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Latent Class Models for Monotone and 
Nonmonotone Dichotomous Items 

Anton K. Formann 

Department of Psychology, University of Vienna 

A variety of scaling models of the latent class type is known for monotone dichoto¬ 

mous items. Both these models and their analogues for nonmonotone items are sketched 

in this paper. They are probabilistic in nature, allowing response errors for the omissions 

as well as for the intrusions, and can further be extended by providing for intrinsically 

unscalable respondents whose response behavior is not governed by the scaling model. 

All these models can be understood as simply restricted latent class analysis, so that the 

estimation and identifiability of the parameters (class sizes and item latent probabili¬ 

ties) as well as the goodness-of-fit tests are free of problems. The applicability of these 

models is demonstrated on two sets of data concerning the attitude towards nuclear 

energy and the attitude towards car-use and environment, respectively. While the five 

items of the first data could be substantiated to be, at least in part, nonmonotone, the 

ten items of the second scale seem to be monotone, even if they were expected to be 

nonmonotone; and only five of them can be put together to form a scale in the sense of 

the latent distance model. 

Requests for reprints should be sent to Anton K. Formann, Department of Psychology, 

University of Vienna, Liebiggasse 5, A-1010 Wien (Vienna), Austria. 

The theoretical part of this contribution and the first example mainly duplicate results 

reported by the same author in an earlier paper (Psychometrika, 1988). 

The author wishes to thank Herbert Hoijtink and an anonymous referee for their helpful 

comments on an earlier draft of the present paper. 
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The Unconstrained Latent Class Model for Dichotomous Data 

Let every person Pa (a = of a sample of size N respond to n dichotomous 

items /, (i = 1,, n). The reaction of each subject Pa to each item /, is denoted by 

and takes the values “1” (positive response) and “0” (negative response), respectively. 

By means of three assumptions, homogeneous groups of persons who differ from each 

other by their reaction tendencies with respect to the items are sought: 

1. The population, from which the observed sample is drawn, consists of T latent 

classes Ci,..., Cj,..., GY of relative sizes nt, with 

ST' = L (!) 
t 

2. For each item every class Ct has a specific probability of positive responses, 

Xai — 1, 

p(xai = 1|C() = p.i,. (2) 

3. Within each class the responses are stochastically independent, so that the prob¬ 

ability of all responses xa = (xal,..., xan) of subject Pa from class C, can be 

written as the product of the probabilities of that person’s individual responses, 

that is, 

P(*a|Ct)=IlP^(1-Pd<)1"I*i- (3) 

By weighting with the class sizes and summing over all classes, the unconditional 

probability of the response vector xa results, 

P(x*) = -PilO1"1"- (4) 
t i 

Since there are n dichotomous items, there exist only 5 = 2" distinguishable response 

patterns, whose relative frequencies of occurrence, corresponding to the left-hand side of 

(4), can be obtained from the sample. Subsequently, the unknown 7r(’s and p;|(’s can be 

estimated, for example, by the method of maximum likelihood (Clogg, 1977; Goodman, 

1974; McHugh, 1956). 
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Latent Class Models for Scaling Monotone Items 

Perfectly discriminating monotone items form the well-known Guttman (1950) scale 

which allows only a certain subset out of all possible response patterns. For example, 

for A: = 3 items ordered according to ascending difficulty, the following 4 out of the 

23 = 8 patterns are admissible: (0,0,0), (1,0,0), (1,1,0), (1,1,1). 

To weaken these unrealistically strong assumptions of the perfect Guttman scale, 

Goodman (1975) adds to these scalable types a further type of the unscalable which 

produces all possible response patterns. As was also shown by Goodman, this model 

can be interpreted as a restricted latent class model (Goodman, 1974): Each of the 

scalable types corresponds to a class whose item latent probabilities are restricted de¬ 

terministically to 0 or 1, so that each of these classes produces only his response pattern, 

and the unscalable class possesses unrestricted item latent probabilities. The unscalable 

class can be understood to be a rest category of persons not obeying the response laws 

met by the deterministic model; preferably it should be small. 

A somewhat different possibility to relax the strong assumption of items with perfect 

discriminatory power is realized by the so-called latent distance models (see Lazarsfeld 

fc Henry, 1968, chap. 5) providing item-specific unknown probabilities of errors for the 

omissions (instead of the positive, the negative response is observed) and the intrusions 

(instead of the negative, the positive response occurs). Combining the latent distance 

models with the Goodman model with intrinsically unscalable respondents leads to more 

flexible variants which in turn are also specifically restricted latent class models (Dayton 

& Macready, 1980). 

