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Ordinal Latent Class Analysis for Single-peaked 
Items 
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Abstract: In this paper we propose and develop a latent class model for the analysis 
of dichotomous items for which the functional relationship between the probability of a 
postive response and the subject’s position on the latent continuum is not monotone, 
but single-peaked. Our model starts from the assumption that the set of latent classes is 
totally ordered, and imposes a partial ‘umbrella order relation on each item’s response 
probabilities. By adapting an isotone regression procedure for the weighted least squares 
estimation of parameters subject to the inequality constraints implied by an ‘umbrella’ 
ordering, and by incorporating this procedure in an EM-algorithm, we succeed in es¬ 
timating the item response probabilities under the constraint of single-peakedness. By 
way of illustration we discussion the application of our latent class model to two data 
sets. Finally, we relate the present model to some of our earlier work in the same field. 
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1 Introduction 

In his Theory of Data (1964), Coombs drew a fundamental distinction between data in 
which a subject’s positive response to a particular item should be interpreted in terms of 
a dominance relation, and data in which such a response should be interpreted in terms 
of a proximity relation. For the former type of data, a positive response indicates that 
the subject has more of an underlying capacity or attitude than is strictly needed to 
respond positively to the item; for the latter kind of data, on the other hand, a positive 
response is an indication of the fact that the subject’s position on the latent continuum is 
close to the position which corresponds with the item’s content. The difference between 
these two types of data may be best illustrated by means of a one-dimensional geometric 
model in which both subjects and items are mapped onto points on a coordinate axis. Let 

and 8, represent respectively the subject and item coordinate. Then, for dominance 
data, we have that person a will respond positively to item i if and only if 8a > 8,. For 
proximity data, on the other hand, the subject’s reaction is assumed to depend on the 
distance between the item’s position and his own. In this case it is assumed that subject 
a will respond positively to item i if and only if \0a — 6(| < r, for some critical threshold 
r. 

On the basis of these deterministic geometric models, different ‘scaling’ procedures 
have been developed for both types of data. These procedures should be thought of in 
the first place as methods for testing whether the basic model assumptions are appro¬ 
priate for the data on hand. If that turns out to be the case, these scaling techniques 
allow the subjects and items to be scaled. For dominance items, Guttman (1944) devel¬ 
oped scalogram analysis, which became a much used scaling procedure for dichotomous 
monotone items; Coombs’ parallelogram analysis for the analysis of dichotomous prox¬ 
imity items, on the contrary, was used to a much lesser extent. However, it seems fair to 
say that the widespread use of both scaling procedures was thwarted by their intrinsic 
deterministic character. Both scalogram and parallelogram analysis often gave equivo¬ 
cal results when applied to data that contain some non-admissable response patterns. 
Scalogram analysis nor parallelogram analysis seemed to be able to accomodate in a 
satisfactory way to random deviations and fluctuations in the data. As a remedy for the 
apparent shortcomings of deterministic models, appropriate probabilistic scaling models 
were developed. These probabilistic models should provide more realistic representations 
of the response processes which determine a subject’s reactions. Moreover, they should 
serve as a basis on which efficient estimation procedures for subject and item parameters 
can be developed and by means of which statistical hypotheses about these parameters 
can be tested. 

The basic element in probabilistic item response models is the item trace line which 
describes how the probability of a positive response to a (dichotomous) items varies 
as a function of the subject’s position on the latent continuum. In its most general 
formulation, we may represent the traceline of item i by p,(/3) in which 0 is the subject’s 
position on the latent continuum. Before specifying the functional form of Pi(0) in more 
detail, some more qualitative observations may be made. 

For dominance items it seems reasonable to suppose that Pi(0) is a monotonically 
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non-decreasing function of its argument: 

Pi < fa => Pi(Pi) < P,(0i) . 

