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Abstract 

Binary preference data can be considered as a special case of incomplete data. Rejection of a item 

is conceived as an observed response, originating from one of two possible latent responses: 

rejection because the item is too far to the ’left’ from the respondent’s ideal, or too far to the 

’right’. Latent and observed endorsements, however, coincide. The latent responses are modeled 

through the 3-category Partial Credit Model (PCM). By a reparametrization of the PCM, each item 

is characterized by a location parameter and a width parameter. Marginal Maximum Likelihood 

estimators are derived, using the EM-algorithm. A class of statistical tests is derived, which can 

be used for diagnostic purposes. The ’nuclear energy’ data and the ’traffic’ data are analyzed. A 

discussion of the ML-estimator of the subject parameter exemplifies the difficulty of the estimation 

problem. 

Key words: Unfolding, EM-algorithm, partial credit model, missing data, preference analysis. 

Requests for reprints should be sent to N.D. Verhelst, P.O. Box 1034, 6801 MG Arnhem. 



74 
Introduction 

In psychological scaling theory and in item response theory, dichotomously scored responses have 

got far more attention than polytomies. In fact, models for polytomously scored responses - the 

different response categories being considered as ordered or unordered - tend to appear some years 

later in the literature than their dichotomous counterparts. A nice example is the Partial Credit 

Model (PCM) of Masters (1982) - also presented in another parametrization by Andersen (1977) 

(see Glas, 1989) - which is an elegant generalization of the Rasch model (Rasch, 1960). It seems 

as if sufficient experience has to be collected on the easier dichotomous case before the more 

general (and usually more difficult) polytomous case can be attacked. One might be tempted to 

conclude that scaling models should be developed, starting with the ’easy’ dichotomous case, with 

a possible but in any case postponed attempt to generalization to the polytomous case. In the present 

report an attempt will be made to do the converse, the dichotomous case being considered as a kind 

of mutilated polytomous case. 

As early as 1953, Coombs gave a nice characterization of the distinction between what is 

nowadays known as (unidimensional) item response models on the one hand and unfolding models 

on the other hand. However, he did so by means of dichotomously scored responses to a stimulus 

(an item in an aptitude test or a statement in an attitude questionnaire): "If an individual responds 

positively to a monotone item, he will respond positively to any item whose scale value is lower. 

A monotone item with two alternatives (e.g., correct or incorrect) then dichotomizes a continuum; 

individuals below some particular point all respond one way and individuals above that point 

respond the other way. If an individual responds positively to a non-monotone item, he will not 

necessarily respond positively to items on one side of it. A non-monotone item with two alternatives 

(e.g., endorse or reject a statement) trichotomizes a continuum. An intermediate segment of the 

continuum contains those individuals who respond positively, and the end segments contain those 

individuals who respond negatively.” (Coombs, 1964, p. 562-563, in a reformulation of his 1953 

paper.) Although formulated as if a deterministic mechanism governs the behavior, the idea is clear 

and up to date: in IRT, items are treated as monotone items, and the behavior is modeled through 

a monotone item characteristic curve, while in unfolding theory, item characteristic functions are 

invariably single peaked, a characteristic firmly founded on the theoretical work of Coombs & 

Avrunin (1977) and Aschenbrenner (1981) 

The second part of the above quotation suggests that it might be wise either to collect 

trichotomously scored responses, or to consider the dichotomous data as a particular reduction from 

an underlying trichotomy. The approach followed in the present report is to consider a rejection 

(usually scored as a zero) as an ambivalent response, which represents one of two extreme latent 



responses. More formally, let Yv, be the overt (observed) response of subject v on item i, and let 

Xvi be the latent response, coded as ’O’ if the subject’s position is ’far’ to the left of the items 

position, or more precisely, if the item is judged to have too much of the latent attribute in 

comparison to the subject’s ideal, coded as ’1’ if the item is endorsed, and coded as ’2’ if the items 

position is too far to the left of the subjects ideal. So, the observed response Yvi may be considered 

as a function of the latent response Xvi onto {0,1}, defined by 

Yv,(Xvi) = 
1 if Xvi = 1 

0 if Xvi = 0 or Xvi = 2. (1) 

As the above paraphrasing suggests, the latent responses may be considered as ordered categories, 

and the more to the right an individuals ideal is located, the greater the probability that he will 

choose a higher ordered category. But this means that a non-monotone (dichotomous) item at the 

level of the overt response coincides with a monotone three-category item at the latent response 

level (a monotone item can be more generally defined as an item whose expected score is 

monotonically increasing in the latent variable). From this, the approach to develop a model is 

evident: Any model which describes adequately the latent trichotomy can in principle be used. All 

one has to do is to investigate the implications of the partially latent responses. 

