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Abstract 
Model validity is of major interest to decision makers and other users of models. From 
their viewpoint the important model inputs should be split into two groups, namely inputs 
that are under the decision makers’ control and (environmental) inputs that are not control¬ 
lable. Specifically, users want to ask ’what if questions: what happens if controllable 
inputs are changed (scenario analysis), what if other inputs change? Among the techniques 
to answer these questions are statistical design of experiments (such as fractional factorial 
designs) and regression analysis. Controllable inputs can be optimized through Response 
Surface Methodology (RSM). Sensitivity analysis may further show that some non- 
controllable inputs of the model are important; yet the precise values of these inputs may 
not be known. Then risk or uncertainty analysis becomes relevant. Its techniques are Mon¬ 
te Carlo sampling, including variance reduction techniques such as Latin hypercube 
sampling, possibly combined with regression analysis. A bibliography with 35 references 
is included. 

Keywords: sensitivity analysis, uncertainty analysis, risk analysis, validation, experimen¬ 
tal design, regression, screening, Latin hypercube sampling, optimization. 

1. Introduction 

The analysis methods discussed in this paper are known in the literature under such 
names as sensitivity, what-if, perturbation, risk, and uncertainty analyses. Definitions of 
these terms vary; for example, Helton, Gamer, McCurley, and Rudeen (1991) use a 
definition of ’sensitivity analysis’ that differs substantially from the one used in this 
report. We define the keyterms in the title of this paper as follows. 

Sensitivity analysis or what-if analysis is the systematic investigation of the reaction 
of model outputs to extreme values of the model inputs and to drastic changes of the 
model structure. For example, how does the average waiting time in a queueing model 
change when the arrival rate doubles; what if the priority mle changes from first-in-first- 
out (FIFO) to last-in-first-out (LIFO)? So this analysis examines global, not local (margi¬ 
nal) sensitivities. 

In uncertainty analysis, values of the model inputs are sampled from prespecified 
distributions, to quantify the consequences of the uncertainties in the model inputs, for the 

1 Prof. J.P.C. Kleijnen, Vakgroep Bestuurlijke Informatiekunde en 
Accountancy (BIKA), Faculteit Economische Wetenschappen, Postbus 
90153, 5000 LE Tilburg; telefoon 013-662029; e-mail: Kleijnen@kub.nl 



4 

model outputs. So the input values range between the extreme values investigated in 
sensitivity analysis. The goal of uncertainty analysis is to quantify the probability of 
specific output values, whereas sensitivity analysis does not tell how likely a specific 
result is. The differences between sensitivity analysis and uncertainty analysis will be 
further explored later on. 

Each type of analysis may apply its own set of statistical techniques. For example, 
sensitivity analysis may use 2K P designs, whereas uncertainty analysis applies either crude 
Monte Carlo sampling or variance reduction techniques such as Latin hypercube sampling. 
Some techniques are applied in both analyses; for example, regression modelling. We 
assume that the reader is familiar with the basics of these techniques, so we do not discuss 
their technicalities but only their role in both types of analysis. 

The issues to be solved by sensitivity and uncertainty analyses are discussed under 
such headings as validation and optimization. These issues are studied in all scientific 
disciplines that use mathematical models. Unfortunately, nobody can be an expert in all 
these disciplines. This paper is coloured by more than 25 years of experience with the 
technique of simulation, especially its statistical aspects and its application to problems in 
business, environmental, agricultural, military, and computer systems; see Kleijnen and 
Van Groenendaal (1992). 

Not only is there a variety of related methods and issues, there is also much 
software. This software greatly simplifies the implementation of these methods. We shall 
refer to software throughout this paper. 

All scientific methods are based on assumptions, which limit the applicability of 
these methods. These assumptions may be documented explicitly or they may be left 
implicit. Many practitioners do not know when to use what method. The goal of this paper 
is to explain which questions may be asked in practice, and which methods can answer 
these questions. 

