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Abstract 

This paper first emphasizes the similarity between unfolding and cumulative 

scale analysis, and suggests some reasons for the difference in the popularity 

of the two models. It then summarizes the results presented by the authors of 

this issue for their unfolding analyses of the nuclear energy data and the 

car-use data, discusses similarities and differences among the findings, and 

suggests reasons for some of the differences found. Finally, it raises some 

more general issues concerning the data used, differences in parameter 

estimation, tests for model fit, and proposed generalizations. 
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1. Introduction 

1.1 The Relationship between Unfolding and Cumulative Scaling 

The deterministic unfolding model for dichotomous data developed by Coombs 

(1964) and the deterministic cumulative scaling model developed by Guttman 

(1950) are rather similar. Both models require variables with two response 

categories, the 'positive' response (generally denoted as '1') and the 

'negative' response (generally denoted as '0'). (Typical positive responses 

in the behavioral sciences include 'gives a correct answer to a question about 

facts', 'agrees with an evaluative statement', 'has performed a certain 

action', and 'has voted in favor of a certain measure'; negative responses are 

the converse of these) . In both models it is assumed that the positive 

response to one variable from a set of questions about facts, statements, 

actions, or measures is related to the positive response to other variables 

from the same set. And in both models the variables can be ordered in such a 

way that the positive response to one variable implies the positive response 

to an adjacent variable, as illustrated in Table 1. 

Table 1 
Data Sets that Perfectly Fit the Cumulative Scaling Model 

and the Unfolding Model for Dichotomous Data 

Cumulative Scale Unfolding Scale 
Subjects ABCDE ABCDE 

1 0 0 0 0 0 
2 1 0 0 0 0 
3 110 0 0 
4 1110 0 
5 11110 
6 11111 

110 0 0 
0 110 0 
0 1110 
0 0 110 
0 0 111 
0 0 0 1 1 

The difference between the two models is that in cumulative scaling the 

positive response to a variable is interpreted as a dominance relation between 

subject and items (i.e., a subject who gives the positive response to an item 

'dominates' this and all 'easier' items), whereas in unfolding the positive 

response is interpreted as a proximity relation between subject and items 

(i.e., a subject who gives the positive response to an item also gives the 



163 

positive response to adjacent items, but not to items that are more distant 

in either direction). The scale score of subjects in the cumulative model is 

defined as a function of the sum score of their responses, whereas the scale 

score of subjects in the unfolding model depends on the specific items to 

which they give the positive responses. 

1.2 Unfolding Models as Derived from Cumulative Scaling Models 

Almost all the models discussed in this issue are related to developments 

in cumulative scaling. Formann's quasi-deterministic latent class model shows 

the influence of Goodman's latent distance model (Goodman 1975), Croon's 

ordinal latent class model is related to his own earlier model for cumulative 

data (Croon 1991), Bdckenholt's parametric unfolding latent class model is 

similar to Rost's (1988) model, Van Schuur's and Post & Snijders's ordinal 

latent trait models are related to Mokken's (1971) model, and Hoijtink's and 

Verhelst & Verstralen's parametric latent trait models show the influence of 

the Rasch model (Rasch 1960) and the Partial Credit Model (Masters 1982), 

respectively. The only exception is Van Blokland-Vogelesang's model, which is 

based on full rank order data. 

The authors of this issue differ on whether both unfolding models and 

cumulative models should be considered Item Response Theory (IRT) models. For 

example, Verhelst & Verstralen suggest that the term IRT should be reserved 

for the (cumulative) Rasch model, whereas Hoijtink argues that since the 

unfolding (or parallelogram) model also links items to responses, it should 

also be called an IRT model. Andrich (1988) proposed a compromise: calling 

parallelogram models 'Person-Item-Response-Theory (PIRT) models'. But this is 

not really satisfactory, since each IRT model includes persons as well as 

items, and so could equally well be called a PIRT-model. 

Both the authors of the latent class analysis models and Post & Snijders 

regard their models as the offspring of latent structure analysis, developed 

by Lazarsfeld and Henry (1968). I agree with attempts to unify terminology. 