The Model and the Interpretation of its Parameters 

At the level of the latent responses XVI the proposed model coincides with the three-category PCM 

of Masters. The PCM is defined by the so called category response functions which gives the 

probability of each response as a function of the latent variable i?: 

exp[a(jtfv - E 0 )] 
fjiW - P(xvi=j|dv) =_-CL-, (2) 

E exp[a(hiJv - E 0 )] 
h-0 g-0 

(j=0,l,2; i=l,...,k; v=l,...,N), where k is the number of items, and v denotes a respondent. 

A graph of these functions is depicted in Figure 1. From (2) it is clear that for all i, /3M can be 

chosen as an arbitrary constant. For reasons of interpretability and in line with the common use in 

IRT literature, /3l0 is put to zero for all i, leaving two free parameters per item. 

As to the interpretation of the latent response Xvi, it should be clear that the graded response does 

not express the strength of approval of item i by individual v; it rather gives an indication of the 

position of the subject point on the latent continuum in comparison to the items position, as 
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described in the introduction section. Now, this description can be refined somewhat. The graphs 

of fj; and fj., | intersect at ft, (j = 1,2). Referring to Figure 1, one sees that to the left of ft,, the 

’zero’ response is the most probable one, and that the ’two’-response is modal to the right of f}a. 
The ’one’ response is modal for ft, < i? < Pa. However, the inequality < /3a is not required 

by the PCM; if /3,, > Pa, this means that responses ’1’ is never modal. The graph of such a case 

is given in figure 2. 

Figure 1 
Category response functions 

with f}2 > Pi with Pi > p2 

At the level of the observed responses, Yvi) the item characteristic function is directly derived 

from (1) and (2): 

F,(<5V) ^ P(Yvj=l|i?) = f„(i5v). (3a) 

It immediately follows that 

1 -W = WW^v)- (3b) 

The graph of F^t?) is the single peaked curve in Figures 1 and 2. 

In order to have a nice interpretation of the parameters in the resulting unfolding model, the 

underlying PCM is reparametrized as follows. Let for all i 

r, = 
4-ft, 

2 
(4) 

With this parametrization, F,(d) can be written as 

F,(ft) = 
exp[a(dv + 5; - y,)] 

1 + exp[a(i)v *di- 7.)] + exp[2a(dv- 7.)]' (5) 
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It is easily verified that the derivative F, (with respect to 0) is given by 

F,'(«5) = (6) 

meaning that F^t?) reaches its maximum at the point where the graphs of fi0 and fl2 intersect: 

F'(^) = 0 « ^ = r, (7) 

So 7j can be interpreted as a location parameter of the item on the latent continuum: it gives the 

value of the latent variable where the probability of endorsement is maximal. This maximal value 

is given by 

expfaSj) 

2 +exp(a<5i) (8) 

Of course the location parameters are not uniqely determined by (5). Adding an arbitrary constant 

to 7i and to i9v leaves (5) invariant. The origin of the scale may be fixed by fixing one of the 

7-parameters or their sum at zero. 

From (4) it is clear that <5, can be interpreted as a width parameter. The first row of diagrams in 

Figure 3 shows clearly the interdependence of F^yJ and the width parameter: the higher the 

maximal probability of acceptance, the broader the range on the latent continuum where the item 

will be endorsed with high probability. This may seem an unattractive characteristic of the model: 

a item that is very attractive at t? = 7; is also attractive for a broad range of t? around 7,, implying 

that high popularity at a given point goes together with weak discrimination in the neighborhood. 