Items of this type are called monotone items: the higher a subject’s position on the latent 
continuum, the higher his probability for a positive response. Monotone items are very 
ubiquitous in social and behavioral research. Almost every attainment test, in which the 
maximally attainable performance of the subjects is being assessed, consists of monotone 
items. Also many attitude questionnaires are composed of this type of items. A well 
known example of an item response model for dichotomous items is the Lord-Birnbaum 
(see Lord and Novick, 1968) model for which we have 

MP) = 
i 

1 + 

in which the item discrimination parameter o, and the item difficulty parameter Si are 
item specific parameters. Probably even better known is the model proposed by Rasch 
(1960), and which may be derived from the Lord-Birnbaum model by assuming that all 
items have equal discrimination parameters. 

Lor proximity data, on the other hand, the tracelines Pi{0) cannot be monotonically 
increasing function of 0. If, for this type of items, the probability of a positive response is 
a function of the distance between the subject and the item on the latent continuum, one 
may expect pi(0) to increase as a function of 0 up to some point on the latent continuum 
for which Pi{0) reaches its maximum value, and to decrease as a function of 0 thereafter. 
In other words: for proximity items Pi(0) should be a unimodal or single-peaked function 
of 0. The more formal translation of this requirement is quasi-concavity. The traceline 
Pi(0) satisfies quasi-concavity if: 

Pi < Pi < 03 => P,(0i) > min [;>,(/?! . 

Quite recently, Andrich (1988) and Hoijtink (1990) have developed parametric item 
response models for dichotomous non-monotone items in which the probability of a 
positive response is a function of the distance between the subject and item position. In 
the model proposed by Andrich, the item response function is given by 

Pi(0) = 
1 

1 + e{0-6.p ■ 

In Hoijtink’s model, the item response function is given by 

P'{0] 1 + P - «5,)2]7 ’ 

In both models, 6, is the item location parameter: it represents the value on the la¬ 
tent continuum for which the probability of a positive response reaches its maximum 
value. The item- independent power parameter 7 in Hoijtink’s model determines the 
steepness of the item response function. It is clear that both models lead to symmetric 
single-peaked (strongly quasi- concave) item response functions for the non-monotone 
items. However, both models have some clear drawbacks. Due to the fact that none 
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of the two models belongs to the so- called family of exponential models, estimation of 
the unknown item and subject parameters proves to be very difficult from a numerical 
point of view. Andrich’s procedure, which uses joint maximum likelihood estimation 
of subject and item procedure, may result in biased and even inconsistent estimates; 
Hoijtink’s procedure, which uses marginal maximum likelihood estimation, has to cope 
with difficulties originating from the fact that the maximum likelihood function which is 
maximized has many discontinuity points. Moreover, in Andrich’s model the maximal 
value of any response probability, which is attained for ft = <§,, is one half; on which 
theoretical grounds this result might be defended is unclear. 

An alternative approach to the development of statistically sound techniques for the 
analysis of non-monotone items was proposed by Formann (1988), who adapted the clas¬ 
sical latent class model (Lazarsfeld and Henry, 1968) in a particular way. By assuming 
that he knows in advance the ordering of the items along the unidimensional continuum, 
and also knows the way in which the positive response regions of two or more adjacent 
items overlap on this continuum, Formann is able to postulate a specific number of latent 
classes, each of them corresponding to one ‘perfect' response pattern. By formulating 
different assumptions about the way in which random deviations from these perfect pat¬ 
terns may occur, Formann succeeds in defining and implementing various latent class 
models whose main differences reside in the generality or specificity of ‘error’ or ‘cor¬ 
rect’ response probabilities. More recently, Bockenholt and Bockenholt (1991) described 
another version of a latent class model for non-monotone models, in which the item 
response probabilities from different latent classes are assumed to satisfy a (possibly 
multi-dimensional) unfolding model which closely resembles Andrich’s model. 

