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Analysis of ’pick any/n’ data with no prior knowledge: 

A Synthesis of Latent Class Analysis and Unfolding Models 

Ulf Bockenholt 

Abstract 

A synthesis of unfolding models and latent class analysis is presented for modeling ’pick-any/n' 

data. The latent class part of the model identifies homogeneous subgroups that are characterized by 

their choice probabilities for a set of items, and the unfolding part accounts for the single-peakedness 

structure of the choice data. Two applications are presented to illustrate this approach, one of which 

involves the analysis of group differences. 
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Introduction 

Coombs’ (1964) unfolding technique is a conceptually simple yet powerful approach for analyzing 

preference data. Coombs assumed that in a choice situation persons compare each alternative to their 

ideal or most preferred alternative. When asked to pick, for example, the most preferred out of several 

alternatives a person selects the alternative that is closest or least dissimilar to her ideal alternative. 

An important constraint of Coombs’ unfolding approach is that, although persons may have different 

ideal alternatives, they agree on the similarity relationships among the choice alternatives. For 

example, if the choice alternatives share a common latent continuum, their positions along this 

continuum are perceived equally by all persons, however the positions of the individual ideal points 

may differ from person to person. 

Numerous models for the analysis of choice data have been proposed that are based on Coombs’ 

unfolding idea. However, a major problem is the treatment of individual differences when estimating 

the parameters of these unfolding models. In particular, joint estimation of the ideal points and the 

choice alternatives’ positions by maximum likelihood methods is complicated by the fact that standard 

limit theorems do not apply because the number of ideal point parameters changes as a function of the 

sample size (Bock & Aitkin, 1981). By developing a synthesis of latent class and unfolding models, 

Bockenholt and Bockenholt (1990; 1991) provided a satisfactory solution to this problem. Their 

approach is based on the assumption that heterogeneity is limited and can be accounted for by 

assigning persons to different classes where each class is characterized by its ideal point and other class- 

specific parameters. This paper describes this approach for the analysis of ’pick any/n’ data and 

presents results from the analysis of tw’o data sets. 

Unfolding Models for ’Pick Any/n’ Data 

Frequently, choice data are collected by asking respondents to select the preferred alternatives from 

a set of n alternatives. When Coombs (1964) introduced this ’pick any/n’ procedure, he posited that a 

person selects those alternatives that are closest to the position of the most preferred alternative. More 

formally, let the positions of choice object i and of person’s a ideal point be 6- and 0a, respectively. A 

response of person a with respect to alternative i is denoted by the binary variable XflJ. Choice 

alternatives are chosen when their distance to the ideal point is smaller than some threshold rfl specific 

to person a, 

xar 1 when IV — Ta 

and are not chosen otherwise, 

Xat= 0 when !«, - /?a| > Ta. 

Over the years this approach was refined in several ways. For example, the choice objects’ 
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representations were proposed to be multi-dimensional instead of unidimensional (Bennett & Hays, 

1960), the positions of objects and/or ideal points were hypothesized to be random instead of fixed 

variables (Zinnes & Griggs, 1974). Similarly, distances between the ideal point and the alternatives’ 

positions were proposed to be random (Ramsay, 1980), and the choice rule was modified to be 

probabilistic instead of deterministic (Schdneman & Wang, 1972). These and other extensions 

increased the applicability range of Coombs’ original model and proved useful in a wide variety of 

studies (Bossuyt, 1990). 

For the presentation of the synthesis of unfolding models and latent class analysis, we focus on two 

probabilistic unidimensional unfolding models that were recently proposed for binary ’pick any/n’ data 

(Andrich, 1988; DeSarbo k. Hoffman, 1986; Hoijtink, 1990). These models were selected for their 

simple structure and ease of implementation. However, because of their parsimonious form, these 

models may not always prove sufficient for the analysis of unfolding data. In this case, more complex 

probabilistic unfolding models may be combined with a latent-class approach (see Bockenholt k 

Bockenholt, 1991). 