The Deterministic Scaling Model for Dichotomous Point Items 

Assuming perfectly discriminating point items, their trace lines are discontinuous func¬ 

tions with two discontinuities: Each person Pa with attitudinal parameter ,fa never 

agrees with item if /?„ lies under the first cutting point, Su, or if /?„ lies over the 

second cutting point, <52„ of that item; on the other hand, if /?„ lies between Su and <52,, 

the probability of agreement with item li is 1. Therefore, the probability of the positive 



146 

response, p(xa, = l|/?a), being dependent upon the latent parameter /?„, is for item I, 

P{Xai = 1IA.) = 

0 for and /?„ > S2i, 

1 for Su < 0a < tin- 
(5) 

If the item characteristic (IC-)curves do not overlap, neither the order of the items nor 

the order of the subjects can be determined: Independent of the order of the items, 

the set of scalable response patterns remains the same; it comprises those patterns 

containing exactly one positive response. For those persons showing exclusively negative 

responses, their position on the underlying continuum does not coincide with the position 

of any item; thus, they cannot be located on the latent scale and have to be considered 

unscalable. If, on the contrary, adjacent pairs of IC-curves of ordered items are assumed 

to overlap, the ordering of the items becomes relevant since rearranging the order of the 

items actually changes the subset of admissible patterns. 

In the deterministic case (errorless data), the order of the items can be determined 

by simply interchanging the items and the response patterns. If the data can be ar¬ 

ranged so that the 1’s create a parallelogram structure, the items form a perfect scale. 

When columns and rows of the data matrix are arranged optimally, any departure from 

the parallelogram structure indicates a departure from the perfect scale. The order of 

the items and the order of the subjects on the underlying continuum is given by the 

arrangement of the items and of the response patterns generating the parallelogram 

(Torgerson, 1958, p.314, p.316). 

Probabilistic Scaling Models for Dichotomous Point Items 

Transferring Goodman’s concept of the unscalable from the monotone to the nonmono¬ 

tone items, to the scalable types (there are n in the case of non-overlapping items, and 

2n — 1 in the case of pair-wise overlapping items) a further type must be added pro¬ 

viding for those respondents who do not conform to the deterministic model. Applying 

the concept of latent distance models to nonmonotone items takes response errors into 

account for the scalable respondents (Formann, 1988). 

Response-error model REO. For point items, the most general form of IC-curves 

(see Figure 1) assumes three probabilities for positive responses per item a high 
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Figure 1: Trace Line of a Dichotomous Point Item with Three Levels of Agreement. 

probability an of agreement for persons in the middle of the latent dimension, and two 

low probabilities au and a3; for persons with extremely positive and extremely negative 

attitudes: 
«u for /3a < Su, 

p(xai = 1|A,) = • an for Su < Pa < 6n, (6) 

a3i for /3a > Sn- 

Thereby it is assumed that the persons’ distribution over the latent trait is uniform in 

the interval [0,1], so that the cutting points Su and £2> °f the IC-curves and the persons’ 

positions [}a on the latent continuum can be interpreted as probabilities: Su and #21 fix 

the proportions with which persons fall into the three sections of the latent trait that 

are formed by each one item, and /?„ gives the relative position of subject Pa within the 

population in the sense of percentiles. 

Special cases of (6) arise by equating some of the probabilities describing the IC- 

curves; cf. Formann (1988), formulas (7) to (11). 

Response-error model RES. The IC-curves are assumed to be specific for each item, 
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but this model provides two different levels of agreement instead of three, the one for 

persons with high agreement, the second for persons with low agreement: 

p(xai = \\Pa) = 
Oli 

«2, 

for /3a < 6u and f)a > S2,, 

for <5i, < ()a < Sji- 
(7) 

Response-error model RE4- As in RE2, the IC-curves are specific for each item, 

but symmetric. So, they are described by a single parameter Oi, each, standing for the 

response errors both with respect to the intrusions and the omissions: 

p(xai = 1 \/3a) = 
a,, for /3a < <5i, and /3a > 62,, 

1 - au for <5,. < Pa < 62,. 
(8) 

Even if this model looks less promising from the conceptual point of view because intru¬ 

sions and omissions are caused by psychologically distinct processes, so that equating 

their probabilities can hardly be argued, from the statistical point of view it may be of 

interest due to its parsimony. 