These questions are also discussed in the literature: see Bankes (1993), Downing, 
Gardner, and Hoffman (1985, 1986), Easterling (1986), Iman and Conover (1980), and 
McKay (1992). This paper, however, is not a recapitulation of those publications: sensi¬ 
tivity and risk analyses remain controversial topics. For example, in §3.1 we shall claim 
that latin hypercube sampling should not be applied as a screening technique. Con¬ 
troversies were also observed at the workshop on ’Uncertainty analysis’ organized in 1989 
by the Dutch ’National Institute of Public Health and Environmental Protection’(abbrevi¬ 
ated in Dutch to RIVM), and at the conference on ’Predictability and nonlinear modelling 
in natural sciences and economics’, organized by Wageningen Agricultural University in 
1993; see Grasman and Van Straten (1994). 

The outline of this paper is as follows. In §2 we discuss model validation and 
what-if analysis of controllable and non-controllable inputs. This includes sensitivity 
analysis using statistical design of experiments with its concomitant regression analysis. 
This sensitivity analysis estimates which inputs are important. If these inputs are controlla¬ 
ble, then they may be optimized; otherwise uncertainty analysis may be applied. In §3 we 
address this uncertainty analysis, which encompasses 1) the basics of that analysis, includ¬ 
ing applications in economics and the natural sciences, and 2) uncertainty analysis of 
stochastic simulation models. In §4 we give conclusions, A list of 35 references concludes 
this paper. 

2. Model Validation and What-if Questions 
Validation addresses the question: is the conceptual model an accurate repre- 
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sentation of the real-life system under study (either an existing or a planned system)? Our 
discussion is based on Kleijnen (1993), which surveys the validation of models, especially 
simulation models. 

There is no standard theory on validation, neither is there a standard ’box of 
tools’. We emphasize statistical techniques, which may yield reproducible, objective, 
quantitative data about the quality of models (other techniques -such as computer 
animation- are discussed in Kleijnen 1993). Data on inputs and outputs of the real system 
may be available in different quantities. We use this data availability to classify validation 
techniques, as we shall see. 

2.1 Obtaining real data 
To obtain a valid model, the analysts should try to measure the real system’s input, 

output, and intermediate variables. 
1) Sometimes it is difficult or impossible to obtain relevant data. For example, in 

simulation studies of nuclear war, it is (fortunately) impossible to get the necessary data. 
Further, by definition, there are no data on future situations; however, there may be data 
on past situations that may be extrapolated (also see below). 

2) Usually, however, it is possible to get some data. Typically the analysts have 
data on the existing system variant. For instance, for the existing manufacturing system 
the current scheduling rule is well known. And in an ecological model there may be data 
on the existing situation (’status quo’ scenario). 

3) In the military it is common to conduct field tests in order to obtain data on 
future variants. For example, real mine fields are created, not by the enemy but by the 
friendly navy; next a mine hunt is executed in this field to collect data. 

4) In some applications there is an overload of data, namely if these data are 
collected electronically. For instance, all transactions are recorded at the supermarket’s 
point-of-sale (POS) systems. 

The further the analysts go back into the past, the more data they get and the more 
powerful the validation test will be, unless they go so far back that different laws 
governed the system. For example, many econometric models do not use data prior to 
1945, because the economic infrastructure changed drastically during World War II. (Also 
see 1) above.) 

Moreover the data may show observation error, which complicates the comparison 
of real and simulated time series. Observation errors are discussed for a theoretical and a 
practical situation respectively in Barlas (1989, p. 72) and Kleijnen and Alink (1992). 

2.2 Simple techniques for comparing model and real data 
Suppose the analysts have succeeded in obtaining at least some data on the real, 

existing system (if not, the sensitivity analysis of §2.3 can be used). They should then 
feed these input data into the model, in historical order. After running the simulation 
program with these input data, the analysts obtain a time series of simulation outputs. 
Those data should be compared with the historical outputs of the existing system. That 
comparison may use simple techniques; for example, the familiar t statistic may be used to 
test whether the expected values of the simulated and the real time series are equal; see 
Kleijnen (1993). 