Efforts to make very fine distinctions (e.g., refusing to consider parallel¬ 

ogram analysis as a form of unfolding, as in Cliff et al. 1988) lead to 

confusion among researchers trying to decide which model to apply to their 

data. 
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1.3 Why Unfolding Never Became as Popular as Cumulative Scaling 

The cumulative scaling model became known as "the Guttman scale". It 

developed into a number of probabilistic models, of which the parametric Rasch 

scale (Rasch 1960) and the nonparametric Mokken scale (Mokken 1971) are 

perhaps the best known. In contrast, the unfolding model --or the parallelo¬ 

gram analysis model, named after the parallelogram shape of 'l's in the data 

matrix -- never became known as "the Coombs scale". Programs to perform 

Guttman Scaling began to appear in statistical packages, but programs to 

perform parallelogram analysis did not. User-friendly software for parallelo¬ 

gram analysis did not become widely available before the 1980's. 

One reason the unfolding model did not become as popular as the cumulative 

model is probably that in many of the data sets investigated, the relationship 

between the dichotomous variables was better captured by reference to 

dominance than to proximity. This is especially true in the area of ability 

testing. The unfolding model has also perhaps developed more slowly than the 

cumulative model because Coombs initially formulated it for full rank order 

data rather than dichotomous data. Rank order data are not very common to 

begin with, and, for a long time starting in the sixties, such data could only 

be unfolded as a byproduct of multidimensional scaling; representations were 

often degenerate. The unfolding of rank order data with many ties (one way to 

describe dichotomous data) was therefore even less popular. The model 

developed by Van Blokland-Vogelesang for full rank order data is an improve¬ 

ment over these previous MDS models. 

The prevailing opinion among applied researchers still seems to be that full 

rank orders of data should be unfolded whereas dichotomous data should be 

cumulatively scaled. Researchers further assume that Likert-type rating scales 

should be factor analyzed, rather than cumulatively scaled or unfolded. In 

fact, however, dichotomous data or Likert-type data can and often should be 

unfolded. The unwarranted insistence that the form in which data are collected 

determines the way in which they should be analyzed has done damage to 

substantive theory formation. Even though as early as 1960 Coombs and Kao 

warned against using factor analysis for data that conform to the unfolding 

model, this warning is rarely heeded. Coombs and Kao claimed (and Ross and 

Cliff, 1964, showed for a specific case) that the factor analysis of 

unfoldable data leads to an extra factor (or dimension) -- one more than is 

needed in an unfolding representation. When the unfolding representation is 

unidimensional, factor analysis thus results in two apparently independent 

factors. Ignorance of the "extra factor" phenomenon has led researchers to 
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puzzle over the seeming independence of such bipolar concepts as positive and 

negative mood states, liberalism and conservatism, work intrinsic and work 

extrinsic work satisfaction, and masculinity and femininity, to mention only 

a few. Given this problem it is important for researchers to realize that 

unidimensional unfolding models are now available that do not require full 

rank orders of data, and, more generally, that the form in which data are 

collected is in principle independent of the way they can be analyzed. 

2. The Nuclear Energy Data 

The nuclear energy data consist of responses to five questions selected from 

a questionnaire that measured the general attitudes toward nuclear energy of 

600 Austrian respondents (Formann 1988). 

2.1 Scale Values for the Items and Interpretation of the Scale 

All the models agree about the appropriateness of the unfolding model to the 

nuclear energy data, and about the order in which the items form an unfolding 

scale (see Table 1 in Hoijtink's editorial for the order). The scale is 

unequivocally interpreted as measuring opinions about nuclear energy ranging 

from strongly in favor (item A) to strongly opposed (item E). 

2.2 Goodness-of-fit of Individual Items 

The models of Hoijtink, Van Schuur, Post & Snijders, and Verhelst & 

Verstralen explicitly analyze the fit of individual items to the model. 