Each of the response-error models can be defined for varying sets of scalable response 

patterns, generated by nonoverlapping or overlapping trace lines of 2,3,... items, and can 

be further extended to incorporate unscalable respondents. Assuming local stochastic 

independence of the answers of each person, all resulting models can be seen as restricted 

latent class models in Goodman’s (1974) sense: Whereas the class sizes tt,, whose number 

equals the number of scalable types (plus 1, when a group of unscalable respondents is 

assumed to exist), remain unconstrained, certain of the item latent probabilities p,|t have 

to be set equal to each other. Table 1 contrasts for n = 3 items the latent probabilities of 

the unrestricted latent class model to those of the response-error model REO under the 

additional consideration of unscalable respondents and assuming overlapping IC-curves 

for pairs of adjacent items. 

Since all point item models mentioned above are specifically restricted latent class 

models, they are statistically testable by means of standard goodness-of-fit tests (Pear¬ 

son and likelihood-ratio chi-squared statistics) in the usual manner. Thereby the degrees 

of freedom are given by the difference of the number of all possible response patterns 

minus 1, that is 2’* — 1, and the number of independent parameters to be estimated, that 

is the number of classes minus 1, T — 1, plus the number of parameters describing the 
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TABLE 1 

Latent Class Parameters for the Unrestricted Model (A), and the Response-Error Model 
REO with a Class of Unscalable Respondents for Three Pair-Wise Overlapping Rems 
(B). 

CLASS 

1 
2 
3 
4 
5 
6 

A 
ITEM LATENT 

CLASS PROBABILITIES 
SIZE 

_h h h 
Pl|l P2|l P3|I 

*2 Pl|2 P2|2 P3|2 
*3 Pi |3 P2|3 P3|3 
^ Pi \4 P2|4 P3|4 
*5 Pl|5 P2|5 P3|5 
^6 Pi [6 P2|6 P3|6 

SCALABLE 

RESPONSE 
PATTERN 

100 
110 
010 
011 
001 

unscalable 

II 
ITEM LATENT 

PROBABILITIES 

Jl Ij h 
021 012 013 

021 O22 013 

O31 022 O13 

031 «22 023 

031 O32 «23 

Pi I- P2|u P3lu 

trace lines. The restrictions used in the latent class models to realize the assumptions 

met here consist of constant (fixed to 0 or 1) or equated item latent probabilities, so 

that the ML parameter estimation can be performed by means of available computer 

programs, for example by means of that developed by Clogg (1977). This program pro¬ 

vides for a test of local identifiability (Goodman, 1974; McHugh, 1956) which is all the 

more important as not all models must be identifiable (e.g., the response-error model 

REO is not identifiable, in principle). 

Within the framework of latent class analysis, scaling each respondent consists in 

computing the conditional (or posterior) class membership probabilities p(Ct\xa) of that 

response pattern he has shown: 

P(C,\xa) = KtpiXalC^/piXa). (9) 

In unconstrained latent class analysis, p(Ct\xa) simply gives the probability with which 

each pattern belongs to each class; in scaling models of the latent class type, where 

the classes correspond to ideal response patterns, the class membership probabilities 

quantify the affinity of each pattern to the ideal ones. This gives the possibility to 

arrange the non-ideal response patterns on the latent scale fixed by the ideal response 

patterns, and is of special interest for the unscalable patterns in case that an unscalable 
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class is assumed to exist: Without having at hand this information for the unscalable 

patterns, nothing would be known concerning their relation to the scalable patterns; 

contrary to this, for the scalable patterns their order on the latent scale is determined 

by the order of the items. 

The strategy of class assignment being optimal with respect to classification errors 

assigns each response pattern xa deterministically to that class C* with the highest class 

membership probability, 

P(Cl\xa) = max p(Ci|a:0). (10) 
t 

For the possibility to assign scale values to the patterns, see Formann (1988, p.54). 