Both Andrich (1988), and DeSarbo and Hoffman (1986) proposed the unfolding threshold (UT) 

model for binary ’pick any/n’ data. According to this model persons are characterized by their ideal 

point positions, /?a, and by a threshold parameter, rfl, which describes the range of the continuum for a 

positive response. The probability of choosing an alternative is given by 

Pr(Xa,= 1) = Pat = 
_1_ 
1 + exp{-ra + (6r 0a)2} 

(1) 

The smaller the distance between the ideal point and the object position, the higher the probability 

that alternative t is chosen by person a. However, note that the probability of selecting an alternative 

when 6- = 0a is only larger than .5 when ra > 0. This dependency may introduce high correlations 

among the parameters of the UT model in empirical applications. 

Hoijtink (1990) proposed a different unfolding model under the premise that a probabilistic 

unfolding model should have its deterministic version as a boundary case, 

rr(Xa,= 1) = p, 
_1_ 
1 + {(«, - 0a)2}1' 

(2) 

where 7 moderates the strength of the proximity relation on the choice probability whenever the 

distance between the ideal point and the object position differs from 0 or 1. This model, called here 

unfolding power (UP) model, makes the strong prediction that an alternative is chosen with certainty 

when its position coincides with the ideal point. In contrast, when an alternative’s position coincides 

with the ideal point in the UT model, the probability of selecting the alternative depends also on the 

threshold parameter. As a result, the UP and the UT model may yield different unidimensional scales. 
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Latent Class Unfolding Models 

It is well-known that the joint estimation of person (i.e., ra and Pa) and item parameters (i. e., 6t) 

is problematic because with increasing sample size the number of person-specific parameters to be 

estimated also increases. As a result, standard limit theorems do not apply and parameter estimates 

are not consistent. One satisfactory solution to this problem is provided by the marginal maximum 

likelihood (MML) method, which in this context involves the estimation of the distribution of the ideal 

points (Hoijtink, 1990; Takane, 1983). However, the advantages of the MML method are gained at a 

considerable computational expense. A computationally more attractive approach follows from the 

assumption that heterogeneity is limited and can be described by grouping respondents with small 

intragroup and large intergroup differences. Because the grouping factor may not be observable or 

known a priori, Bdckenholt and Bdckenholt (1990; 1991) suggested a reparameterization of latent class 

analysis (Lazarsfeld & Henry, 1968) as a modeling framework for this problem. According to their 

approach, each group or latent class is represented by an ideal point and other class-specific parameters 

that describe individual differences in choice behavior. The unobserved classes are determined by 

invoking the principle of local independence which states that latent-class membership variables 

account completely for any relationships among the observed choices. In other words, choices among 

the alternatives are made independently of each other when class membership is known. Consequently, 

the probability of observing a choice pattern given that person a is a member of latent class t is 

Pr{*a = (*al.xa,' xan)l “ ' <} = fl P.l/''" f1 " P.l/ Xa'- 
i = 1 ' 1 

Coombs (1964) also suggested latent-class analysis (LCA) for 'pick any/n’ data. Distinguishing 

between techniques that do or do not require a priori knowledge about the ordering of choice 

alternatives, he argued that LCA is designed for the analysis of ’pick any/n’ data with ’’no prior 

knowledge” (Coombs, 1964, p. 318). However, when applying LCA it is only assumed that every item 

has a certain probability of being selected and the underlying choice mechanism is left unspecified. As 

a result, LCA does not provide information about the underlying scale of the choice alternatives and 

the positions of the ideal points. However, this information can be extracted from the data by 

constraining the class-specific probabilities to conform to an unfolding structure. For example, we may 

constrain the class-specific probabilities to follow the UT model, 

P||( = Pr*Xar f <) = 
_1_ 
1 + exp{-r( + {6t - /Jj)2} 

(3) 

Thus, every member of latent class t is characterized by an ideal point, (3p and by a threshold 

parameter . Similarly, by combining the latent class model with the UP representation, we obtain 
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P,\t = Pr(Xa.= 1\ <“*)=■ 
_1_ 

1 + {(V/3,)2}7' 

The unconditional probability of observing the choice of an alternative is 

(4) 

P, *t Pr(XaI= 1| ael). 