Hoijtink picks out items B or E as fitting the model poorly. Van Schuur points 

only to item B. Post & Snijders recommend dropping either item B or item C, 

whereas Verhelst & Verstralen identify D or E as a poorly-fitting item. Most 

of the other models give some information that might be used to corroborate 

information about individual items, although this remains implicit in their 

contributions. For instance, the results of Bockenholt's and Croon's unre¬ 

stricted latent class analysis are similar -- see Table 2 for the probabili¬ 

ties of positive responses to the items by subjects in each latent class in 

the two analyses. Rowwise the probabilities do indeed conform to the expected 

pattern of single-peaked monotonicity. Columnwise, however, item B destroys 

the single-peaked monotonicity pattern in both class I and class IV. Van 

Blokland-Vogelesang's procedure allows us to compare the best- fitting four- 

item scale with the best-fitting five-item scale. On inspecting the data (as 
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given by Hoijtink in Table 1), we find that among the 600 response patterns, 

there are 114 patterns (=19%) that violate the deterministic unfolding model. 

If item B is removed, only 18 of the 600 patterns (3%) contain a model 

violation. This is less than would be achieved by removing any other item. Van 

Blokland-Vogelesang's procedure thus identifies the best fitting four-item 

scale as ACDE; that is, a scale without item B. 

Table 2 

Percentage of Subjects in Each Class who Give 

the Positive Response to Each of the Five Items 

BOCKENHOLT CROON 

Classnrs Classnrs 

Itemnr I II III IV I II III IV 

A 54 46 8 0 54 46 8 0 

B 49 62 28 15 49 63 28 15 

C 77 97 73 0 78 97 72 0 

D 27 91 100 14 20 91 100 14 

E 0 26 98 100 0 27 98 100 

Formann uses two criteria to assess individual items. First, the area along 

the latent dimension in which the positive response to each item is given 

should be neither too small (as for item A) nor too large (as for item C) . 

This is not a criterion of fit, but rather a criterion to insure that an item 

is useful in discriminating among different latent classes of subjects. 

Second, the probability of a positive response to all items should be 

substantially higher than the probability of a negative response. On the basis 

of this criterion Formann singles out item B as a poorly fitting item. 

In conclusion, most of the models agree on the bad fit of item B. But they 

differ in how they define bad fit. For Hoijtink, the fit of item B is bad 

because its item characteristic curve is too flat (that is, subjects with 

different values on the latent dimension give the positive response with 

similar probabilities). Table 2 corroborates this finding to some extent: the 

four classes do not differ much in the percentages of positive responses for 

item B. Post & Snijders' Table 4 also shows the flat ICC of item B. 

Hoijtink found that item E had a flat ICC, as well as item B. Verhelst & 

Verstralen agree with Hoijtink on the poor fit of item E, but none of the 

other authors whose analyses corroborated the flatness of item B's ICC suggest 

that item E behaves similarly. So we are still left with the question whether 
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the poor fit of item E may be due to violations of other assumptions in the 

parametric models. For instance, how sensitive are the parametric models to 

any kind of deviation from the expected shape of the ICC of an item? 

Van Blokland-Vogelesang and Van Schuur single out item B as badly fitting 

on grounds that many subjects gave a positive response to item A on the left 

and to items C, D, or E on the right, but not to B in the middle. None of the 

other items in the final scale were weak according to this or any of their 

other criteria of fit. 

2.3 Distribution of Subject Scale Values 

How are the subjects distributed along the scale? The latent class analysis 

models differ widely in the number of ordered latent classes (i.e., the number 

of different scale values for subjects) needed to represent the data. Croon 

uses as scale values the order of the four classes that fit the unrestricted 

model, and Bockenholt specifies the subject parameters further by the 

unfolding threshold model (UT) and the unfolding power model (UP), in which 

cases a representation in only two latent classes (i.e., with only two 

homogeneous groups of subjects) suffices. 

Formann identifies nine latent classes, one of which contains unscalable 

subjects. He finds many unscalable response patterns (42%). This is in part 

due to one of the assumptions of his model that in effect restricts the range 

of positive responses each subject can give, rendering certain patterns 

(00000, 01000, 00100, 00010, 00110, 01111, 11110, and 11111) unscalable even 

though they do not actually violate a deterministic unfolding model. 