Finally, the problem is to be mentioned that the order of the items must be given to 

know the scalable response patterns. This leads to the same practical complication as 

in the presence of monotone items if one wishes to apply those latent distance models 

for which the latent order of the items is not necessarily identical with the manifest 

order according to their item marginals: For each set of empirical data, the order of 

the items must be determined prior to the parameter estimation by means of one of the 

latent class models for nonmonotone items. In case that this is not possible a priori, 

that means, based on theoretical grounds, several methods are available, in principle, to 

find out the correct order, or, at least, an approximation to it. Some of these methods 

will be sketched in the following. First, by interchanging the columns (items) and rows 

(response patterns) of the data matrix one can try to approximate best the parallelogram 

structure described for the deterministic (Guttman) approach of point items; if, after 

rearranging, the most frequent response patterns create a parallelogram, then that order 

of the items can be used as the initial configuration for performing analyses by means 

of latent class models. Second, one can compute the intercorrelations of the items; 

it can be expected that neighboring items correlate higher than others, and that the 

correlation decreases with increasing distance between the items. (Note, however, that 

this plausible claim cannot be proven without specifying the IC-curves; but even within 

that class of models described here, its proof is possible for simple special cases only.) 

Third, the cross-tabulation of positive versus negative responses to each item with an 

external categorical criterion reflecting the attitude under consideration - if available - 

gives an impresssion of the IC-curves of all items; that category of the external criterion 
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where each item has its highest probability of agreement can be used to estimate the 

position of each item on the underlying altitudinal continuum. Fourth, the correct order 

of the items can be ascertained by comparing the goodness-of-fit statistics for varying 

orders of the items. Whereas the first three methods bear no computational problems, 

the fourth method is practicable only if the order of 2 or 3 items was unclear; otherwise, 

the computational effort would become prohibitive. 

Empirical Example 1: Attitude Towards Nuclear Energy 

The results to be presented in the following summarize those given by Formann (1988) 

and refer to a sample of A = 600 persons and n = 5 items on attitude towards nuclear 

energy. To get the presumable order of the items, their intercorrelations and probabilities 

for positive responses dependent upon the general attitude towards nuclear energy, which 

was available as a further, external criterion, were computed. Both methods led to the 

same result, whereby positive responses to item I\ indicate the most favorable attitude 

towards nuclear energy, and positive responses to item /5 the most disapproving attitude. 

Since the formulation of the items /j and /5 as well as their cross classification against 

the general attitude towards nuclear energy suggest monotonicity of their IC-curves, 

the five items under consideration can be seen to be a mixture of two (inversely scored) 

monotone and three nonmonotone items. 

Several analyses assuming different patterns to be scalable as well as different re¬ 

sponse error models with and without an additional class of unscalable respondents were 

performed. Finally, they led to the conclusion that a rather complex model (RE2/4, 

that is RE4 for the items /i and /5, and RE2 for the items I2, h, and I4, with a class 

of unscalables) is not to be rejected if the following ideal response patterns are as¬ 

sumed: (1,0,0,0,0), (1,1,0,0,0), (1,1,1,0,0), (0,1,1,0,0), (0,1,1,1,0), (0,0,1,1,1), (0,0,0,1,1), 

and (0,0,0,0,1). For this nine-classes model (8 scalable classes plus 1 unscalable), the 

parameter estimates together with the goodness-of-fit statistics are given in Table 2. 

Most of the respondents are unscalable (rrg = .424). The sizes of the classes corre¬ 

sponding to the scalable patterns differ considerably from each other; whereas Xj — for 

the perfect pattern (1,0,0,0,0) - and - for (1,1,0,0,0) - are very small, considerable 
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TABLE 2 

Attitude Towards Nuclear Energy - Goodness-of-Fit Tests, Class Sizes and Item Latent 
Probabilities for the Response-Error Model RE2/4 with a Class of Unscalable Respon¬ 
dents. 

CLASS SIZE ITEM LATENT PROBABILITIES 

1 
2 
3 
4 

5 
6 
7 
8 
9 

I\ h h f-i h 
.003 .936 
.002 .936 
.091 .936 
.083 .064 
.020 .064 
.317 .064 
.033 .064 
.028 .064 
.424 .476 

.267 .014 

.503 .014 

.503 .807 

.503 .807 

.503 .807 

.267 .807 

.267 .014 

.267 .014 

.629 .974 

.237 .006 

.237 .006 

.237 .006 

.237 .006 

.997 .006 

.997 .994 

.997 .994 

.237 .994 

.929 .286 

X2 = 10.79, L2 = 11.53, d{ = 10, X95 = 18-31 

Note: X2 = Pearson’s chi-squared statistic; L2 = likelihood ratio test. 