In the present paper we will discuss another adaptation of the traditional latent class 
model for the analysis of non-monotone items. The approach proposed here is related to 
our earlier efforts to develop ordinal latent class models, i.e. latent class models in which 
the latent classes can be thought of as being ordered. For the development of ordinal 
latent class models for the analysis of monotone items, we refer to Croon (1990, 1991a). 

2 The ordinal latent class model for quasi-concave 

items 

2.1 The traditional latent class model: some notation and 

terminology 

Assume n dichotomous items are given; an arbitrary item will be denoted by j. The 
total number of response patterns is then equal to 2n. A particular response pattern 
will be denoted by v, its observed frequency in a sample of N respondents by /„ and 
its probability under some theoretical model by p„. Response patterns can also be 
represented by a binary indicator variable x^y. x^j = 1 if in response pattern 1/ the 
response to item j is positive; xuj = 0 otherwise. 

Assume furthermore that the data are analyzed by means of a latent class analysis 
with T latent classes. An arbitrary latent class will be denoted by t. The conditional 
probability that a subject from latent class t will respond positively to item j will be 
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denoted by pj|,. The proportion of subjects belonging to latent class <, its latent propor¬ 
tion, will be denoted by jr,. Now, assuming local independence within each latent class, 
the probability p„|( of observing response pattern u in latent class t is given by 

j 

We also have 

p*= ^PH‘7r< • 

t 

In the classical unconstrained latent class analysis for dichotomous items, the n x 
T item response probabilities and the T latent proportions are the unknown model 
parameters which have to be estimated on the basis of the data. In this respect, one 
usually resorts to a maximum likelihood estimation procedure which maximize the log 
likelihood function 

> /„ In 

with respect to the unknown parameters. Most often, this estimation problems is solved 
by implementing an EM-algorithm (Dempster, Laird and Rubin, 1977). Each iteration 
of an EM- algorithm consists of two steps: an Expectation-step and a Maximization 
step: 

• During the E-step the observed frequencies /„ of the response patterns are redis¬ 
tributed over the T latent classes in the following way: 

€-i>t — fu ^ Pt\u ? 

in which 

Pt\u = - 

Pu 

is the conditional probability that a respondent given his response pattern v belongs 
to latent class t. This conditional probability is a function of the provisory estimates 
of the model parameters. 

• During the M-step the maximum likelihood estimates of the model parameters are 
determined again on the basis ol the ‘complete’ data, which consists of the esti¬ 
mated frequencies e^t with which each response patterm v occurs in each latent 
class t. In the case of an unconstrained latent class analysis, this estimation pro¬ 
cedure is very simple. Let cijt be the frequency of a positive response to item j in 
latent class t and let e+t be the frequency of latent class t. Note that the values 
of both quantities can be determined by counting in the appropriate way over the 
set of redistributed frequencies eut: 

aJ‘ = Y, ■ XisjC^t 
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and 

Then, the new estimates for the model parameters may be obtained by 

“it 
ftlt = ~ 

e+t 

and 

Note also that it is during this M-step that constraints imposed on the model 
parameters have to be taken into account. For more detailed information on the 
implementation of the EM- algorithm in the context of latent class analysis, we 
refer to Hagenaars (1990) and Croon (1990, 1991a). 

2.2 A latent class formulation for single-peaked items 

In order to discuss our latent class formulation for single-peaked items we have to 
assume that the set of latent classes is totally ordered by means of a binary relation ^. 
Without loss of information we may assume that the classes are ordered in the following 
way: 

Latent class 1 is in some sense lower, or more to the left, than latent class 2, etc. In 
general, we say that latent class t is more to the left than latent class 1 + 1. For single- 
peaked items j we now assume that there exists an item-specific latent class Sj such that 
the item response probabilities for item j satisfy the following system of inequalities: 

PjU < Pip < < ftb,-, < Pj\sj > Pi\*H, > > Pj\T—\ > P]\T ■ 

The response probabilities pj\t are increasing (or better, non-decreasing) with t up till 
latent class sj\ thereafter, they decrease ( or, at least, do not increase) as the latent 
class number t runs from Sj to T. Note that we do not suppose that the parameter 
Sj is known in advance: the latent class Sj for wich the response probability for item 
j reaches its maximal value is itself an unknown parameter. Imposing this kind of 
‘umbrella’ ordering on the response probabilities captures the essential feature of both 
Andrich’s and Hoijtink’s model: the single- peakedness of the item response functions. 

