)(l - p)"0 1 

+ q(l/m - q) (1 - q)"1’'1 (27) 

We can combine the last two terms of this expression by making use of another inequality, 

namely 

P(l - p)"""1 > q(l - q)n°"1 (28) 

This inequality holds because l/(n0+l) < l/n0 < p < q. Using this inequality to 

combine the last two terms of the expression for N(p,q,n0+1) we find yet another 

inequality, namely 

N(p,q;n +1) (1 l/m)n° + 1 - (m-l)p - q q(l - q) (29) 
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Finally, by using 1 - (m-l)p - q = 0, we see that we have succeeded in deriving the 

desired inequality. So, we can draw the conclusion that if, for a certain n0, there is a non- 

uniform distribution that is better than the uniform distribution, then for all n > n0 there 

is a non-uniform distribution that is better than the uniform distribution. The problem 

remains to determine the critical number n0, given a certain number of urns m. 

We can evaluate the target function N by assuming that the solution is given by 

uniformly distributed pj, i.e. pj = 1/m. The value of N for uniformly distributed p, is 

denoted by Num. For Nuni we have the following expression. 

By assuming that the non-uniform solution of the equation for the conjugated values exists 

we can estimate the value of the target function for this solution. This value will be 

denoted by Nnon, the maximal expected number of urns with exactly one ball in case of a 

non-uniform distribution. In Section 5 we have derived that the target function is maximal 

if z is as large as possible. The largest possible real value for z is n(m-l)/(n-l). Therefore, 

an upper bound for Nnon is given by 

N non,max hrT1 (31) 

On the other hand we can find a lower bound Nnon low for Nnon. This can be obtained by 

substituting any probability distribution pj into the target function N. Very suitable is: 

Pj = 1/n , for i = 1, 2.m - 1 

Pm = 1 ' (m-iyit 

Substituting this in N yields 

Relations (30), (31) and (32) give criteria to decide which distribution is better: 

if Nuni a Nnon max, then the uniform distribution is better 

if Nuni < Nnon low, then the non-uniform distribution is better. 

In these two cases we can decide which distribution will be the optimal one without 
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explicitly determining the non-uniform distribution. We are able to decide which 

distribution is the optimal distribution immediately by looking at the numbers m and n. By 

the way, if the latter situation occurs, i.e. if < Nnon low, then we can be sure that 

the non-uniform distribution exists. If Nuni lies between Nnon low and Nnon max, then we 

have to determine the non-uniform distribution and substitute this solution into the target 

function. In this case we cannot decide which distribution will be best without explicitly 

determining the non-uniform distribution. 

We can investigate the behaviour of Nuni and Nnon if n tends to infinity. We can do 

this for two different cases. Firstly, we can assume that m = an, where 0 < a < 1 is a 

constant. Secondly, we can assume that m = n - 15, where B is a constant. 

If m = an, then we have 

lim N - e~1/0! (33) 
uni 

n-*oo 

and 

lira N llra N„„„,io« " “/e 
n-»oo 

It is an elementary exercise to check that 

(34) 

e"1/a < a/e (35) 

for 0 < a < 1. So, we can conclude that if we keep the ratio a = n/m fixed, then the 

non-uniform distribution is always better than the uniform distribution for n large enough. 

If m = n - B, then we have 

lim N 
n-*oo 

uni 
lim N 
n-*oo 

non, max 
lim N . - 1/e 

non,low ' 
n-*oo 

In fact we have the following 

(36) 

(n - - Nnon,™*) - I + ■ where lim " 0 (37> 
n-*oo 

So, we can conclude that if we keep the difference B = n - m fixed, then the uniform 

distribution is better than any non-uniform distribution for n large enough. 



29 

7. Numerical results 

Given the number of urns m it is interesting to know the smallest number of balls for 

which the solution is not uniformly distributed. As a first step to find this number we can 

apply the criteria given in Section 6 to determine which distribution is better. In Table 1 

the highest number of balls for which Euni is still larger than Enon jllax, nu, is listed. For 

this number of balls and for any smaller number of balls the uniform distribution is the 

optimal one. In Table 1 the lowest number of balls for which Eum is smaller than 

Enon,low> nn>'s a*s0 listed. For this number of balls and for any larger number of balls 

the non-uniform distribution is the optimal one. For numbers of balls between nu and nn 

the criteria given in Section 6 cannot determine which distribution is the optimal 

distribution. 