However, this disadvantage can easily be taken away by careful inspection of the meaning of the 

scale parameter a. Although a is arbitrary, fixing it at a specific value has implications for the 
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interpretation of the latent variable d. Considering a collection of d-values as a distribution, then 

doubling the value of a necessitates halving the ^-values and thus halving the standard deviation 

of the ^-distribution. So if we are to study the behavior of individuals belonging to a specified 

population, we might choose a scale unit related to the distribution of i), for instance, by fixing its 

standard deviation to one. By doing so, the d-values no longer can be multiplied by an arbitrary 

constant, and a becomes a parameter to be estimated. The effect of variation in a in combination 

with variation in the 5-parameter is depicted in Figure 3: in a single column (with constant 5), the 

curves become more peaked as a increases and so the item discriminates better in the neighborhood 

of y,. So, given a scale unit, a can be interpreted as a discrimination parameter. In the limit, as 

a -> oo, Fj(i>) is a step function: 

1 if 7^5; < iS < 7j+Sj, 

(9) 
0 elsewhere, (5I > 0), 

producing the trichotomization of the latent continuum as described in the quotation of Coombs, 

given above. 

Of course, one might be tempted to allow variation in the discrimination parameter across items, 

thereby producing a three parameter model: each item is characterized by a location parameter, a 

width parameter and a discrimination parameter, yielding a very flexible model. Although the 

derivation of the estimation equations is straightforward, the actual estimation might turn out to be 

quite difficult, and in view of the large number of parameters compared to the little amount of 

information provided by the data, it is to be expected that the estimates will not be very stable. In 

this paper only a special case of the model will be considered: it will be assumed that all 

discrimination parameters are equal, and, moreover, that all width parameters are equal as well. 

The common width parameter will be indicated as 5. 

An interesting feature of the model, both with respect to interpretation as well as to mathematical 

elegance is given by (8) and (9): for all finite values of the parameters, F^i?) £ (0,1), implying 

that its logarithm is well defined everywhere, and from (5) it is easily seen that log F^t?) is 

arbitrarily many times differentiable, assuring that most of the regularity conditions for constructing 

statistical tests, based on the ML-estimates, are fulfilled. With respect to the interpretation, the 

model implies that the probability of endorsement at the ideal point, that is, when i? = 7,, is strictly 

less than one, and can take all values in (0,1). This maximal probability is a simple estimable 

function of the parameters - given by (8) - in contrast to for instance, the PARELLA model of 

Hoijtink (1991), where this maximal probability is one per definition, or Andrich’s (1988) model, 

where it is bound to be not larger than 'h. 

lim Fjli?) = 
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As a final remark, it should be noticed that (8) does not imply that 5* > 0. A negative width 

parameter means that 0,2 < ft,, implying that F.ift) < 1/3. Although theoretically possible, such 

situations are likely to be uninteresting for real life applications; so no further special attention will 

be paid to this case. 

Parameter Estimation 

In IRT models, three methods of parameter estimation are commonly used: the first (and easiest) 

way is to consider all ft, as well as a, 7, and 6 as parameters to estimate. ML-estimates are those 

values which maximize the likelihood function jointly with respect to all parameters. This procedure 

is known as the joint ML method (JML). For the Rasch model it is known that with a finite number 

of items, JML yields inconsistent estimators for the item parameters. It is likely that an JML 

procedure will yield inconsistent estimates of the parameters in the present model as well. For this 

reason, the JML procedure will not be discussed. 

A second method, which is rather popular among users of the Rasch model, is the conditional ML 

method (CML). This procedure is applicable for any model where nontrivial minimal sufficient 

statistics for d exist. For the PCM, these sufficient statistics are given by the score S, defined as 

sv = E X, (10) 

However, in the present model, Xvi is not observed, but Yvi is. From definition (1), it follows 

readily that there can exist response patterns Xv and Xw such that Sv * S„ and Y(XV) = Y(XJ. For 

example, Xv = (1 0) and - (1 2). Therefore there cannot exist a partition on the sample space 

{Y} which coincides with the partition induced by (10). So CML is not feasible as an estimation 

procedure. 