portions of the sample belong to the patterns (1,1,1,0,0), (0,1,1,0,0) and especially to 

(0,0,1,1,1) whose class size x6 is .317. The cutting points of the items result from the 

class sizes. Their relations depend upon the response patterns which were defined to 

be scalable, so that no general formulas can be given. For more details, see the two 

hypothetical examples in Formann (1988, pp. 52-53) and the calculations referring to 

the present example being described there (p. 59). In their correct order on the latent 

continuum, here the cutting points are 6n = 0, = .003, St3 = .005, £21 = 096, 

6u = .179, <5,5 = 622 = .199, 623 = .516, 624 = -549, 62s = .577. Thus, for the 

ranges ft, = <52, — <5,,- of high probability of agreement per item, one obtains ft, = .096, 

ft2 = -196, ft3 = .511, f?4 = .370, ft.5 = .378 showing that with respect to this criterion 

of discriminatory power, the items /2, ft, and ft can be classified as being good, while 

the items 7, and /3 must be classified as being poor discriminators. (For example, the 

subsample of the scalables is divided by item I2 at the rate .196: .381 ss 1:2, but by 

item I3 at the rate .066: .511 ~ 1:8; that is, nearly all scalable respondents show the 

same - high - probability for positive reactions at item I3, while this is not the case 

for item /2.) The latent probabilities of each item may be used as the second criterion 

for discriminatory power: The greater a,; and a3,, respectively, the greater are the re- 
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sponse errors with respect to the intrusions; the smaller aii, the greater are the response 

errors with respect to the omissions; and, ideally, Oj, = a3i = 0 and a2, = 1, which 

holds for the deterministic point items. With respect to this second criterion, for the 

five items under consideration a somewhat different picture emerges as compared to the 

first criterion, since now only for item I2 the discrepancy between the low and the high 

probabilities of agreement is unsatisfying (o12 = .267, a22 = .503). On the other hand, 

the items Ix and /5 are nearly perfect (an = .064, a2i = 1 - an = .936; a15 = .006, 

a2s = 1 — ajs = .994), and the items and 1 \ discriminate quite efficiently. 

Since more than 40 percent of the sample belong to the unscalable class, for a 

relatively large portion of the response patterns this class is the most probable, too. 

Thereby, using (9), even one of the scalable patterns will be assigned to the unscalable 

class, namely the pattern (0,1,1,1,0). Inspecting the class membership probabilities 

further, it becomes evident that no response patterns will be assigned to the classes C\ 

and C2 at all, and that only the scalable patterns (1,1,1,0,0), (0,1,1,0,0), (0,0,1,1,1), and 

(0,0,0,0,1) belong to the corresponding scalable class; the remaining scalable patterns 

(1,0,0,0,0), and (1,1,0,0,0) will be assigned to the “false” scalable class C3 and the 

pattern (0,0,0,1,1) will be assigned to the “false” class C6. But contrary to this, in the 

case of some of the response patterns not being conform to one of the scalable classes, 

they will be assigned to one of these latter. 

Concerning the measurability of the attitude towards nuclear energy, it can be con¬ 

cluded that the five items under study form a onedimensional scale, however, for less 

than 60% of the sample only; the remaining subjects do not fit into that scale. Even if 

this finding looks somewhat unsatisfactory, it seems typical of scaling models providing 

for unscalable respondents; cf. the results reported in Goodman (1975) what concerns 

the application of the quasi-independence model to monotone items. 

Empirical Example 2: Attitude Towards Car-Use and Environment 

In the Netherlands, 10 statements concerning car-use and environment were presented to 

two samples of 300 persons each at two occasions, the first one before and the second one 

after a campaign. The dichotomously scored items were suspected to be nonmonotone. 



154 

TABLE 3 

Attitude Towards Car-Use and Environment - Response Patterns, a3, and Their Ob¬ 
served Frequencies, ns. Before and After the Campaign, for the Items /i, Ii, 1$, h. and 

h- 

a9 n9 a3 n3 a9 n9 cl9 n3 
12578 PRE POST 12578 PRE POST 12578 PRE POST 12578 PRE POST 

11111 51 71 
11110 8 22 
11101 21 33 

11100 15 15 
11011 11 8 
11010 7 6 
11001 20 23 
11000 11 17 

10111 66 39 

10110 7 9 
10101 14 5 
10100 4 1 
10011 3 4 
10010 2 
10001 2 2 
10000 1 1 

01111 9 12 

OHIO 2 2 
01101 7 5 
01100 4 4 
01011 3 3 
01010 3 2 
01001 2 2 
01000 14 7 

00111 7 4 
00110 1 
00101 4 1 

00100 1 1 
00011 
00010 
00001 - 1 
00000 

• Item 1: Car use cannot be abandoned. Some pressure on the environment has to be accepted. 