Often simulation is meant to predict relative responses, not absolute responses; for 
example, what is the effect of adding one server to a queueing system? The analysts may 
then test whether simulated and real responses are positively correlated (without having 
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the same means). This correlation can be estimated and tested through elementary 
regression analysis; see Kleijnen (1993). 

Sometimes, however, simulation is meant to predict absolute responses; for 
example, in mine hunting the question may be whether the probability of detecting mines 
is so high that it makes sense to do a mine sweep (see Kleijnen and Alink 1992). Another 
example is: do the costs of a certain scenario outweigh the benefits of that same scenario? 
The analysts may then combine the test on means with the test on correlation; see Kleijnen 

(1993). 
As we saw (§2.1), there may be very many observations. Then not only the means 

of the simulated and the real time series and their (cross)correlation can be compared, but 
also their autocorrelations with lag 1, 2, etc. A sophisticated technique to estimate the 
autocorrelation structure of the simulated and the historical time series respectively, and to 
compare these two structures is spectral analysis. Unfortunately, that analysis is rather 
difficult (and -as stated- requires long time series). 

2.3 Sensitivity or what-if analysis 
Models and submodels (modules) with unobservable inputs and outputs can not be 

subjected to the tests of the preceding subsection. The analysts should then apply sensi¬ 
tivity analysis, in order to determine whether the model’s behaviour agrees with the judg¬ 
ments of the experts (users and analysts). In case of observable inputs and outputs, it is 
also useful to apply sensitivity analysis. We shall elaborate these statements in this 
section. 

Sensitivity analysis can be based on the statistical design of experiments. Most 
practitioners apply an inferior design: they change one input at a time. This design gives 
estimated effects of input changes that have relatively high variances. Moreover, such a 
design cannot estimate interactions among inputs. 

Factorial designs change several inputs (or factors) simultaneously. For example, a 
2K design consists of all 2K combinations of K inputs with each input at two values. So if 
there are three inputs (K = 3), then eight combinations are simulated. Unfortunately, high 
values of K require too many combinations and hence too much computer simulation time. 

Therefore fractional factorial designs consider only a fraction of all combinations. 
For instance, 231 designs take only half (2‘) of all 23 combinations. In general, 2KP 
designs consider only a 2 P fraction of all 2K combinations. So a 2s'2 design includes 64 
(=26) of the 256 (=28) combinations of the eight inputs; these 64 combinations permit the 
estimation of interactions between inputs. 

There are also designs that consider more than two values per input. For example, 
central composite designs use five values (in order to estimate quadratic effects, to which 
we shall return). 

Tables and software help to decide how many input combinations to investigate and 
which combinations to select. Software is advertised in, for example, OR/MS Today. 
Technicalities of experimental designs and their application to a variety of simulation 
problems are discussed in Kleijnen (1987, pp. 257-407); also see Kleijnen and Van 
Groenendaal (1992, pp. 168-179). 

How can the results of such experiments with simulation models be analyzed; how 
can these results be used for interpolation and extrapolation? Practitioners often plot the 
model output (say) y versus the input xk, one plot for each input k with k = 1,..., K. 
More refined plots are conceivable, for instance, superimposed plots. This practice can be 
formalized through regression analysis (which in experimental design is also known as 
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Analysis of Variance -or ANOVA- with ’fixed effects’; if inputs are sampled, then 
ANOVA with random effects may apply; see Kleijnen 1987, pp. 285-293). To explain 
regression analysis of simulation experiments we first consider some simple situations. 

Let y denote the response of the simulation model; for example, the average 
waiting time per day. Then y, denotes the simulated response in combination i of the K 
model inputs, with i = 1,..., n where n denotes the total number of simulated combina¬ 
tions; for example, n = 2K P. 