In order to perform a latent class analysis under the restrictions of an ‘umbrella’ 
ordering we have to solve the following optimization problem: Maximize 

<£=>./■/ In p„ , 
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in which 

p*=e -Ph<)i_i 
t \ 3 

with respect to the unknown parameters pj\t and 7rt, and under the restrictions that for 
each item j there exists a latent class Sj such that 

Pj\l < Pj\2 < < < Pj\., > Pj\sJ+i > > P\T—\ > Pj\T ■ 

Of course, we also require = 1 ■ 

2.3 Some optimization problems and their solutions 

The optimization problem described in the previous section can be solved by means 
of an EM algorithm in which, during the M-step of each iteration, the item response 
probabilities are estimatedunder the ‘umbrella’ ordering restriction. It is easy to see 
that the item response probabilities can be estimated separately for each item. In the 
M-step the provisory estimates e„t of the frequency with which response pattern v occurs 
in latent class t are available. By counting in an appropriate way, we may determine the 
frequency ajt of a positive response to item j in latent class f, and the frequency e+t of 
respondents allocated to latent class t: 

(Lji ‘ ^ 

e+t = e^t ■ 

Using this notation, the log likelihood function which is being maximized in the M-step 
may be written as 

(t>M = ln + (e+* “ ait)ln (! - Pj\t)] + ^2 e+t ln 7rt 
3 t t 

in which we impose, of course, that 7r( = 1. We immediately derive that the new 
estimates of the latent proportions are given by 

Moreover, due to the structure of <f>\[ and the fact that the inequality constraints on 
the item parameters also pertain to separate items, the maximization of the first part of 
it>M may proceed in an item-wise way. Hence, we are confronted with n successive but 
separate maximization problems of the following type: Maximize 

^[/( In pt + (n, - ft) In (1 - pd] 
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under the constraint that there exists an integer s : l < s < T for which 

Pi <P2 <■■■ < Ps-l <Ps> Ps+1 >■■■> PT-1 > PT ■ 

Note that the latter system of inequalities defines a quasi-order on the set {pi, • • • ,pr}, 
since not all pairs of probabilities are comparable to each other. So, for example, although 
we impose ps_i < p, and ps+i < ps, we do not compare directly ps_i and ps+i - 

The latter maximization problem can be interpreted as the problem of estimating 
the success probabilities of T independent binomial distributions under the constraints 
of the ‘umbrella’ quasi-ordering. The latter problem may be solved by an appropriate 
adaptation of an isotonic regression procedure described by Geng and Shi (1990), based 
on previous theoretical work by Shi (1988). 

The isotonic regression problem solved by the Geng and Shi procedure can be stated in 
the following way. Let c( : < = 1, • • •, T be a given set of constants and let u>t :< = 1, •••, T 
be a given set of positive weights. Then, determine the values of the unknown parameters 
zt : t = 1, ■ ■ ■ ,T which minimize the quadratic function 

F = Y/Mzt-ct)> 
t 

under the constraints of an ‘umbrella’ quasi-ordering on the ^(’s: There should exist an 
integer s such that 

< 22 < • • • < a,_, < 2, > 2„+1 > > 2T-l > 2r • 

Their isotonic regression procedure for solving this minimization problem has the follow¬ 
ing structure: 

1. For each integer value u : 1 < u < /’, determine the isotonic regression estimates 
of the 2(’s under the constraints 

2r < 22 < • ■ • < 2U-1 < 2u > 2U+1 > • ■ • > 27--1 > 2j ■ 

To obtain these estimates, the following steps are needed: 

(a) Use the up-and-down block algorithm (see Barlow et ah, 1972) on 
{cj, • - •, cu_i} with upward trend and on {cu+i, • • •,Cx} with downward trend, 
and, 

(b) apply the maximum violator algorithm of Barlow et al. (1972) until the block 
with the largest weighted average contains the peak u. 