• Item 2: A cleaner environment demands for sacrifices like a decreasing car usage. 

• Item 5: It is better to deal with other forms of environmental pollution then car driving. 

• Item 7: Technically adapted cars do not constitute an environmental threat. 

• Item 8: Considering the environmental problems, everybody should decide for themselves how 
often to use the car. 

Therefore, it was intended first to apply those types of latent class models, which were 

used for analyzing the attitude towards nuclear energy, to the pre-test data on car-use 

and environment, and second, to validate the solution found for the pre-test data on 

the post-test data; finally, the changes caused by the campaign should be inferred by 

applying simultaneous latent class analysis (Clogg & Goodman, 1984) to the pre- and 

post-test data. 

Because of the greater number of items, the smaller sample size, and the lack of 

additional external criteria reflecting general attitude towards car-use and environment, 

the data on car-use and environment are harder to analyse than those on nuclear en¬ 

ergy: As a consequence of the lack of additional external criteria, the presumable order 

of the items can be derived only from their intercorrelations and from the frequency 

distribution of the response patterns (parallelogram structure of patterns having been 

observed frequently); however, the latter one is more difficult for 10 items and 300 per¬ 

sons than for 5 items and 600 persons. In addition, the asymptotic ^-distribution of 
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the goodness-of-fit statistics becomes doubtful for sparse frequencies so that the fit of a 

certain model assuming a certain order of the items cannot be judged correctly. 

Taking all this into consideration, the strategy has been changed: Instead of ana¬ 

lyzing all 10 items of the pre-test data together (with the further intention to select 

inappropriate items later, if necessary), some overlapping subsets of items were defined, 

for example, one of them containing the items Ix to /5, another one containing /6 to 

/io, a third one containing I4 to It, and so on. For each subset its response patterns’ 

frequencies were counted, and then used to fix the order of the items within that subset 

by applying the parallelogram criterion; after determining the presumable order within 

each subset, to each one of them latent class analysis was applied in order to assess the 

fit. As a result of this tentative search strategy, finally for the five items I\, It, h, It, 

and Is, see Table 3, and the 4 ideal response patterns (0,1,0,0,0), (1,1,0,0,0), (1,1,1,1,1), 

and (1,0,1,1,1), the fit was found to be very good if item specific response errors are 

allowed for both the intrusions and the omissions. As can be seen from the solution pre¬ 

sented in Table 4 (H0,ti), in part the response errors of the intrusions are considerable 

(items 7i, Is, and /8), while they are rather small for the omissions. As can bee seen, 

too, the class sizes had to be restricted in order to get the model identifiable: The first 

three classes have the same size of about 20 % of the sample, the fourth class comprises 

about 40 % of the sample. (This type of restrictions is an alternative to restrictions of 

the latent probabilities for the first and the last item; cf. the solution described for the 

data on nuclear energy, Table 2). That none of the remaining items /3, I4, If„ I9, and 

I\o do fit into this scale will be shown later. 

If the same model is applied to the post-test data, its fit is also very good, however, 

revealing slightly different parameter estimates as compared with those of the pre-test 

data; see Table 4 (H0, t2). To find out which changes must be rated to be relevant, 

simultaneous analyses of both data sets were performed assuming a) no changes (H\), 

b) changes of the class sizes alone (II2), and c) changes of the item latent probabilities 

alone (7/3). According to the results of the analyses summarized in Table 4 again, the 

hypothesis of no changes at all (//,) must be discarded, the other two hypotheses can 

be maintained. 

This can be concluded from the comparison of the three hypotheses with that one 
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TABLE 4 

Attitude Towards Car-Use and Environment - Parameter Estimates and Goodness- 
of-Fit Tests for Some Hypotheses [Ideal Response Patterns: (0,1,0,0,0), (1,1,0,0,0), 
(1,1,1,1,1), and (1,0,1,1,1)]. 