Van Blokland-Vogelesang and Van Schuur do not specify subjects' scale values 

in their papers, although both have procedures for calculating them. Van 

Blokland-Vogelesang's procedure specifies at most 5(5-l)/2 + 1 = 11 different 

scales values for subjects with five items. In her procedure, subjects with 

imperfect patterns are assigned the scale value of the perfect pattern that 

can be achieved with the minimum number of inversions. For dichotomous data 

there are often several ways to turn an imperfect pattern into a perfect one 

(e.g., 11101 can be converted equally easily to 11111 or 11100; these two of 

course have different scale values). In such cases the less extreme pattern 

is apparently chosen. When I analyzed the nuclear energy data with Van 

Blokland-Vogelesang's UNFOLD program, I found that, as a consequence of this 

procedure, 47% of subjects were assigned the same scale value. 

Van Schuur's procedure specifies at most 2*5 -1=9 different scale values 

for an unfolding scale with five dichotomous items. Each imperfect pattern 
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receives a unique scale value, so there is a wider distribution of scale 

values of subjects than in Van Blokland-Vogelesang's model. Still, more than 

80% of all subjects are assigned to only four classes (scale scores 4 (13%), 

5 (25%) 6 20%) and 7 (24%)). 

Hoijtink does not specify the scale scores for the subjects (his EAP- 

scores) , but gives a discrete estimate of the density function. Two of the 7 

nodes carry 93% of the subject density, which, like the results of the 

previous models, suggests a very high concentration of subjects in the center 

of the scale. 

In conclusion, although the models under consideration differ in their 

assignment of scale values to subjects, they agree that subjects may be 

described in terms of a small number of values. Latent class analysis (i.e., 

the models of Formann, Croon and Bockenholt) and latent trait analysis (i.e. , 

the models of Van Blokland-Vogelesang, Van Schuur, Post & Snijders, Hoijtink, 

and Verhelst & Verstralen) differ fundamentally, however, in their approach 

to the optimal number of different scale values of subjects. In an ideal 

latent class analysis the number of classes is much smaller than in the ideal 

latent trait analysis for the same number of items. In latent class analysis, 

researchers look for as much homogeneity among subjects as possible, and so 

try to represent subjects in a small number of classes. In latent trait 

analysis, in contrast, researchers try to discriminate between subjects to 

prevent local stochastic independence from becoming global independence. 

3. The Car-use Data 

The car-use data consist of two independent data sets, each comprising 300 

Dutch subjects who, either before or after a governmental information 

campaign, were asked to give their opinion on the use of cars in the context 

of protection of the environment (Doosje & Siero, 1991). One goal of the 

research was to determine whether the campaign had been successful. 

3.1 Scale Values for the Items and Interpretation of the Scale 

Most authors agree with the order of the items along the unfolding scale 

given by Hoijtink in his editorial (Table 4), except that they would reverse 

items 1 and 2 and items 7 and 8. The scale is unequivocally interpreted as 

measuring opinions ranging from strongly in favor of measures against car use 

to strongly opposed. 
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The latent class models have problems in reaching this solution. They need 

to assign probabilities to each possible response pattern in each latent 

class. This becomes difficult when the number of items is 10 or more, with the 

number of possible response pattern thus at least 1024. If the number of 

actually observed response patterns is small, the models cannot function 

properly. Bockenholt therefore decides to use only six of the ten items; his 

model orders them in agreement with the results mentioned above. Croon does 

not explicitly discuss the ordering of the items. However, in addition to 

insisting on an ordering of the choice probabilities of each item across the 

classes, he could also have looked at a single-peaked ordering of the choice 

probabilities of the items within each class. The order given above largely 

satisfies the requirement that there be a single-peaked function to the order 

of the probabilities of the positive response to the items within each class. 

Following the same strategy as Bockenholt, Formann searches for the best 

maximal subset of the items, and ends up with a scale of five items. Like 

Croon, he does not discuss whether the probabilities of the positive response 

to the items form a single-peaked pattern within each class. However, his 

Table 4 shows that when the five items are ordered according to the results 

of most other authors, the single-peaked pattern is violated several times. 

Four authors formally compare the unfolding scales they identify for the 

pre- and post-information campaign data. Formann and Bockenholt demonstrate 

the use of simultaneous latent class analysis to compare the different groups. 