The preceding computations result in estimates of the parameters zt under the 
assumption that the umbrella ordering attains his peak at the value u. The corre¬ 
sponding value of the quadratic loss function will be denoted by Fu. 

2. As the optimal estimate of the peak s, take that value of u for which Fu is minimal: 

F3 = min Fu . 
l<u<T 

The final estimates of the parameters :t are the isotonic regression estimates which 
correspond with the optimal value s. 
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More technical details and a description of the algorithm can be found in the original 
paper by Geng and Shi (1990). 

Our adaptation of the Geng and Shi isotonic regression procedure for solving the 
problem of estimating the success probabilities of independent binomial distributions 
under an ‘umbrella’ ordering is based on Theorem 1.5.2 of Robertson, Wright and Dyk- 
stra (1988). This theorem states that, under some regularity conditions, the canonical 
parameters of T independent univariate random variables belonging to an exponential 
family of distributions can be estimated under the restrictions of a quasi-order by means 
of an appropriately defined isotonic regression procedure. As a corollary to this theo¬ 
rem, the same authors point out that the maximum likelihood estimates of the success 
probabilities of T independent binomial distributions under the constraints of a quasi¬ 
ordering can be obtained by solving the corresponding isotonic regression problem in 
which constants and weights are (in our previously introduced notation) defined as 

and 

w, = nt . 

Hence, it is clear that, with the preceding definition of constants and weights, Geng and 
Shi’s isotonic regression procedure solves our ‘umbrella’ order constrained ML estimation 
problem. 

2.4 Some Further Remarks 

2.4.1 Determining the Optimal Number of Latent Classes 

Up till now we have assumed that the correct number T of latent classes in the optimal 
solution was known in advance. In practice, this will never be the case. When analyzing 
real data, the value of T is best considered an additional unknown parameter which we 
have to estimate. In classical unconstrained latent class analysis the null hypothesis that 
a particular number of latent classes suffices to ‘explain’ the data can be tested against 
the alternative hypothesis that the distribution of the response merely follows a general 
unconstrained multinomial distribution by means of a log likelihood ratio test which is 
asymptotically chi-square distributed. Hence, the custom of performing successive latent 
class analyses with increasing numbers ol classes until the point is reached for which the 
log likelihood ratio test fails to be significamt. As the final estimate of T is taken the 
smallest number of classes for which the test is not significant. 

The latter procedure cannot be used for inequality constrained latent class analysis 
of any kind, since for this type of estimation problem the asymptotic distribution of the 
log likelihood ratio statistic is not yet known. A useful, but of course not waterproof, 
strategy we have often used to determine the appropriate number of latent classes in an 
inequality constrained latent class analysis is the following: 
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1. First, we perform a series of traditional unconstrained latent class analyses, and 
as a provisory estimate of T (say To) we take the smallest number of classes for 
which the log likelihood ratio statistic becomes non-significant. 

2. We then perform the constrained analysis with To classes, and check how many 
inequality constraints have to be made active, and how strongly this affects the 
value of the log likelihood. 

• If the difference between the log likelihood values for the constrained and 
unconstrained solutions is not too large compared to the number of free pa¬ 
rameters lost, we accept the constrained solution with T’o classes. We consider 
the constrained solution as acceptable if the ratio of the difference between 
the log likelihood values for both solutions and the number of free parameters 
lost is less than 2.5. 