T 
where denotes the probability of a person belonging to latent class i, and 5Z “'t = p Similarly, the 

unconditional probability of observing a response pattern is 

T n n 
t=i i=i 

1 - X„ 

The combination of LCA with unfolding models has several advantages. First, for a given number 

of latent classes we can examine the unrestricted latent class-specific probabilities to determine whether 

they conform to an unfolding structure, or more specifically, to the unfolding structures predicted by 

the UP and the UT models. For example, according to both models choice probabilities are symmetric 

around the ideal point, and they satisfy strong stochastic transitivity as well as the condition of 

bilateral monotonicity (Bossuyt, 1990). If these characteristics are met by the class-specific 

probabilities, we can constrain them by Eqs. (3) or (4) to obtain a parsimonious description of the 

discrete choice data. Instead of estimating (n T*) unconstrained choice probabilities, we only need to 

determine T ideal points, (n - 1) item parameters, and depending on the unfolding model, either T 

threshold parameters or one power parameter. Second, by jointly representing choice objects and ideal 

points on the class-level, we obtain an easily interpretable description of individual differences even 

when the number of respondents is large. Third, a decision regarding the number of latent classes 

which is usually unknown is not dependent on the specification of the unfolding model and may be 

based on the results of the unrestricted latent class analysis. Finally, estimation procedures for latent- 

class unfolding models are straightforward and easy to implement. This topic is discussed in more 

detail in the next section. 

Parameter Estimation 

To simplify the notation, subjects with identical choice patterns are grouped and fv denotes the 

observed frequency for the v-th choice pattern xy. Under the assumption of random sampling of .V 

persons, the likelihood function of the data may be written as 

ri p.i*’" -p,k) 
I = i 
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The expectation maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977; Goodman, 1979) has 

proven useful for estimating the parameters of latent class models. We present both the expectation 

(E) and the maximization (M) step and discuss the modifications necessary for estimating the 

parameters of the unfolding models. 

E Step 

Under the assumption of local independence, the joint probability of observing the choice pattern v in 

class t is computed as 

ptv=*t n p,/" (! * Pii*)1 

and 
T 

Pi>= PtV 
t = 1 

Consequently, the posterior probability that a respondent (i.e., choice pattern) is a member of latent 

class t is Pji = p^/py. The expected number of persons selecting alternative i in latent class t is given 

by 
2” 

= £ p/|t) xtn' 
t> = 1 

Similarly, the expected number of persons who do not select alternative a in latent class t is given by 

2n 

P(|„ o - XJ- 

Thus, the expected number of persons in class t is 

E([t) = 5(fl|() + = n x, 

M Sten 

In the M step the class size parameters and the parameters of the latent class models are determined 

by treating the exp>ected values determined in the E-step as if they were observed and maximizing the 

kernel of likelihood function of the ’complete’ data 

L*=n^ 
t=i i=i 1 

lit' 

where p^ is either unconstrained or constrained by Eqs. (3) or (4). In the unconstrained latent class 

model, the class-specific probabilities are estimated by p^ = £(r|<)/f(f<), and the class size 

parameters, ttp are estimated by tt^ = £(f^)/N. These estimates are used to update the posterior 

probabilities and expected values determined in the E-step of the algorithm. The procedure iterates 

between the E-step and the M-step until convergence is obtained. 
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To estimate the parameters of the UT latent-class models an iterative estimation procedure must be 

used that maximizes the likelihood function of the complete data. Because the origin of the scale is 

arbitrary in the UT model, the positions of the items are estimated under the linear constraint that 

their sum is zero. This linear constraint is implemented by setting 6 = C 6*, where 6* contains the 

reduced set of item parameters and C is a (n x s) matrix with element c-^. For example, for four 

items, C can be specified as 

0 0 

1 0 

0 1 

-1 -1 

and 6^ — -(S^* + ^2* + ^3*)- 

model 

As a result, the following partial derivatives are derived for the UT 

din L* 
dTt 

n 

din L* _ o dp, i=l 

din L* 
dS* -2E £ (/»<-«,) v 

t=l i=l 

where e^ = - mf-^) p^ -f E(T|(1 - p^)}. In applications, the Davidson-Fletcher-Powell method 

(Luenberger, 1984) proved adequate for estimating the UT model parameters at each M-step. 