If the model is deterministic, then each combination is run only once. Deterministic 
models are abundant in the natural sciences, because the classic laws of nature are 
deterministic. Many financial spreadsheet models are also deterministic. However, if the 
model is stochastic, then combination i should be run (say) m, times with m, > 2, in 
order to account for stochastic noise. An example is a queueing simulation with m days 
simulated, each day resulting in one average waiting time; then y, denotes the average of 
these nij average waiting times per day. For details see Kleijnen and Van Groenendaal 
(1992). 

Next we consider the model inputs. Let L,, denote the lowest value of the input 
(say) zk in the experiment; analogously Hk denotes its highest value. Then ak = (Hk - 
Lk)/2 measures the dispersion of input k, whereas bk = (Hk + Lk)/2 quantifies the location 
of input k. Hence xik = (zik - bk)/ak denotes the standardized input k in combination i. See 
Kleijnen and Van Groenendaal (1992, pp. 177-179, 183-185), and also Downing et al. 
(1985. p.156) and Helton et al. (1992, chapter 6, p. 4). 

Inputs may be qualitative. Examples are priority rules in a queueing simulation and 
scenarios in environmental simulation. Technically, each qualitative input requires one or 
more binary variables (see Kleijnen 1987). 

Let (3k denote the main or first order effect of the standardized input k; it measures 
how much the response changes as the original input changes from its lowest to its highest 
value, ignoring high order effects of inputs. Let (3kk. designate the (two-factor) interaction 
between the inputs k and k’. We ignore interactions among three or more inputs, because 
they are hard to interpret. At this stage of our exposition we also ignore quadratic effects 
Ak. which measure curvature: in sensitivity analysis we are interested in main effects 
only. We do not want the estimators of main effects to be biased by interactions. 
Quadratic effects -if present- bias the overall effect or grand mean /?0, which is of no 
interest in sensitivity analysis (/J0 is important when predicting the simulation response 
through a regression model). There are designs that require only 2K combinations to 
obtain unbiased estimators of the K main effects, in the presence of (K(K - l)/2) two- 
factor interactions; these designs are called ’resolution 4’ designs; see Kleijnen (1987 n 
301). 

Finally, let e, represent the fitting error in combination i when approximating the 
input/output behaviour of the simulation model by the simple regression (meta)model or 
response surface 

+ Xr.i0kx,k+Ek;i1E^..k.10kk'x,kxik,+ei. (1) 

Note that y and xk may also denote the ranks of the original variables. This rank 
regression is popular in risk analysis. Saltelli and Homma (1992, pp. 79-82) give an 
elementary survey. 

The ordinary least squares (OLS) criterion applied to the simulation input/output 

data (y, X) gives estimated effects /S. Weighted least squares (WLS) can be applied in 
case of stochastic simulation: the variance of input combination i can be estimated from 
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the itij replications; we assume that the variances of different input combinations are not 
constant. Generalized least squares (GLS) can be applied if common pseudorandom 
number seeds are used, which generate positive correlations among simulation responses 
of different input combinations (these correlations reduce the variances of the sensitivity 
estimates). We shall focus on OLS. 

Of course, the validity of the resulting approximation (y = X0) must be tested. 
The simplest measure is the well-known R2 coefficient: the closer R2 is to one, the better; 
see Kleijnen (1987, p.193). Cross-validation is more in the spirit of validation of models 
in general. First it deletes simulation input x, and the concomitant output data y,. Next it 

estimates the regression parameters from the remaining data, which yields /?(_,)• Then it 

employs the resulting estimated regression model to compute the forecast y, for the 

(deleted) input combination X;. The forecasted output y, is compared with the simulated 
output y, to validate the approximation. This procedure can be repeated for all n input 
combinations. The implementation of cross-validation is simple, since modem regression 
software provides statistics known as PRESS, DEFITS, DFBETAS, and Cook s D. See 
Kleijnen and Van Groenendaal (1992, pp. 156-157). 