• Otherwise, we repeat the constrained analyses with a systematically increasing 
number of classes. In some analyses increasing the number of latent classes 
leads to a considerable reduction of the log likelihood; however, we have also 
encountered situations in which the log likelihood value seemed to reach an 
unacceptably high asymptotic value when the number of classes increased. 
The latter situation probably occurs when the inequality constrained latent 
class model is inappropriate for the data under consideration. 

2.4.2 Scaling the Respondents 

In a traditional latent class analysis individual respondents are ‘scaled’ by assigning 
them to a particular latent class on the basis of their response pattern (Hagenaars, 1990). 
In this assignment procedure the posterior latent class probabilities 

Pi/|f 
Pt\u =- 

Pu 

play an essential role. The posterior probability distribution {p^t : t = l,---,7'} indi¬ 
cates how likely it is that a respondent with response vector u belongs to each of the 
latent classes. Efy assigning a respondent to latent class t' for which the posterior prob¬ 
ability p(<|„ is maximal, one minimizes the overall misclassification error rate. Note that 
latent class t' is nothing but the mode of the posterior distribution. From a measure¬ 
ment point of view, assigning respondents to classes in this way represents a nominal 
measurement of the latent variable which is defined by the set of latent classes. 

A similar assignment procedure for scaling individual respondents could be applied n 
the case of an ordinal latent class analysis on single-peaked items. However, assigning 
subjects to classes is the way described above does not explicitly take into account 
the fact that in an ordinal latent class analysis the set of latent classes is constrained 
to be ordered, implying that the measurement level of the latent variable defined by 
these classes is no longer merely nominal, but ordinal. It seems reasonable to require 
that a scaling procedure following any ordinal latent class analysis should result in a 
measurement of the latent variable on an ordinal level. One way to score subjects on an 
ordinal latent scale might consist in computing the median value of his posterior latent 
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class distribution. This scaling procedure ‘measures’ the individual respondent on an 
appropriate level, given the data and the model used to analyze them. In this paper we 
will not illustrate this scaling procedure any further. 

3 Some Applications 

On the basis of the theoretical considerations as described in the previous sections the 
programm LCAPEAK was developed for the latent class analysis of single-peaked items. 
In this section we will discuss two applications of LCAPEAK to real data sets. 

The first data set is taken from Formann (1988) and consists of the responses of 600 
respondents to five dichotomous items that were used to measure the attitude towards 
nuclear energy. The five items cover a broad range of positive and negative attitudes 
towards nuclear energy. Item 1 is clearly the item whose content is most in favor of 
nuclear energy; item 5, on the other hand, is the item least in favor. 

The second data set consists of the responses of 600 respondents to ten dichotomous 
items that were used to measure the attitude towards car use and its potential threats 
to the environment. Some of the items formulate an opinion strongly in favor of car- 
use with little or no concern for its possibly damaging effects in the environment; others 
propose several measures to reduce car use and are, in this sense, more concerned with 
the possible environmental damages caused by unlimited car driving. 

3.1 The Formalin Data 

We applied LCAPEAK to the Formann data with two, three and four latent classes. 
Table 1 contains the G'2- and \2-values that were observed. 

TABLE 1 
Global Fit Measures for Formann Data 

t G'2 y2 

2 63.98 78.29 
3 32.20 32.46 
4 8.51 8.42 

As we will note later, the LCAPEAK solutions were all identical to the correspond¬ 
ing unconstrained latent class solutions for which the log likelihood ratio test may be 
applied to determine the appropriate number of latent classes. The two- and three-class 
solutions proved to lead to significant G2-values, but the probability level corresponding 
to the G2-value of the four class solution was equal to .385, which is acceptable. Table 
2 gives the estimates of the item response probabilities and the latent class proportions 
for this four class solution. 
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TABLE 2 
Parameter Estimates Four Class Solution 

/ II III IV 

1 .54 .46 .08 .00 
2 .49 .62 .28 .15 
3 .77 .97 .73 .00 
4 .20 .91 1.00 .14 
5 .00 .26 .98 1.00 

tt, ,16 .45 .36 .03 

From the information in this table we may conclude that the item response probabil¬ 
ities of all five items have a nice single- peaked relationship to latent class number. For 
item 1 the item response probabilities decrease as a function of latent class number; for 
item 5 they increase as a function of t. The three other items are single-peaked in the 
strict sense: items 2 and 3 attain their largest response probability in latent class 2, item 
4 in latent class 3. 