However, it is possible to accelerate the convergence of the estimation procedure by modifying the EM 

algorithm (Louis, 1982) or by combining it with a scoring algorithm. The estimation of the latent- 

class UP model follows a similar procedure but requires more care in the selection of initial starting 

values. We refer to Hoijtink (1990) for a detailed discussion of the relevant estimation issues for this 

model. 

It is well-known that the likelihood function of a latent class model may have multiple maxima 

(Haberman, 1974). Because the EM-algorithm does not ensure convergence to a global maximum 

different sets of starting values were used in the reported applications. These starting values were 

selected from an uniform (0, 1) distribution for the unconstrained latent class model. Starting values 

for the UP and UT models were obtained by preliminary least-squares analyses of the unconstrained 

class-specific probabilities. However, it should be emphasized that the use of different starting values 

does not eliminate the problem of local maxima. 
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Model tests 

Provided standard regularity and identifiability conditions (Birch, 1964) are satisfied, the likelihood 

ratio (LR) statistic can be used for large sample tests of fit of any of the restricted or unrestricted 

latent class models, 
2n 

G2 = 2 £ f„ ln( f„/!„), 
v=l 

where fv = N pv denotes the expected frequency for the i>-th choice pattern. Under the assumption of a 

multinomial distribution, there are 2” - 1 degrees of freedom. The unrestricted latent class model 

requires the estimation of (T n) class-specific probabilities and (T - 1) class size parameters. 

Constraints imposed by the unfolding models on the class-specific probabilities reduce the number of 

effective parameters. For example, the UT model requires the estimation of T ideal points, T class- 

threshold parameters, (n - 1) item parameters, and (T- 1) class size parameters. Thus, the degrees of 

freedom of this model are (2n - 3 T - n + 1). Similarly, the degrees of freedom for the UP model are 

(2n - 2 T- n). 

For two nested hypotheses, the difference between the corresponding LR-statistics can be computed 

to assess the importance of the contribution to the LR-statistic by the additional constraints imposed 

by the stronger hypothesis. This difference, denoted by AG2, is asymptotically distributed as a chi- 

squared statistic with degrees of freedom equal to the difference between the number of parameters in 

both models. This approach provides further guidance in selecting a parsimonious model. 

Unfortunately, no test is available for the comparison of latent class models that are not proper subsets 

of each other. For example, a LC model with (< - 1) classes is not nested in a LC model with t classes. 

In this case, we choose the LC model that has an acceptable fit. 

No completely satisfactory solutions are presently known when many of the expected frequencies are 

too small to justify the distributional assumptions of the LR-statistic. One strategy is to group 

response patterns until their expected frequencies exceed a specified minimum value and to compute 

the Pearson x^-statistic of the expected and observed frequencies for the K groupings 

h= 1 f 

This approach has two undesirable features. First, decisions regarding the grouping of the 

frequencies are to some extent arbitrary and may lead to different conclusions. Second, the test 

statistic of the grouped data does not follow a chi-square distribution under the null hypothesis. 

However, under certain regularity conditions a lower bound of the limiting distribution of X2 is 

provided by the chi-square distribution with degrees of freedom computed as the difference between the 

by one reduced number of grouped choice patterns and the number of effective model parameters 

(Bishop, Fienberg, & Holland, 1975). As a result, asymptotic significance levels found from this 
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reference distribution may be too small. 

Applications 

Analysis of nuclear energy data: In this section we analyze the binary responses (’I agree’, ’I do not 

agree’) of A = 600 persons to n = 5 items (in Table 1) selected from a questionnaire measuring 

general attitudes toward nuclear energy (Formann, 1988). The items seem to span a continuum which 

ranges from a more positive to a more negative attitude toward nuclear power. 

Table 1 

Items of Nuclear Energy Questionnaire 

(1) In the near future alternative sources of energy will not be able to substitute nuclear energy. 

(2) It is difficult to decide between the different types of power stations if one carefully considers all 

their pros and cons. 

(3) Nuclear power stations should not be put into operations before the problem of radio-active 

waste has been solved. 

(4) Nuclear power stations should not be put into operations before it is proven that the radiation 

caused by them is harmless. 

(5) The foreign power stations now in operations should be closed down. 