A case study illustrating the application of experimental design and regression 
analysis is provided by Kleijnen, Rotmans, and Van Ham (1990). They apply these 
techniques to several modules of IMAGE, which is a deterministic simulation model 
developed at RIVM for the greenhouse effect of carbon dioxide (C02) and other gases. 
This approach gives estimates of the effects of the various inputs. These estimated effects 
should have the right signs: the policy analysts (not the statisticians) know that certain 
inputs increase the global temperature. Wrong signs indicate computer errors or concep¬ 
tual errors. Indeed Kleijnen et al. (1990) give examples of estimated sensitivity estimates 
with the wrong signs, which lead to correction of the simulation model. The remaining 
estimated effects show which inputs are important. We shall return to this case study. 

One more example is the case study in Kleijnen and Alink (1992), concerning mine 
hunting at sea by means of sonar. The role of experimental design in the validation of 
simulation models is also discussed in Pacheco (1988). Regression analysis and their 
application to simulation in radioactive waste disposal is examined in Helton, Gamer, 
Rechard, Rudeen, and Swift (1992). Alternative techniques are reviewed in these two 
publications and in Downing et al. (1985), Helton et al. (1991, chapter II), and McKay 
(1992). Also see Kleijnen (1987, pp. 241-242) and Kleijnen and Van Groenendaal (1992, 
pp. 147-186). 

Classic experimental designs, however, may require too much computer time, 
when the simulation study is still in its early (pilot) phase and very many inputs may be 
conceivably important. Bettonvil and Kleijnen (1991) present a screening technique, called 
sequential bifurcation. They proceed sequentially (or stagewise) and split up (or bifurcate) 
the aggregated inputs as the experiment proceeds, until finally the important individual 
inputs are identified and their effects are estimated. They applied this technique to the 
RIVM model with 281 inputs, and found the 15 most important inputs after only 144 
runs. It is remarkable that the statistical technique identified some inputs that were 
originally thought to be unimportant by the policy analysts. 

Before executing the experimental design, the analysts must determine the experi¬ 
mental domain or experimental frame (the design tells how to explore this domain, using 
the expertise of the statistician). Zeigler (1976, p. 30) defines the experimental frame as ’a 
limited set of circumstances under which the real system is to be observed or experiment- 
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ed with’. He emphasizes that ’a model may be valid in one experimental frame but invalid 
in another’. We have already mentioned (§2.1) that going far back into the past may yield 
historical data that are not representative of the current system; that is, the old system was 
ruled by different laws. Similarly, a simulation model is valid only if its input data remain 
within a certain area. For example, Bettonvil and Kleijnen’s (1991) screening study shows 
that the greenhouse simulation is valid, only if its input values range over a relatively 
small area; outside that area the resulting simulation responses (C02) had magnitudes that 
were immediately declared unrealistic by the experts. In general, it is difficult to develop 
valid models for completely new situations! 

Mathematically the experimental frame may be defined as the hypercube formed by 
the K standardized inputs xik of the model. In practice, some comer points (combinations 
of extreme values) may be unrealistic, that is, they fall outside the experimental frame; 
see Janssen, Heuberger, and Sanders (1991, chapter 5) and Kleijnen (1987, pp. 318-319). 

So any simulation model is valid only for a certain area of its inputs. Within that 
area the (valid) simulation model’s input/output behaviour may vary. For example, & first 
order regression model (see equation 1 with the double summation term eliminated) is a 
good approximation of the input/output behaviour of a queueing simulation model, only if 
the traffic load is ’low’. When traffic is heavy, a second order regression model (which 
includes curvature) or a logarithmic transformation may apply. Some researchers fit a 
(meta)model to the simulation input/output data that holds over the whole experimental 
area. For example, Sacks, Welch, Mitchell, and Wynn (1989) apply covariance-stationary 
processes or Kriging to approximate deterministic simulation models. Barton (1992) 
surveys many new alternatives to the polynomial metamodel presented in (1). These 
approaches are so new that definitive evaluations cannot be given yet. Moreover, they 
may aim at fast and accurate prediction (interpolation), not at sensitivity analysis. 