However, from the point of view of illustrating the possibilities of LCAPEAK, the 
present example is somewhat disappointing. As noted earlier, none of the inequalities 
corresponding to the ‘umbrella’ orderings had to made active in any of the solutions. 
This means that the unconditional latent class solution with four classes automatically 
satisfies the conditions imposed by the hypothesis of single-peakedness, which indicates 
that single-peakedness is strongly present in the Formann data. 

The Formann data are nicely fitted by our ordinal latent class model for single-peaked 
items, with the attitudinal continuum running from ‘favorable towards nuclear energy’ 
at the left to ‘opposed to nuclear energy’ at the right. Moreover, if we look at where on 
the continuum each items reaches its maximal positive response probability, it seems safe 
to conclude that the set of five items covers this attitudinal range quite well. Finally, 
note that a large majority of the respondents (81 %) belongs to one of the two middle 
classes. 

If we compare our own solution with the final solution preferred by Formann (1988) 
himself, we note that, whereas he needed nine classes (including one class that contains 
42 % of the respondents which were deemed to be unscalable, i.e. did not belong to any 
of the pre- established latent classes which correspond to a ‘perfect’ response pattern) 
to describe the data by means of a relatively simple response model, we only need four 
classes. Our response model, which allows a different response parameter for each item in 
each latent class is indeed somewhat more complex than Formalin’s, but in our analysis 
all subjects are scalable. 

3.2 The Car Use Data 

In its application to the ten car use items, LCAPEAK was run with the number of 
classes running from two to seven. Table 3 contains the corresponding G2- and x2-v^lucs. 
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TABLE 3 
Global Fit Measures Car Lise Data 

l G2 

2 581.57 2001.99 
3 522.85 1682.37 
4 485.31 1425.77 
5 469.73 1325.91 
6 455.32 1074.03 
7 446.82 1082.82 

The first thing that strikes the eye is the large discrepancy between the G2- and y2- 
values for each number of classes. These large differences are almost certainly caused 
by the extremely large number of zero frequency response patterns in the data: not less 
than 79 % percent (810 out of 1024) of the response patterns were missing in this sample. 
This highly jeopardizes any appeal to asymptotic test results; this is the reason why we 
refrained from comparing the constrained and unconstrained G2-va.lues for this data set. 

We decided to report on the solution with six classes. Increasing the number of classes 
from six to seven resulted in a relatively small reduction of G2 with the value of \2 
(which is not being minimized by our algorithm) even increasing. Table 4 contains the 
item response probabilities and the latent proportions for the six class solution. 

TABLE 4 
Parameter Estimates Five Class Solution 

I II III IV K VI 

1 .13 .84 
2 1.00 .97 
3 1.00 .34 
4 .90 .83 
5 .00 .51 
6 .04 .06 
7 .12 .27 
8 .07 .47 
9 .63 .27 
10 .90 .95 