Before we report the results obtained by constraining the latent class-specific probabilities to 

conform to an unfolding model, we examine the unconstrained latent class solutions. The G2 statistics 

obtained for the one, two, three, and four class solutions are 249.5 (df = 26), 64.0 (df = 20), 29.6 (df = 

14), and 8.4 (df = 8), respectively. Table 2 gives the corresponding class-specific ’agree’-probabilities 

and the class size parameter estimates for the two, three, and four class solutions. Overall, the pattern 

of the class-specific probabilities follows an unfolding or single peakedness pattern. Violations of this 

structure are predominantly a result of Item 2. However, the three and four class solutions are not 

well-determined. About 30% of the class-specific probabilities for both latent-class models are close or 

equal to their boundary values of 0 and 1. In addition, the smallest class of the three and four class 

solutions contains only about 31 and 13 respondents, respectively. Because these results indicate 

identifiability and stability problems, it seems preferable to focus on the solution of the two-class 

model. However, to better understand the reasons for the poor fit of this model, a detailed residual 

analysis was performed. This analysis showed that the two-class model does not account well for the 

association between items 3 and 4. Most likely, this association is a result of the items’ similar 

phrasing. Significant fit improvements can thus be obtained by either adding an association parameter 
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to the two-class model or by omitting one of the two items from the analysis. For example, when 

omitting item 4, the two-class model gives a satisfactory Fit with = 6.1 (df = 6). 

Table 2 

Unconstrained LC Solutions with Two. Three, and Four Classes 
i -1 

Class-Specific Probabilities 

Class r Item 1 Item 2 Item 3 Item 4 Item 5 

1 .54 .48 .58 .90 .70 .06 

2 .46 .14 .34 .74 .95 1.00 

1 .54 .48 .58 .90 .69 .08 

2 .41 .15 .37 .83 1.00 1.00 

3 .05 .00 .14 .00 .59 .98 

1 -18 .54 .49 .78 .27 .00 

2 .44 .46 .63 .97 .91 .27 

3 .37 .08 .28 .72 1.00 .98 

4 .02 .00 .15 .00 .00 1.00 

As the unconstrained latent class model, the two-class UP and UT models do not yield a satisfactory 

Fit to the data with G“ = 83.6 (df = 22) and G“ = 102.7 (df = 23), respectively. Consequently, they 

provide only a limited description of the information in the data. Table 3 displays the class-specific 

probabilities of the two-class UP and UT model and Figures 1 and 2 give a graphical representations of 

the parameter estimates. Each plot also contains the corresponding unconstrained class-specific 

probabilities (depicted by circles and squares for the first and second class, respectively). Although the 

respondents’ class-memberships differ slightly for the unconstrained latent class, and the UP/UT 

models, it is clear that the UT model follows the unconstrained class-specific probabilities more closely 

than the UP model. As a result of the models’ different parametrization the positions of the ideal 

points are different. However, the UP and the UT model agree with respect to the relative ordering of 

the items. Thus, the initial expectation that the items span a continuum seems confirmed. Favoring 

Item 3, the first latent class has a less extreme attitude toward nuclear power than the second latent 

class which agrees more strongly with Items 4 and 5. 
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Figure 1. 

Graphical representation of the two-class I T model 

Note: The positions of the i-th item and a-th ideal point are denoted by Iti and IPa, respectively. 

Circles and squares represent the class-specific probabilities of the unconstrained latent-class model. 

I he dashed and continuous lines depict the class-specific probabilities for the first and second class of 

the UT model. 
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Figure 2. 

Graphical representation of the two-class UP model 

Note: The positions of the i-th item and a-th ideal point are denoted by Iti and IPa, respectively. 

Circles and squares represent the class-specific probabilities of the unconstrained latent-class model. 

The dashed and continuous lines depict the class-specific probabilities for the first and second class of 

the UP model. 
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Table 3 

Parameter Estimates of Two Class UP and UT models 

Class-Specific Probabilities 

Class x Item 1 Item 2 Item 3 Item 4 Item 5 

UP 1 .62 .46 .64 .91 .71 .25 

2 .38 .11 .15 .72 .92 .92 

UT 1 .54 .49 .64 .87 .68 .14 

2 .46 .13 .28 .76 .98 .90 

Attitude toward car-use and environment: The second data set contains binary responses ('I agree*. *1 

do not agree’) to n = 10 items (in Table 4) that measure attitudes toward car-use and environment. 