Hoijtink and Verhelst & Verstralen both use a likelihood ratio test to check 

whether the model parameters are the same for both data sets; they come to 

different conclusions, however. Hoijtink concludes that the item- and 7- 

parameters are the same in the pre- and post-campaign data, but that the 

subject distribution is different. In contrast, Verhelst & Verstralen conclude 

that the model parameters differ, but the subject distribution is almost the 

same. From a substantive perspective Hoijtink's approach seems to be easier 

to interpret than that of Verhelst & Verstralen. 

The four authors who use nonparametric models have no formal test with which 

to compare the pre- and post-campaign results. They must therefore resort to 

the well-known 'eyeball technique', which leads them to conclude that the pre- 

and post-campaign data sets do not differ substantially in their represen¬ 

tation of the items. 
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3.2 Goodness-of-fit of Individual Items 

What do the different models say about the fit of the individual items? 

Hoijtink is alone in arguing explicitly that item 1 cannot be represented. He 

rejects it on grounds that its item characteristic curve (ICC) is too flat. 

Bbckenholt's Tables 6 and 7, Croon's Table 4, Van Schuur's Table 3, and Post 

& Snijders' Table 8 also show a flat curve for item 1. However, item 1 is not 

the only item with a relative flat ICC: on the basis of the corroborating 

evidence for item 1 from the tables by the other authors, we might also single 

out item 2 as having a flat ICC according to the tables. In the ordinal models 

of Croon and Van Schuur, the specific shape of the ICC of item 1 is not a 

problem as long as it does not disturb the order of the probabilities. If both 

'pro- car' and 'pro-environment' subjects agree with this item, its only 

possible position on the scale is in the middle, which is indeed where the 

other models also represent it. 

3.3 Distribution of Subject Scale Values: was the Campaign Effective? 

If the information campaign was successful, the mean scale value of the 

post-campaign data should be lower than that of the pre-campaign data. Van 

Schuur and Verhelst & Verstralen find that although the difference in the 

means is in the expected direction, it is not statistically significant. 

According to Bockenholt, Hoijtink, and Formann, however, the difference is 

significant (just barely for Formann). When I ran Van Blokland-Vogelesang's 

UNFOLD program on the eight items that form an identical scale for both the 

pre- and post campaign data, I also found a large difference in scale values 

in the expected direction (from 56.1 to 43.6; t=-8.92, p < 0.001). According 

to Van Blokland-Vogelesang, the standard deviation of the distribution of 

subjects' scale values is smaller in the post- than the pre- campaign data 

set. This finding -- also mentioned by Bockenholt and Verhelst & Verstralen 

and inferable from Hoijtink's Table 7 -- suggests that another result of the 

information campaign may have been greater agreement in the public about the 

effects of car use on the environment. 

Different models thus lead to different conclusions about whether the 

campaign had any effect. Such disagreement about scale value assignment is not 

unprecedented. For example, Van Schuur (in press) correlated the scale values 

of analyses of an 'androgyny' data set carried out with the models of 

Hoijtink, Van Schuur, and Van Blokland-Vogelesang. He found that although the 

scale values of the first two models correlated highly with each other (0.93), 
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they correlated only moderately with the scale values of the third model 

(about 0.7). Further study is clearly needed to identify the sources of 

discrepancy. For example, attention should be paid to the number of items 

picked in the response patterns compared to the total number of items, the 

degree of fit of the models, the assignment of scale values to (deterministic- 

ally) imperfect response patterns, and the number of items in the scale. 

3.4 The Relationship Between Unfolding and Cumulative Scaling Revisited 

A number of the authors (Croon, Formann, Van Schuur, Post & Snijders) have 

observed that although the car-use data can be interpreted as one unfolding 

scale, it can also be interpreted as two cumulative scales glued together: one 

ranging from the least popular item (i.e., the item least likely to receive 

a positive response) on the left to the most popular item in the middle of the 

unfolding scale, and the other ranging from the next most popular item in the 

middle of the unfolding scale to the least popular item on the right. Which 

of the two accounts is preferable? This question is especially important if 

we want to regard the scale values of subjects as values of a new variable 

that is to be used in further analyses, since scale values are interpreted 

differently under the two accounts. I return to this question shortly. But 

first let us consider how we can determine whether a given unfolding scale is 

also open to interpretation as two cumulative scales. 