.84 .85 .87 .97 

.91 .86 .52 .03 

.17 .17 .01 .00 

.44 .44 .13 .13 

.51 .92 .92 1.00 

.06 .50 .50 1.00 

.40 .77 .77 1.00 

.62 .86 .86 .97 

.27 .27 .03 .03 

.37 .24 .24 .02 

tt, .04 .20 .17 .14 .38 .09 

The six class solution, as shown in the preceding table, has a remarkable feature: For 
nine out of the ten items the item response probabilities were either non-decreasing (this 
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was the case for items 1, 5, 6, 7, and 8), or non-increasing (for the items 2, 3, 4, and 9). 
Only for item 10 was a single- peaked relation in the proper sense found: Item 10 attains 
its maximal response probability in the second latent class, and its pattern of response 
probabilities is actually only marginally different from that of the other non-increasing 
items. Moreover, the set of non-decreasing items consists entirely of the items in facor 
of car use, while the set of non-increasing items, including item 10, express more critical 
attitudes towards unlimited car use. Result like these suggests that by simply reflecting 
for example the non-increasing items, i.e. converting an originally negative response to 
these items into a positive one, and vice versa, all items may ultimately be transformed 
to monotonous items and be analyzed conformingly. 

As to the interpretation of the solution found, it is clear that the altitudinal continuum 
runs from ‘in favor of restrictions on car use’ at the left to ‘in favor of free cae use’ at 
the right. We would also like to point out the somewhat bimodal character of the latent 
distribution with its two modes being at the second and fifth latent class. 

4 Some alternative developments 

In this paper we have considered an adaptation of the latent class model for the 
analysis of single- peaked items. In our discussion we have implicitly assumed that the 
subjects’ responses were observed by means of a single stimulus presentation paradigm: 
We assumed that the different items were presented separately to the subject who had 
to indicate whether he or she endorsed the item or not. For such data every conceivable 
binary response pattern may occur in the data. 

However, single-peakedness of response tracelines may be relevant under many more 
different data collection procedures. More particularly, in investigating preferential 
choice data subjects are often confronted with entire sets of stimuli from which they 
have to select and/or rank a specified number of most preferred alternatives. As an ex¬ 
ample, we may take the following item from the recently held large scale cross-national 
survey ‘European Values 90’, organized by the ‘European Value Systems Study Group’ 
(see Halman, 1991). Subjects were asked to indicate with which of the following geo¬ 
graphical groups they identified most strongly, and second most strongly: 

1. Locality or town where you live; 

2. Region of country where you live; 

3. Your country as a whole; 

4. Europe; 

5. The world as a whole. 

Although the subjects’ responses to this item can be coded into a response pattern that 
pertains to five items, the model for analyzing these data should explicitly take into 
account that not all conceivable response pattern can occur. For example, if we neglect 
the relative ranking of the two selected items only response patterns with two 1’s and 
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three O’s are possible in the present example, and our basic latent class model should 
take this condition into account. 

A first, perhaps obvious way to do just this is conditioning on the set of response 
patterns which satisfy the constraint. Let fl be the set of response patterns which 
contain exactly two l’s and three O’s. Then, define 

u£Cl j 

so that we may define the properly adapted response probabilities in the following way: 

p»\t 
*-'W 

p„|i = 0 for 1/ fi 

for v 6 fl 

Although this approach is conceptually attractive, it unfortunately leads to quite diffi¬ 
cult numerical problems once we try to obtain the maximum likelihood estimates of the 
parameters. Because of the fact that we have conditioned on type of response patterns 
the log likelihood function cannot be maximized in an item-wise way any longer. 

A second, probably more easily implemented approach to the development of latent 
class models for data horn ‘pick k out of n’ or ‘rank k out of n’ experiments consists 
in formulating appropriate log linear models for the ranking or selection probabilities. 
For ‘pick 2 out of n’ data the basic building block of such a latent class model would be 
the ‘quasi-independent’ log-linear model for the probability p,j that stimuli i and j are 
chosen from the set of alternatives: 

In pij = m + a, -(- Oj 

in which the parameters like a, represent the ‘values’ of the alternatives. If different 
latent classes or subpopulations of respondents exist with different stimulus scale values 
we would write 

In p.ji, = m, + ait + ajt 

Similar models have been worked out for the analysis of data that consist of partial 
preference rankings. For more information in this respect we refer to Croon (1989a, 
1989b, 1991) and to Croon and Luijkx (1992). 
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