The third method - which is strictly speaking not just a method, but an extension of the 

measurement model - is known as Marginal Maximum Likelihood (MML). There, ft is no longer 

considered as a fixed parameter but as an (unobserved) realization of a random variable 0. The 

measurement model defined by (2) only defines the conditional probability of the overt response 

Y,i = 1, given 0=ft. By extending this measurement model with a structural model describing 

the distribution of 0, and by assuming that the realized sample is a simple random sample from 

this distribution, the likelihood of a specific response pattern Y = (Y^.^YJ is given by 

LfoY) = (11) 
J i 

where t; — (a, 8, 7,,...,7k, y>) and G^ft is the distribution function of ft possibly indexed by one 

or more parameters, denoted <p. It will be assumed, as is common in IRT modeling, that the 
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parameters of the ^-distribution are independent of the parameters of the measurement model. 

Maximizing (11) with respect to all parameters is known as MML, and by a result of Kiefer & 

Wolfowitz (1956), the estimates are consistent under very mild regularity conditions. It is clear that 

in order to maximize (11), something should be known or assumed about G(0), and the stronger 

the assumptions, the more vulnerable the model becomes. In some cases, G(i5) is assumed to be 

a member of a parametric family of distribution functions - such as a normal distribution - or a 

more general family of distributions is assumed. (For applications in the Rasch model, see De 

Leeuw & Verhelst (1986), Folman (1989) and Engelen (1989)). In the present report the normal 

distribution will be considered, and also a special family of non-parametrized distributions. 

First, the normal case will be discussed. Since unit and origin of the scale may be chosen 

arbitrarily, one may choose the mean of the distribution as origin and its standard deviation as unit; 

so in the normal case the distribution is completely fixed (*> is empty), leaving r=k+2 free 

parameters to be estimated: k location parameters yh the width parameter 5 and the discrimination 

parameter a. 

In IRT modeling where the MML procedure is used, a common device is to consider the i5- 

values as missing observations and to apply the EM-algorithm (Bock & Aitkin (1981), Glas (1989)). 

Using this approach here makes that data are missing at two levels: the tl-value of the sampled 

individual is missing completely and, as explained above, the responses are only partially observed, 

because the distinction between an assumed ’0’ and ’2’ response is lost at the level of the 

observations. So one can approach the problem with Y as observed data and the pair (X,<9) as full 

data. Although the application of the EM-algorithm is straightforward, the computational burden 

is high, because expectations at two levels have to be computed. Since a large amount of data is 

modeled as being missing, it can be expected that the EM-algorithm will converge very slowly. 

Another possible approach is to consider the pair (Y,t9) as the full data, ignoring (1), and 

to consider (5) as the complete specification of the measurement model. Although the formulae 

become more complicated, the amount of modeled missing information is less than in the former 

case, and it can be expected that the algorithm will converge faster. Therefore, the latter approach 

is chosen. 

Let Y denote the Nxk data matrix, and define ((.) = log L(.). Then, from (5), it is clear 

that 

f(if;Y) = £ In JffYj^gWdtf, (12a) 

where 



free weights, one of them was estimated at zero, suggesting that an equal fit can be obtained with 

four nodes. A more flexible approach where the nodes are not fixed but have to be estimated (a full 

non-parametric model) might repair the lack of fit. This will be discussed further in the discussion 

section. 

Table 1 
Results of the analyses of the 'nuclear energy’ data"1 

all items all items items 1-4 
weights estimated_weights fixed weights fixed 

NOALT 

DIFFDE 

PROBSOL 

SAFEPRO 

CLOSFOR 

G2 88.62 121.1 34.77 

df 20 24 9 

P < -0001_< .0001 .0001 

a 

8 

71 

72 

7s 

74 

7s 

1.V4U (.133) 

1.783 (.118) 

-1.798 (.118) 

-1.339 (.102) 

0.091 (.116) 

1.180 (.117) 

2.275 (.195) 

1.287 (.101) 

2.483 (.187) 

-3.243 (.241) 

-2.595 (.220) 

-0.716 (.181) 

0.846 (.174) 

2.484 (.206) 

0.907 (.152) 

3.075 (.497) 

-4.036 (.622) 

-3.234 (.532) 

-0.859 (.342) 

0.863 (.423) 

*) standard errors in parentheses. 