The responses were collected from two independent samples of jV = 300 respondents each before and 

after a pro-environment information campaign. The purpose of the following analyses is to examine 

whether the campaign changed the response behavior of the respondents. 

Table 4 

Items of Information Campaign Questionnaire 
1 ' ' . 1 " ' -1 

(1) Car use cannot be abandoned. Some pressure on the environment has to be accepted. 

(2) A cleaner environment demands for sacrifices like a decreasing car usage. 

(3) The environmental problem justifies a tax burden on car driving so high that people quit using a 

car. 

(4) Putting a somewhat higher tax burden on car driving is a step in the direction of a healthier 

environment. 

(5) It is better to deal with other forms of an environmental pollution then car driving. 

(6) Instead of environmental protection measures with respect to car use, the road system should be 

extended. 

(7) Technically adapted cars do not constitute an environmental threat. 

(8) Considering the environmental problems, everybody should decide for themselves how often to use 

the car. 

(9) People who keep driving a car, are not concerned with the future of our environment. 

(10) Car users should have to pay taxes per mile driven. 

The sample size is small in relation to the number of items and only about 13% of the possible 
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response patterns are observed. Because likelihood-based inferences for latent-class models may be 

problematic in such cases of sparse data tables, a subset of six items was chosen for further analysis. 

To ensure that changes regarding a pro-car and a pro-environment attitude can be assessed, three pro¬ 

environment items (2, 4, 10) and three pro-car items (5, 6, 8) were selected. 

Table 5 contains goodness-of-fit results obtained from the analysis of the pre- and post-information 

campaign data by the unconstrained latent class model. is computed for the ungrouped data. 

Pearson’s X“ is obtained by grouping the data such that the minimum expected frequency exceeds one 

and the corresponding degrees of freedom are (A* - 1 - number of estimated parameters). According to 

both statistics at least two latent classes are required for a satisfactory fit of the data. Overall, the fit 

of the latent class models seems better for the pre- than for the post-campaign data. The last two 

columns of Table 5 contain LR-statistics and their corresponding degrees of freedom obtained when 

testing the hypothesis that the latent-class parameters (class-specific probabilities and class sizes) are 

equal for both studies. For all latent-class solutions this hypothesis can be rejected which indicates 

that the information campaign may have had some effect on the respondents’ attitudes toward car-use 

and environment. 

Table 5 

Goodness of Fit Statistics of Unconstrained Latent Class Models for 

Pre- and Post Information Campaign Data 

Pre-Campaign 

Class ~G2 df X2 dF 

1 295.5 55 565.0 53 

2 56.2 48 31.4 31 

3 35.7 41 10.9 22 

4 28.0 34 10.2 17 

Post-Campaign Equality Tests 

TF df X2 df AG2 Adf 

271.8 55 440.9 47 21.5 6 

82.2 48 46.8 28 35.0 13 

61.5 41 28.8 20 44.3 20 

44.2 34 17.4 11 57.8 27 

To examine the effect of the information campaign in more detail, we need to investigate which 

subsets of the latent-class parameters differ significantly between the samples. For example, we may 

partition the LR-statistic AG^ into two components by testing the equality of the class-specific 

probabilities with (6 T) degrees of freedom and by testing the equality of the class sizes with (7'- 1) 

degrees of freedom. Although not presented in detail here, these partitions indicate that the main 

reason for the differences between the pre- and post-campaign data is related to changes in the class- 

size estimates. Table 6 contains the estimates of the three class solution with class-specific probabilities 

constrained to be equal for the pre- and post campaign data but different class sizes. With some 
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minor exceptions the latent-class specific probabilities display a single-peakedness structure. As a 

result, a more parsimonious and informative description of the data may be obtained by an unfolding 

latent class model. 