Some of the diagnostics proposed by Post & Snijders and by Van Schuur are 

relevant to this decision. An unfolding scale can also be interpreted as two 

cumulative scales if 1) the correlation matrix of the two sets of cumulative 

items includes a block of negative correlations that would become positive 

after the appropriate recoding of one of the item sets; 2) the 'matrix of p- 

values' based on the conditional adjacency matrix shows the highest p-values 

only for the left-most and right-most items; and 3) the dominance matrix does 

not show a pattern of characteristic monotonicity around the diagonal, but 

rather a pattern of monotonicity going from the left-most item up to the most 

popular item, and from that item down to the right-most item. 

About half the unfoldable 'pick any/n' data sets that I have analyzed 

satisfy these diagnostics and so could be interpreted either as a simple 

unfolding scale or as two cumulative scales. The problem of deciding between 
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these analyses is thus not trivial.3 Are there advantages to one account or 

the other? On grounds of parsimony, the unfolding account is to be preferred. 

But the cumulative scale account has an advantage as well. In a deterministic 

cumulative scale, subjects are represented between the last item to which they 

give the positive response and the first item to which they give the negative 

response. If two cumulative scales are regarded as glued together, subjects 

will receive two scale values: one for the left-hand scale and one for the 

right-hand scale. These values in effect delimit the range of items to which 

the subject gives the positive response. 

In an unfolding scale no range information is specified: subjects are simply 

represented 'in the middle of' the items to which they give the positive 

response. But in many circumstances investigators might find it useful to know 

the range of items to which individual subjects give their positive 

responses.A A range parameter that differentiates subjects with small ranges 

from subjects with larger ranges might also lend itself to interesting 

interpretations; for example, the size of the range may depend upon variables 

such as 'strength of feeling of interest', 'education or knowledge', or 

'dogmatism or pragmatism'. Niemoller (1992) recently showed that a range 

parameter could be useful in explaining voting behavior on the basis of 

positions of subjects and political parties along a left-right dimension. 

To further develop the theory that links persons' responses to items, it is 

imperative to understand both the unfolding and the cumulative response 

mechanism in a joint framework. It may ultimately be possible to combine the 

advan-tages of a range specification with the parsimony of an unfolding scale. 

3 An alternative approach to this problem might be to 
reverse the coding of one of the two sets of cumulative items and 
regard them all as members of the same cumulative scale. But 
available analyses (e.g., Kruijtbosch, 1992) show that it is by 
no means self-evident that the two sets do indeed form one 
cumulative scale after the codes of one set have been reversed. 
More work on this issue is needed. 

41 The only unfolding model that at present includes a 
subject-range parameter is DeSarbo and Hofmann's (1986); as far 
as I know, however, an algorithm for the model only exists in 
experimental form. 
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4. General Issues: Some Brief Remarks 

4.1 The Data Used in Tests of Model Fit 

In a Rasch analysis the 'pick 0/n' and 'pick n/n' response patterns are not 

included in tests of model fit. In a Mokken analysis an overrepresentation of 

such patterns inflates the fit of the model. It can be argued that, for the 

same reasons as in these models, 'pick 0/n' and 'pick n/n' patterns, as well 

as the 'pick 1/n' patterns, should also be discarded from a test of model fit 

in unfolding analyses. But most models do not report precautions of this kind. 

4.2 Parameter Estimation 

In most unfolding procedures, item parameters are estimated first and 

subject parameters are estimated only later, if at all. Like the cumulative 

IRT-models, however, unfolding can be regarded as an important intermediate 

analytic step that provides the researcher with a reliable measurement of 

latent variables that cannot otherwise be obtained. The emphasis on 

representing and interpreting the items rather than the subjects may be 

related to the MDS-tradition in which finding the interpretation of the 

unfolding dimensions has traditionally been more important than using the 

subject scale values in subsequent research. 

In cumulative scaling procedures, scale values for 'pick 0/n' and 'pick n/n' 

patterns can be defined (even though these patterns are not included in tests 

of model fit). In unfolding procedures, the 'pick 1/n' and 'pick n/n' patterns 

can also be given a scale value, but the 'pick 0/n' pattern remains ambiguous. 