Table 2 
W-statistics for two analyses of the ’nuclear energy’ data (weights fixed) 

set all items items 1-4 set all items items 1-4 
{} -1.186 -0.735 

{1} 0.535 -0.479 

{2} -0.013 -0.735 

{3} -1.186 -0.735 

{4} -2.676 -1.962 

{5} -3.533 

{1,2,3} 2.048 0.785 

{1,2,4} 0.394 -1.021 

{1,2,5} -1.788 

{1,3,4} -1.180 -2.240 

{1,3,5} -0.571 

{1,4,5} -2.236 

{2,3,4} -0.553 -1.787 

{2,3,5} 1.257 

{2,4,5} -2.963 

{3,4,5} -4.642 

Of course, the lack of fit might be caused because the set of items lacks homogeneity with respect 

to the model. In Table 2 the W-statistics are displayed. In the analysis with 5 items, it appears 

clearly that items 4 and 5 in conjunction cause problems. Therefore a reanalysis was done with one 

of these two eliminated. The last column in the Tables 1 and 2 reports this analysis. Although the 
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G2 statistic remains significant, the W-statistics are quite acceptable. An analysis with item 4 

eliminated gave similar results. An analysis with four items and free weights failed to converge. 

A negative W-statistic indicates that illegal triples occur less often than predicted by the model. 

Since the majority of them is negative, this might point to a lack of stochastic independence: 

persons answering to the items might have a more or less clear idea of the dimension involved and 

avoid illegal triples. 

Table 3 
Summary of the analyses of the ’traffic’ data 

pre post joint 

a 1.502 1.432 1.463 

5 2.367 2.533 2.428 

average y 0.706 0.652 0.678 

G2 444.15 394.15 544.52 
(df=1011) 

p > .999 > .999 > .999 

log-lik (f) f,=-1587.1 f2=-1521.6 f12=-3123.2 

symbol label 

A NOCONC 
B MAXTAX 
C HIGHTAX 
D PAYTAX 
E DECREA 
F CARSTA 
G OTHPOL 
H SELFDE 
I NOTHRE 
J EXTROA 

The results of the second example, the ’traffic’ data, (two independent samples each of size 300, 

one representing a pretest and the other a posttest relative to an information campaign) are 

summarized in Table 3. The three analyses (with the standard normal distribution as assumption) 

show a remarkable good fit. Nevertheless, a likelihood ratio test (with test statistic 

of the ’traffic’ data 



X 2(1, + (2 - (a) — 29.0; df—12, p < 0.01; see Table 3) shows that the model parameters 

cannot be considered equal in the pre- and post-period. From the upper half of Table 3, it is seen 

that there is a slight tendency for the items to discriminate less at the post measurement, while at 

the same time the width parameter has increased. Both tendencies indicate that the region of 

acceptance for all items has increased somewhat, such that the measuring instrument has become 

less able to discriminate between people. It also means that with unchanged locations of the items, 

there would be a tendency to accept more items in the postmeasurement than in the 

premeasurement. Although this is the case in the sample (the average number of accepted items is 

5.04 in the pre- and 5.14 in the post- measurement), this tendency is weakened by the changed 

locations. See Figure 4. The ordering at both measurement occasions is almost identical, and the 

interpretation of the continuum is easy: the positive direction indicates increasing concern with the 

environment. Besides, a nice pattern is visible when comparing the two scales: the most extreme 

items diverged still further, while the items in the middle came closer. At the postmeasurement 

people show less inclination to endorse extreme items. Since for both data sets, the itemparameters 

were estimated using a standard normal distribution of the latent attitudes, a decrease of the average 

location parameter is equivalent to an increase of the average attitude. So the estimate of the 

average increase is -(0.652-0.706) = 0.054. The standard error of the average location parameter 

estimate is 0.068 and 0.076 for pre- and postmeasurement respectively. The estimated increase does 

not differ significantly from zero (t = 0.53). 