The magnitudes of the estimates of the effects & show which inputs are important. 
Since the regression model is only an approximation to the simulation model, false 
conclusion are possible. For example, an input might have an unimportant first order 
effect but an important quadratic effect in (1), given a certain experimental area: non¬ 
monotonic reaction of simulation response to simulation input. Cross-validation might fail 
to reject the regression metamodel. We consider this example to be ’pathological’. Our 
approach -like any other approach with finite sample sizes- can not guarantee correct 
conclusions. Also see Saltelli, Andres, and Homma (1993) ’s comparison of the per¬ 
formances of different sensitivity analysis techniques. 

Mathematically all inputs xk are treated the same. However, general systems theory 
(GST) distinguishes (i) inputs that are under the decision makers’ control, and (ii) ’envi¬ 
ronmental’ inputs, which (by definition) are not controllable. 

The controllable inputs should be steered -by the decision makers- into the right 
direction. For example, in the greenhouse case the governments should restrict emissions 
of the gases concerned. There are several optimization techniques for simulation models. 
These models may have multiple responses that are nonlinear, possibly stochastic, 
complicated functions of their inputs. Response Surface Methodology (RSM) is a heuristic 
sequential technique that combines experimental design (especially 2KP and central com¬ 
posite designs), regression analysis, and steepest ascent, in order to find the model inputs 
that give a better (possibly the maximum) model response, in terms of a specific perfor¬ 
mance criterion; see Kleijnen and Van Groenendaal (1992, pp. 181-185). This reference 
also summarizes an RSM case study in steel tube manufacturing, namely a production 
planning system with 14 controllable inputs and several response types. 
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For the important environmental inputs the analysts should try to collect data on 
the (input) values that occur in practice (and apply the validation techniques of the 
preceding subsection). If they do not succeed in getting accurate information, then they 
may use the uncertainty analysis of the next section. 

3. Uncertainty Analysis 
The analysts may be unable to collect reliable data on the important environmental 

inputs, that is, the values that may occur in practice are uncertain. Then uncertainty 
analysis or risk analysis may be applied. 

3.1 The basics of uncertainty analysis 
First the analysts derive a probability function for the input values. That distribu¬ 

tion may be estimated from sample data, if those data are available; otherwise that 
distribution must be based on subjective expert opinions (also see Helton et al. 1992, 
chapter 2, p. 4). Popular distributions are uniform, triangular, beta, normal, and lognor¬ 
mal distributions. Usually the inputs are assumed to be statistically independent. Correlat¬ 
ed inputs are discussed in Helton et al. (1992, chapter 3, p. 7) and Reilly, Edmonds, 
Gardner, and Brenkert (1987). 

Next the analysis uses pseudorandom numbers to sample input values from those 
distributions: Monte Carlo or distribution sampling. 

Variance reduction techniques (VRTs) are possible. Uncertainty analysis often uses 
Latin hypercube sampling (LHS), which forces the sample (of size n) to cover the whole 
experimental area (for example, in case of a single input, that input’s domain is parti¬ 
tioned into, say, s equally likely subintervals and each subinterval is sampled s/n times). 
We recommend LHS as a VRT, not as a screening technique. For screening we recom¬ 
mend changing the inputs to their extreme values (specified by a fractional factorial 
design) and testing if at those values the outputs also change. Also see Banks (1989) and 
Bettonvil and Kleijnen (1991) versus Downing et al. (1985) and McKay (1992). 

The sampled input values are fed into the simulation model. In this subsection we 
consider deterministic simulation models; in §3.2 we shall examine stochastic models. 
During a simulation run all its inputs are deterministic; for example, the input is constant 
or shows exponential growth. From run to run, however, the (sampled) inputs vary; for 
example, different constants or different growth percentages. This yields an estimated 
distribution of output or response values. That distribution may be characterized by its 
location (measured by the mean, modus, and median) and its dispersion (quantified by the 
standard deviation and various quantiles or percentiles, such as the 90% quantile). For a 
basic introduction to risk analysis see Kleijnen and Van Groenendaal (1992, pp. 75-78). 