Table 1. Critical values nu and nn as given by the criteria from Section 6. 

number of urns m n 
U n 

n 

5 
10 
15 
20 
30 
40 
50 
60 
70 
80 
90 

100 
150 
200 

300 
400 
500 

1 000 

6 
11 
16 
21 
31 
41 
51 
61 
71 
81 
91 

101 
151 
201 
301 
401 
501 

1 001 

9 
16 
22 
27 
39 
50 
61 
72 
83 
94 

105 
115 
168 
221 
326 
429 
533 

1 046 

For numbers of balls between nu and nn it is not clear yet which distribution is the 

optimal one. Therefore a numerical routine has been implemented. This routine determines 

the solution of the problem given m urns and n balls, and computes the expected number E 

of urns with exactly one ball. The results of some numerical experiments are shown in 

Table 2. In this table the "last optimal uniform distribution" and the "first non-uniform 

optimal distribution” are listed. By this we mean that for any number of balls smaller than, 

or equal to, the number of balls of the last uniform optimal distribution the uniform 

distribution is the optimal distribution. For any number of balls larger than, or equal to, 
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the number of balls of the first non-uniform distribution the non-uniform distribution is the 

optimal distribution. In other words the number of balls of the first non-uniform 

distribution is the critical value n^m). In case of the uniform distribution the probabilities 

are, of course, given by 1/m. In case of the non-uniform distribution there are m-1 small 

probabilities p and one large probability given by 1 - (m-l)p. The small probability p is 

also listed in Table 2. 

Table 2. The solution of the problem for given m and n 

last optimal 
uniform distribution 

number of urns 
(m) #balls value 

(n) target 
function 

E 

first optimal 
non-uniform distribution 

//balls value 
(n) target smallest p 

function 
E 

5 
10 
15 
20 
30 
40 
50 
60 
70 
80 
90 

100 
150 
200 
300 
400 
500 

1 000 

8 1.678 
15 3.432 
21 5.284 
26 7.212 
38 10.840 
49 14.535 
60 18.218 
71 21.893 
82 25.565 
93 29.235 

104 32.902 
114 36.617 
167 55.016 
220 73.397 
325 110.170 
428 146.979 
532 183.751 

1 045 367.694 

9 1.568 
16 3.420 
22 5.271 
27 7.123 
39 10.807 
50 14.493 
61 18.175 
72 21.816 
83 25.538 
94 29.218 

105 32.898 
115 36.579 
168 54.978 
221 73.374 
326 110.165 
429 146.955 
533 183.744 

1 046 367.687 

1.16x 0.1 
6.28x 0.01 
4.56x 0.01 
3.71x 0.01 
2.57x 0.01 
2.OOx 0.01 
1.64x 0.01 
1.39x 0.01 
1.20x 0.01 
1.06x 0.01 
9.52x 0.001 
8.70x 0.001 
5.95x 0.001 
4.52x 0.001 
3.07x 0.001 
2.55x 0.001 
1.88x 0.001 
9.56x0.0001 

From Table 1 and Table 2 we see that an efficient practical way to determine which 

distribution is the optimal distribution is comparing the numbers E,^ and ^non.low ^ 

Enon low is larger than Eum> then the non-uniform distribution is the optimal one. In this 

case the optimal value of E is almost equal to Enonjow. If Eunj is larger than Enon,low- 

then the uniform distribution is the optimal one. In this case the optimal value of E is equal 

toEuni- 

In Figure 3 it is shown for which combinations of m and n the uniform distribution is 

the optimal one, and for which combinations of m and n a non-uniform distribution is the 

optimal one. 
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Figure 3. The number of balls of the first optimal non-uniform distribution as a function of 

the number of urns. 

The graph of the number of balls of the first optimal non-uniform distribution as a 

function of the number of urns is almost a straight line. This is, of course, not very 

surprising if we consider Table 2. However, the result is rather surprising if we look at the 

complexity of the equations which describe the relation between the number of urns, the 

number of balls and the optimal distribution. 