Table 6 

Simultaneous Latent Class Analysis of Pre- and Post-Information Campaign Data 

Class It 6 It 5 It 8 It 2 It 10 It 4 Xj x2 

1 J5 ^98 ^33 T4 T6 ^43 

2 .22 .74 .77 .84 .34 .32 .34 .51 

3 .06 .40 .37 .98 .91 .85 .23 .24 

For example, when applying the three-class UP model we obtain the parameter estimates given in 

Table 7. These results differ little from the unconstrained latent-class solution (in Table 6) and the 

Pearson X^-statistic for the grouped data is 73.2 with 72 degrees of freedom. Although the overall fit 

of the latent-class UP model seems satisfactory, further residual analyses indicate that the UP model 

may be too restrictive for some items of the post-campaign data. In particular, the endorsement 

frequencies for Item 6 are not predicted well by the UP model. Overall, however, the three-class l P 

model gives an informative summary of the data and provides a simple explanation for the difference 

between the pre- and post-campaign data. 

Table 7 

Latent Class-Specific Probabilities and Parameter Estimates of Simultaneous 

Pre- and Post-Campaign Analysis by Unfolding Power Model 
i 

Class It 6 It 5 It 8 It 2 It 10 It 4 p Xj x2 

1 .72 .95 .92 .29 .13 .12 -.956 .44 .26 

2 .22 .75 .80 .88 .40 .37 .004 .34 .52 

3 .10 .31 .34 .97 .88 .85 .723 .22 .22 

6: -1.65 -.64 -.58 .46 1.18 1.23 t = 1.26 

According to the UP model, the items can be ordered along a continuum ranging from the attitude 

that "car-use does not pose an environmental problem” to the position that "car-use damages the 

environment and should be restricted by some governmental interventions". In both the pre- and post¬ 

campaign data, about 22% of the respondents favor a strong pro-environment position. Before the 

campaign a substantial number of the respondents (44%) did not consider car-use to be an 
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environmental problem. One effect of the information campaign was to reduce the size of this group 

and to increase the number of respondents who acknowledge the negative influence of car-usage on the 

environment. Perhaps not surprisingly, however, the campaign did not increase the number of 

respondents favoring a tax increase as a means to reduce car usage. 

One obvious disadvantage in examining only six instead of the original ten items is a loss in power 

for detecting effects of the information campaign. Adopting a more exploratory approach we therefore 

analyzed the complete questionnaire by the unconstrained and the unfolding latent class models. 

Although these analyses revealed three distinct classes similar to the ones found when using six items, 

no satisfactory unidimensional representation of the items was obtained by the latent-class UP or UT 

models. Instead a two-dimensional UT model (Bockenholt k. Bockenholt, 1991) provided a 

significantly better fit than its one-dimensional counterpart. One major result obtained by applying 

this model to the pre- and post-campaign data is that there is not only a change in the class sizes but 

also that the ideal-points shift from more extreme positions (either pro-environment or pro-car) to 

more moderate ones. Thus, another effect of the information campaign (not captured by the analysis 

of the six items) seems to be that respondents of the post-campaign survey were more homogeneous in 

their attitudes toward car-use and environment. 

Conclusion 

One of the most important problems in choice modeling is to account for the effects of 

preference heterogeneity in a parsimonious and versatile way. A satisfactory solution to this problem is 

provided by the synthesis of unfolding models and latent class analysis. This synthesis yields a general 

approach for modeling individual differences in choice data and is not restricted to the analysis of ’pick 

any/n’ data or to a particular choice model. For example, the approach can be extended to ’pick k/n' 

data. In this case only certain choice patterns can occur and a constrained quasi-latent class approach 

may be utilized to describe the unfolding structure in the data. Restricted LCA can also be used to 

account for individual differences in other kinds of choice data such as paired comparisons and (partial) 

rankings (Bockenholt, 1992; Croon, 1989; Formann, 1992). Similarly, other choice models, such as the 

vector model (Carroll, 1980) or other types of constraints, such as inequality constraints for testing 

ordinal restrictions on the class-specific probabilities (Bossuyt, 1990; Bockenholt, 1990; Croon, 1991), 

may prove more appropriate in some applications and can easily be integrated into a latent class 

framework. Thus, restricted LCA provides a general and flexible framework well-suited for the joint 

modeling of the respondents’ preferences and the choice alternatives’ similarity structure. 



125 

References 

Andrich, D. (1988). The application of an unfolding model of the PIRT type to the measurement of 

attitude. Applied Psychological Measurement. 12. 33-51. 