HYPOTHESIS CLASS CLASS 
SIZE 

H0 <i 1 .197 
2 .197 
3 .197 
4 .408 

H0 t2 1 .210 
2 .210 

3 .210 
4 .369 

Ri 1 .198 
2 .198 
3 .198 

_4_.406 
Hi _tj_ 

1 .198 .257 
2 .198 .257 

3 .198 .257 
4 .405 .238 

H3 h 1 .202 
2 .202 
3 .202 
4 .392 

t2 1 .202 
2 .202 
3 .202 
4 .392 

Hi vs. H0 L* = 26.651 

H2 vs. Ho L2 = 16.101 
H3 vs. Ho L2 = 0.069 

ITEM LATENT PROBABILITIES HYPOTHESES 
h h h h h TESTS 

.514 .941 .409 .292 T81 X2 = 21.403 

.883 .941 .409 .292 .481 L2 = 22.721 

.883 .941 .950 .801 .898 df = 17 

.883 .171 .950 .801 .898 *95 = 27.59 

.703 .942 .472 .225 TS55 X2 = 14.295 

.893 .942 .472 .225 .555 L2 = 16.544 

.893 .942 .946 .884 .822 df = 16 

.893 .484 .946 .884 .822 *95 = 26.30 

.603 .945 .432 .265 304 X2 = 63.821 

.888 .945 .432 .265 .504 L2 = 65.916 

.888 .945 .945 .825 .865 df = 44 

.888 .340 .945 .825 .865_X95 = 60.48 

.619 .942 .473 .299 J527 X2 = 57.133 

.892 .942 .473 .299 .527 L2 = 55.366 

.892 .942 .955 .845 .876 df = 4.3 

.892 .190 .955 .845 .876 X95 = 59.30 

.519 .936 .415 .297 .485 

.884 .936 .415 .297 .485 

.884 .936 .954 .805 .901 X2 = 35.752 

.884 .151 .954 .805 .901 L2 = 39.334 

.701 .945 .461 .217 .549 d/= 34 

.892 .945 .461 .217 .549 X95 = 48.60 

.892 .945 .943 .874 .821 

.892 .506 .943 .874 .821 

df = 11 X95 = 19.68 

df = 10 xis = 18.31 

df = 1 Xls = 3-84_ 

X2 = 35.698 
L2 = 39.265 
df = 33 

Xls = 47.40 

Notes: X2 = Pearson’s chi-squared statistic, L2 = likelihood ratio test. Both the degrees of freedom 
{df) and the critical x2"values refer to the corrected values when collapsing those patterns having zero 
frequencies, cf. Table 3. The model selection was based on these corrected values. 

— pre-test, <2 = post-test. 
Hq: changes of both the class sizes and the item latent probabilities. 
H\\ no changes. 
H-2'. changes of the class sizes alone. 
H$\ changes of the item latent probabilities alone. 
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which allows both changes of the class sizes and of the item latent probabilities (//0) 

being equivalent to the separate analyses of both sets of data. The hypothesis of changes 

of the item latent probabilities alone (H3) fits better, but the hypothesis of changes of 

the class sizes alone (H2) seems to be more appealing: First, from the conceptual point of 

view, because H2 represents a changing attitude in the population that is recorded with 

a constant instrument of measurement, whereas under //3 that instrument itself changes, 

and second, from the statistical point of view, because H2 is more parsimonious with 

respect to the number of parameters. It is interesting to note that assuming changes 

of the class sizes alone, they become rather massive as compared with the changes 

resulting from the separate analyses of both sets of data. That is, changes of the item 

latent probabilities that are not allowed under this hypothesis, obviously influence the 

extent to which changes in the class sizes result in case that solely such changes are 

allowed. 

The changes in the class sizes caused by the campaign (and possibly also by the 

inseparable trend) find a simple interpretation after having had a look at the wording of 

the 5 statements, see Table 3, revealing that item I2 should be inversely scored: Then, 

the positive answer at all 5 items indicates positive attitude towards car-use, and the 

order of the items is not I2s I\, (Is, I7, Ig) - the parantheses indicate that Is, It, and Ig 

take the same position -, but /j, (/5, /7, /8), and, inversely scored, I2; the 5 monotone 

items /], Ig, It, Ig, and inversely scored, I2, form a scale whose levels correspond to 

the ideal patterns (0,0,0,0,0), (1,0,0,0,0), (1,1,1,1,0), and (1,1,1,1,1), so that the solution 

based on the assumption of nonmonotone items is equivalent to Lazarsfeld’s well-known 

latent distance model for monotone items. The effect of the campaign goes towards the 

intended direction in that those classes showing less positive answers concerning car-use 

become greater. 