In Table 3 the expected number of urns with exactly one ball for the two possible 

optimal distributions are compared. In this table some as yet undefined quantities, E^, 

Enon> Enon,iow 2111(1 Enon,max’ are used- They are defined, of course, by n times the 
corresponding N-value. In case there are 5 urns and 8 balls the possible optimal non- 

uniform distribution does not exist, because the function h(/i) does not have a root between 

0 and 1. Notice that the value of Enon is extremely well approximated by Enon |ow. So, in 

practice we may use Enon low instead of Enon. 
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Table 3. Comparison between the two possible optimal distributions 

# urns # balls E 
non 

E 
non,max 

5 
5 

10 
10 
15 
15 
20 
20 
30 
30 
40 
40 
50 
50 
60 
60 
70 
70 
80 
80 
90 
90 

100 
100 
150 
150 
200 
200 
300 
300 
400 
400 
500 
500 

1 000 
1 000 

8 
9 

15 
16 
21 
22 
26 
27 
38 
39 
49 
50 
60 
61 
71 
72 
82 
83 
93 
94 

104 
105 
114 
115 
167 
168 
220 
221 
325 
326 
428 
429 
532 
533 

1 045 
1 046 

1.678 
1.510 
3.432 
3.294 
5.284 
5.166 
7.212 
7.115 

10.840 
10.754 
14.535 
14.461 
18.218 
18.151 
21.893 
21.832 
25.565 
25.507 
29.235 
29.180 
32.902 
32.850 
36.617 
36.850 
55.016 
54.976 
73.397 
73.362 
110.170 
110.140 
146.979 
146.954 
183.751 
183.728 
367.693 
367.677 

1.568 
3.431 
3.420 
5.279 
5.271 
7.130 
7.123 

10.811 
10.807 
14.496 
14.493 
18.178 
18.175 
21.859 
21.857 
25.540 
25.538 
29.220 
29.218 
32.900 
32.898 
36.581 
36.579 
54.979 
54.978 
73.375 
73.374 

110.165 
110.165 
146.956 
146.955 
183.745 
183.744 
367.688 
367.687 

1.602 
1.567 
3.430 
3.420 
5.279 
5.271 
7.130 
7.123 

10.811 
10.807 
14.496 
14.493 
18.178 
18.175 
21.859 
21.857 
25.540 
25.538 
29.220 
29.218 
32.900 
32.898 
36.581 
36.579 
54.979 
54.978 
73.375 
73.374 

110.165 
110.165 
146.956 
146.955 
183.745 
183.744 
367.688 
367.687 

1.795 
1.754 
3.670 
3.646 
5.540 
5.522 
7.412 
7.396 

11.103 
11.092 
14.797 
14.788 
18.486 
18.478 
22.171 
22.165 
25.855 
25.849 
29.537 
29.532 
33.219 
33.214 
36.904 
36.900 
55.310 
55.307 
73.710 
73.708 

110.505 
110.504 
147.300 
147.299 
184.091 
184.090 
368.040 
368.039 
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8. Summary 

The first result we derived was that the probabilities of the solution can have at most two 

different values. This was a rather easy result, obtained in Section 3. 

We still did not know how many probabilities have one of the possible values and how 

many probabilities have the other possible value, though. This question was examined in 

Section 4 and Section 5. After much ado, we found that there are two possibilities: either 

all the probabilities are equal, or there are m-1 small probabilities, which are all equal, and 

one large probability. 

At that moment we were faced with the question of determining for what combinations 

of m and n all the optimal probabilities have the same value, and for what combinations of 

m and n there are m-1 small probabilities and one large probability. Part of the answer to 

this question was already obtained in Section 5. In case n < m the optimal probabilities 

are all equal. In case n > 2m there is one large probability and m-1 small probabilities. 

In Section 6 we examined this question in more detail. We were able to describe the 

behaviour of the optimal solution in case m and n tend to infinity if we assume that either 

the ratio, or the difference, of m and n is fixed. We also obtained an upper bound, and a 

lower bound, for the expected number of urns with exactly one ball for the possibly 

optimal non-uniform distribution. This gives us a criterion to decide whether the uniform 

distribution or the non-uniform distribution is better, without explicitly determining the 

possibly optimal non-uniform distribution. 

If Nun| > Nnonjinax, then the uniform distribution is better, 

if Nunj < Nnon low, then the non-uniform distribution is better. 

Unfortunately, there are still combinations of m and n for which we are unable to 

determine which distribution is the optimal distribution without explicitly determining the 

possibly optimal non-uniform distribution. For these cases we have 

Nnon,low — Nuni — Nnon,max- In Sect>on 7 numerical results were presented for a 

number of cases. From these numerical results we can conclude that in order to determine 

the optimal distribution it is in general sufficient to compare the numbers Nuni and 

Nnon,low Num > Nnon,low> then the uniform distribution is the optimal one. If 

Nn0n low > Nuni> t^en the non-uniform distribution is the optimal one. 
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