Bennett, J. F., & Hays, VV. L. (1960). Multidimensional unfolding: Determining the dimensionality of 

ranked preference data. Psvchometrika. 25. 27-43. 

Birch, M. VV. (1964). A new proof of the Fisher-Pearson theorem. Annals of Mathematical Statistics. 

25, 817-824. 

Bishop, Y. M. M., Fienberg, S. E., Holland, P. W. (1975). Discrete multivariate analysis: Theory 

and practice. Cambridge: MIT 

Bdckenholt, U. (1990). Latent class analysis under order constraints. Paper presented at the Annual 

Meeting of the Classification Society, Utah State University, Logan. 

Bdckenholt, U. (1992). Applications of Thurstonian models to ranking data. In: M. Fliegner k. 

J. Verducci (Eds.), Probability Models and Statistical Analyses for Ranking Data (in press). 

New York: Springer. 

Bdckenholt, U, k. Bdckenholt, I. (1990). Modeling individual differences in unfolding preference data: 

A restricted latent class approach. Applied Psychological Measurement. 14. 257-269. 

Bdckenholt, U, k. Bdckenholt, I. (1991). Constrained latent class analysis: Simultaneous classification 

and scaling of discrete choice data. Psvchometrika. 56. 699-716. 

Bock, R. D., k Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: 

Application of an EM algorithm. Psvchometrika. 46. 443-459. 

Bossuyt, P. (1990). A comparison of probabilistic unfolding theories for paired comparisons data. New 

York: Springer. 

Carroll, J. D. (1980). Models and methods for multidimensional analysis of preferential choice data. 

In: E. D. Lantermann k H. Feger (Eds.), Similarity and choice (pp. 234-289). Bern: Huber 

Coombs, C. H. (1964). A theory of data. New York: Wiley. 

Croon, M. A. (1989). Latent class models for the analysis of rankings. In: H. Feger, K. Klauer, G. 

de Soete (Eds.), New developments in psychological choice modeling (pp. 99-121). Amsterdam: 

North-Holland. 

Croon, M. (1991). Latent class models with ordered latent classes. Paper presented at the 7th 

European Meeting of the Psychometric Society. Trier, Germany. 

Dempster, A. P., Laird, N. M., k Rubin, D. B. (1977). Maximum likelihood estimation from 

incomplete data via the EM-algorithm. Journal of the Royal Statistical Society B, 2£> 1- 22. 

DeSarbo, W. S & Hoffman, D. L. (1986). A new unfolding threshold model for the spatial 

representation of binary choice data. Applied Psychological Measurement. 10, 247-264. 



126 

Formann, A. K. (1988). Latent class models for non-monotone dichotomous items. Psvchometrika. 

£2, 45-62. 

Formann, A.K. (1992) Linear logistic latent class analysis for polytomous data. Journal of the 

American Statistical Association. 87. 476-486. 

Goodman, L. A. (1979). On the estimation of parameters in latent structure analysis. Psvchometrika. 

44, 123-128. 

Haberman, J. S. (1974). Log-linear models for frequency tables derived by indirect observations: 

Maximum likelihood equations. The Annals of Statistics. 2, 911-924. 

Hoijtink, H. (1990). A latent trait model for dichotomous choice data. Psvchometrika. 55. 641-656. 

Lazarsfeld, P. F., &; Henry, N. W. (1968). Latent structure analysis. New York: Houghton-Mifflin. 

Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm. Journal 

of tjie Royal Statistical Society B, 44, 226-223. 

Luenberger, D. G. (1984). Linear and nonlinear programming. MA: Addison-Wesley. 

Ramsay, J. O. (1980). The joint analysis of direct ratings, pairwise preferences and dissimilarities. 

Psvchometrika. 45. 149-166. 

Schonemann, P. H., & Wang, W. M. (1972). On individual differences model for the multidimensional 

analysis of preference data. Psvchometrika. 37. 275-309. 

Takane, Y. (1983). Choice model analysis of the 'pick anv/n' type of binary data. Paper presented at 

the European Psychometric and Classification Meeting, Jouy-en-Joas, France. 

Zinnes, J. L. , Griggs, R. A. (1974) Probabilistic multidimensional unfolding analysis. 

Psvchometrika. 39. 327-350. 