Which quantities sufficiently summarize a distribution function, depends on the 
users’ risk attitude-, risk neutral (then the mean is a statistic that characterizes the whole 
distribution sufficiently), risk aversion, or risk seeking; see Balson, Welsh, and Wilson 
(1992) and Bankes (1993, p. 444). The former authors further distinguish between risk 
assessment (defined as risk analysis in this paper) and risk management (risk attitude, 
possible countermeasures). 

Combining uncertainty analysis with regression analysis gives estimates of the 
effects of the various inputs; that is, regression analysis shows which inputs contribute 
most to the uncertainty in the output. Mathematically, this means that in eq. (1) the deter¬ 
ministic independent variables xik are replaced by random variables. Helton et al. (1991, 
1992) call this combination of uncertainty and regression analysis ’sensitivity analysis’. 
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Risk analysis is used in business and economics. Hertz (1964) introduced this 
analysis into investment analysis: what is the probability of a negative Net Present Value? 
Krumm and Rolle (1992) give recent applications in the Du Pont company. Risk analysis 
in business applications may be implemented through add-ons (such as ©RISK and Crystal 
Ball) that extend spreadsheet software (such as Lotus 1-2-3 and Excel). 

In the natural sciences, uncertainty analysis is also popular. For example, in the 
USA the Sandia National Laboratories performed many uncertainty analyses for nuclear 
waste disposal (Helton et al. 1991, 1992). Oak Ridge National Laboratory investigated 
radioactive doses absorbed by humans (Downing et al. 1985). Nuclear reactor safety was 
investigated for the Commission of the European Communities (Olivi 1980 and Saltelli 
and Homma 1992). Uncertainty analysis is also performed at RIVM (Harbers 1993, 
Janssen et al. 1992). Three environmental studies for the electric utility industry are 
presented in Balson et al. (1992). Uncertainty analysis in the natural sciences has been 
implemented through software such as LISA (see Saltelli and Homma 1992, p. 79), 
PRISM (Reilly et al. 1987), and UNCSAM (Janssen et al. 1992). 

Note that risk analysis is also used in the analysis of computer security; see 
Engemann and Miller (1992) and FIPS (1979). 

As we saw, a basic characteristic of uncertainty analysis is that information about 
the inputs of the simulation model is not reliable; so the analysts do not consider a single 
’base value’ per input variable, but a distribution of possible values. Unfortunately, the 
form of that distribution must be specified (by the analysts together with their clients). 
This specification may be software driven-, that is, the analysts concentrate on the develop¬ 
ment of software that implements a variety of statistical distributions, but their clients are 
not familiar at all with the implications of these distributions; also see Easterling (1986). 
Bridging this gap requires intensive collaboration between model users, model builders, 
and software developers. 

Consequently, it may be necessary to study the effects of the specification of the 
input distributions (and of other types of inputs such as scenarios). This type of sensitivity 
analysis may be called robustness analysis. Examples can be found in Helton et al. (1992, 
section 4.6); also see Janssen et al. (1992) and Kleijnen (1987, pp. 144-145). Faster sam¬ 
pling techniques for robustness analysis are discussed by Beckman and McKay (1987) and 
Rubinstein and Shapiro (1993). 

3.2 Uncertainty analysis of stochastic models 
The type of question answered by uncertainty analysis is ’what is the chance of...?’ 

So the model must contain some random element. In §3.1 that randomness was limited to 
the inputs of the model, whereas the model itself was deterministic. 

However, some models are intrinsically stochastic: without the randomness the 
problem disappears. Examples are queueing models, where the interarrival times may be 
independent drawings from an exponential distribution with mean (say) X. This mean is an 
input of the model. That model generates a stochastic time series of customer waiting 
times. The question may be ’what is the probability of customers having to wait longer 
than 15 minutes?’. For simple models this question can be answered analytically or 
numerically. For more realistic models, simulation is used. Mathematical statistics is used 
to determine how many customers must be simulated in order to estimate the response 
with prespecified accuracy; see Kleijnen and Van Groenendaal (1992, pp. 187-197). 