After having identified that five-items scale, one can investigate whether the remain¬ 

ing items conform to that scale or not. This can be done by separately analyzing each 

one of the remaining items together with those 5 items forming the scale, whereby the 

latent probabilities of the 5 items belonging to the scale are restricted according to the 

latent distance model for monotone items, and the latent probabilities of the additional 

item are unrestricted. The degree to which the additional item fits into the scale can 
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TABLE 5 

Attitude Towards Car-Use and Environment - Goodness-of-Fit Tests and Estimated IC- 
Curves of Item /6 as well as of the Inversely Scored Items I3, I4, /g, and /10, when Each 
One of Them is Analyzed Together with the Scale-Items 7i, /5, It, Is, and, Inversely 
Scored, It- 

CORRESPONDING 
CLASS IDEAL PATTERN 

OF THE SCALE 
1 (0,0,0,0,0) 
2 (1,0,0,0,0) 
3 (1,1,1,1,0) 

4 _(M,1,1,1) 
FIT TESTS Y2 

L2 
df 

_X95_ 

LATENT PROBABILITIES OF ITEM 
h I4 16 h 110 

.163 
1.000 

.801 

.969 

59.189 
65.592 

30 
43.77 

.376 

.341 

.684 

.802 

58.934 
62.958 

33 
47.40 

.039 

.045 

.412 

.695 
42.563 
46.436 

31 
44.99 

.565 

.843 

.792 

.945 
39.149 
41.021 

34 

48.60 

.312 

.484 

.802 

.839 

54.207 
61.963 

32 
46.19 

• Item 3: The environmental problem justifies a tax burden on car driving so high that people 
quit using a car. 

• Item 4: Putting a somewhat higher tax burden on car driving is a step in the direction of a 
healthier environment. 

• Item 6: Instead of environmental protection measures with respect to car use, the road system 
should be extended. 

• Item 9: People who keep driving a car, are not concerned with the future of our environment. 

• Item 10: Car users should have to pay taxes per mile driven. 

Note: Concerning the goodness-of-fit tests, see the remarks in Table 4. 

be seen from the goodness-of-fit statistics, and the trace line of the additional item is 

estimated by its latent probabilities resulting for the classes being defined in terms of 

the latent distance model. So, information becomes available for each additional item 

concerning its (non-)monotonicity. 

Applying this procedure to item /6 as well as to the inversely scored items I3, I4, Ia, 

and Iio (pre-test data) turned out that none of them can be or needs to be included 

into the scale. For the items /3, /4, /6, and /m, this follows from the significance of 

the goodness-of-fit tests, and for the inversely scored item /9, for which the fit is still 

acceptable, it follows from the estimated trace line: It is approximately monotone, but 

nearly the same as compared with that of item Ii- Because the trace lines of item I6 and 
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for the inversely scored items I3, I4, and /i0 also seem to be approximately monotone, 

see Table 5, (Strictly speaking, they may not be interpreted because of the significant 

goodness-of-fit statistics.), perhaps the most striking result of the latent class analyses 

of the data on car-use and environment is, that monotonicity of all 10 items can be 

supposed after an appropriate scoring of the answers. 

Final Remarks 

The analyses of the first data (attitude towards nuclear energy) and their results showed 

the usefulness of latent class models for nonmonotone items. That the second data 

(attitude towards car-use and environment) unexpectedly were not conform to the as¬ 

sumption of nonmonotonicity, was at first sight disappointing. But, on the other hand, 

this insigth led to an impressive demonstration of the flexibility and generality of latent 

class analysis: Even if starting from false expectations, in the end a specific scaling 

model with sufficient goodness-of-fit could be identified for a five-items subset out of ten 

items, giving at least a ranking of the (monotone) items and of all the classes generated 

by them. (Note that in contrast to the first data, in case of the data on car-use and 

environment there is no need for an unscalable class.) In addition, this scaling model 

could be rediscovered for the post-test sample, so that simple hypotheses with respect 

to change due to the campaign became testable by means of simultaneous latent class 

analysis of the pre- and post-test data. So, the data on attitude towards car-use and 

environment also may serve as a nice example of assessing change in survey data using 

latent class analysis. 
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