The models discussed differ in whether they assign an extreme (positive or 

negative) value to this pattern or interpret it as missing datum. 

4.3 Model Fit 

If a data set cannot be represented in full by a unidimensional unfolding 

model, several options are often open to researchers. For instance, they can 

use a model with more parameters, a weaker model, a model for a subset of the 

items, or a model for a subset of the subjects. Most of the models discussed 

emphasize the first three strategies. The proposals for item fit, especially 

by Post & Snijders, may be fruitfully implemented in some of the other models 

as well. Only Formann is explicit about the possibility that some subjects 
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should be considered unscalable. The choice of whether to attribute bad model 

fit to items or to subjects is an important strategic choice. Often research¬ 

ers do not want to sacrifice subjects since this may damage the properties of 

their sample. Items, on the other hand, are generally not sampled from a 

population of items, but are selected as the most reliable ones for measuring 

the latent trait. If they are not useful for this purpose, they can be 

eliminated with little loss. 

Person fit can be operationalized readily in the latent class procedures. 

Subjects are assigned the scale value of the class for which the probability 

of their response pattern is highest. If a subject's response pattern is not 

clearly more probable for one class than another, the subject fits the model 

poorly. 

Van Blokland-Vogelesang's and Van Schuur's procedures can easily be extended 

to include a measure of person fit in terms of the amount of model violation 

in each response pattern. The models of Hoijtink and Verhelst & Verstralen can 

probably also be extended, following Hoijtink's suggestions for person fit in 

the Rasch model (Molenaar and Hoijtink, 1991). 

4.4 Additional Approaches 

Croon discusses the possibility of using 'pick k/n' data. Models that can 

be applied to such data are useful because they allow researchers to unfold 

full or partial rank ordered data by dichotomizing them into the k most 

preferred and n-k least preferred items. This option is included in some of 

the models discussed (e.g., those of Van Blokland-Vogelesang and Van Schuur); 

the latent class models can also easily be extended. A further extension would 

be to generalize 'pick k/n' models to 'rank k/n' models on the basis of the 

same principles. 

Some models can be extended for use with data involving ratings. All latent 

class models can be used for ordered multicategory data, as can Van Blokland- 

Vogelesang's latent trait model. Van Schuur's latent trait model has recently 

been generalized to multicategory data (Van Schuur in press). Presumably 

Verhelst & Verstralen's model would also allow this extension. 

5. Conclusion 

In this issue of Kwantitatieve Methoden eight different approaches to the 

unfolding analysis of 'pick any/n' data have been presented. A number of 

additional approaches have been omitted due to lack of space; the most notable 
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omissions are the models of Andrich (1988), Andrich and Guanzhong (1991), 

Brady (1990), Cliff et al. (1988), Davison (1980), DeSarbo and Hoffman (1986), 

and Heiser (1981) (see De Soete et al., 1989, for some additional models). 

However, all the present authors have presented their own approaches in the 

broader context of the current literature. This issue therefore gives a useful 

overview of ongoing work in unfolding analysis. 

One may wonder whether it is fair to compare the models on the basis of 

their performance on only two data sets. What would have happened, for 

instance, with a data set in which 12 of 17 items form an unfolding scale but 

the other five do not? Or with a data set consisting of 4 reasonably 

unfoldable items and only 20 subjects? 

This issue, and particularly this last chapter, should not be read as a 

consumer guide. As one of the eight contributors of a model I am not in a 

position to write such a guide. In comparing the results of the models I have 

proposed some criteria that might be used in evaluating them. If we can agree 

on such criteria, the next step is to compare models by applying them to 

synthetic data sets in which the properties of the data we want to investigate 

can be controlled. 

The unfolding models presented here form a welcomed addition to the 

methodological toolkit of the behavioral scientist. More work is in progress; 

an important role in this development has been played by the working group on 

'Preference Analysis' of the SoMO (the methodological branch of the sociolog¬ 

ical unit (SSCW) of the Dutch Science Foundation (NWO) under the leadership 

of Van Blokland-Vogelesang. I am looking forward to seeing the new unfolding 

models applied increasingly frequently to types of data for which unfolding 

analysis has often been overlooked in the past. 
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