How to apply risk analysis to such a queueing simulation? Suppose the interarrival 
mean X is estimated from a sample of r independent interarrival times. Then the central 
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limit theorem implies that the estimated interarrival mean follows a normal distribution. 
Hence the mean can be sampled from this distribution, and be used as input to the 
queueing simulation. That simulation is run for ’enough’ customers. Next the procedure is 
repeated: sample X, and so on. For details see Kleijnen (1983). 

However, to the best of our knowledge, risk analysis has never been applied to 
stochastic models such as queueing models (sensitivity analysis has been employed indeed; 
see §2.3). Helton et al. (1991, 1992) briefly discuss uncertainty analysis of stochastic 
models in the natural sciences (nuclear power plants, the spreading of nuclides). 

4. Conclusions 
We gave a survey of sensitivity analysis and uncertainty analysis of mathematical 

models, emphasizing statistical procedures, which yield reproducible, objective, quantita¬ 
tive results. 

Sensitivity analysis determines which model inputs are really important. The 
important inputs are either controllable or not. The controllable inputs may be optimized. 
The values of the uncontrollable inputs may be well-known, in which case these values 
can be used for validation of the model. If the values of the uncontrollable inputs are not 
well known, then the likelihood of their values can be quantified objectively or subjective¬ 
ly, and the probability of specific output values can be quantified by uncertainty analysis. 

More specifically, sensitivity analysis means that the model is subjected to 
’extreme value’ testing. A model is valid only within its experimental frame (defined in 
§2.3 as the limited set of circumstances under which the real system is to be observed or 
experimented with). Mathematically that frame may be defined as the hypercube formed 
by the K standardized inputs xik of the model. Experimental designs (such as 2KP frac¬ 
tional factorials) specify which combinations are actually observed or simulated (a 2 P 
fraction of the 2K comer points of that hypercube). The n observed input combinations and 
their corresponding responses are analyzed through a regression (meta)model. That 
regression model is an approximation of the simulation model’s input/output behaviour. 
That regression model gives quantitative measures of the importance of the simulation 
inputs. 

We proposed several steps in sensitivity analysis: 
1) When the simulation study is still in its early (pilot) phase, then very many inputs may 
be conceivably important. The really important inputs can be identified through Bettonvil 
and Kleijnen (1991)’s screening technique based on aggregation and sequential experi¬ 
mentation. 
2) These important inputs are further investigated, including interactions between these 
inputs. This estimation can use classical factorial designs such as 2K P designs. 
3) The inputs should be split into two groups: inputs that are under the decision makers’ 
control versus environmental inputs. The controllable inputs should be steered into the 
right direction. Response Surface Methodology (RSM) is a heuristic technique that 
combines experimental designs (including central composite designs), regression analysis, 
and steepest ascent, in order to find the model inputs that give better model responses, 
possibly the best response. 

The important environmental inputs cannot be controlled (by definition), but 
information on the values they are likely to assume is wanted. If the value of such an 
input is not precisely known, then the chances of various values can be quantified through 
a probability function. If a sample of data is available, then this function can be estimated 
objectively, applying mathematical statistics; otherwise subjective expert opinions are 
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used. Uncertainty analysis quantifies the uncertainties of the model outputs that result 
from the uncertainties in the model inputs. Output uncertainty is quantified through a 
statistical distribution. This analysis uses the Monte Carlo technique. 

Note that sensitivity analysis does not tell how likely a particular combination of 
the inputs (specified by the statistical designs) is, whereas uncertainty analysis does 
account for the probabilities of input values. 

Combining uncertainty analysis with regression analysis shows which non-control- 
lable inputs contribute most to the uncertainty in the output. 

Our conclusion is that sensitivity analysis should precede uncertainty analysis. Each 
type of analysis may apply its own set of statistical techniques, for example, 2K P designs 
in sensitivity analysis; Latin hypercube sampling in uncertainty analysis. Some techniques 
are applied in both analyses, for example, regression modelling. We hope that we 
succeeded in explaining when to use which technique! 
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