Properties of Maximum Likelihood estimators of 1?. 

As explained above the present unfolding model can be viewed as a Partial Credit model with 

missing information on the two extremes of the three possible item scores. Therefore, it is to be 

expected that the data contain less information on the person parameter d than the full data. Also 

the likelihood functions of the data will show some changes that might complicate the estimation 

procedures. The consequences of these two problems as well as the bias of the ^-estimates will be 

explored with the aid of two examples. 

The first example builds on the ’nuclear energy’ data; the second example is chosen to reveal 

some properties in a more pronounced way. It consists of two groups of three items with gamma 

parameters resp. -1.50, -1.45, -1.40, and 1.40, 1.45, 1.50, two tight clusters, located 

symmetrically about the origin of the scale. The scale parameter a = 1.0, and the width parameter 

S = 2.0. Choosing a smaller 5 results in a greater loss of information, because the 

nondistinguishable item categories gain in likelihood at the cost of the middle category. The results 
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are given in the Figures 5 through 8. The left part of each Figure refers to the ’nuclear energy’ 

data, the right part to the ’two cluster’ example. 

Figure 5 shows the loss of information of the unfolding model with respect to the full PCM. The 

solid line represents the information in the PCM and the dashed line the information in the present 

unfolding model. Especially from the artificial example it emerges that the loss of information is 

the most severe at a concentration of gamma’s. This is a result of the fact that the item information 

function vanishes at its value of 7. 

Figure 5. Information loss due to collapsing item scores 0 and 2. 

Figure 6 ’Exact’ error of estimation (solid line) and its approximation 

The information function I(i?) is often used as measure of estimation accuracy, because the 

standard error of estimation can be approximated by I(tJ)'‘A. Figure 6 shows the standard deviation 
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f(Yv|«?) = n [F,(^)]y” [1 -F,(^)] '-y. (12b) 

g(t5) denotes the standard normal probability density function and D is the domain of t?. Taking the 

partial derivative of l with respect to an element of i/ yields 

9 _ r 31nf(Y 115) 
/-ffoY) = ^ vl ; h(i5 Y ) di9, (13) 

where h(d | Yv) is the conditional probability density function of i? given the response pattern Yv. 

The log-likelihood is maximized by equating (13) to zero, and solving for i;. This may be 

complicated because both functions in the integrand of (13) are a function of ij. In a single iteration 

of the EM-algorithm the conditional density is treated as a completely known function, rj being 

evaluated at the solution value of the previous iteration. Therefore only expressions for the first 

function in the integrand of (13) have to be derived. It proves useful to define the following 

auxiliary functions: 

M*) - hu 
(foi-4) 

1 f,: ’ 
(14a) 

h2l(tf) « h2i = aKtf-^h.j + S], (14b) 

Since the sign of a is irrelevant, it is convenient to restrict ct to the positive reals. In order to keep 

a in its domain during iterations, all derivatives are taken with respect to In a rather than a itself. 

By straightforward differentiation it is found that 

din f(Y | d) = 

dlna 

dlnf(Y|i?) 
35 

dlnf( Y11?) = 
9-y. 

l My, 
i 

i 

-«hi,(y, 

(15a) 

(15b) 

(15c) 

Substituting (15) into (13) and equating to zero gives the likelihood equations. In order to evaluate 

the integral, a numerical integration method can be used. A natural choice for this problem is to 

use Gauss-Hermite quadrature, with a suitable number Q of quadrature points. Loosely speaking, 

Gauss-Hermite quadrature can be described as replacing the original normal density function (which 

is continuous), by a discrete distribution, where all the probability mass is concentrated at the Q 

quadrature points. Quadrature points as well as the mass associated with each of them are fixed b> 

the method itself, and are published (e.g., Abramowitz & Stegun, 1964). 
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In order to arrive in a smooth way to the non-parametric family of distributions, one can in a way 

reverse the above reasoning: the discrete distribution used in Gauss-Hermite quadrature can be 

considered as the model itself, and since Gauss-Hermite integration is a good approximation to 

integration with the normal density as part of the integrand, this discrete model can be interpreted 

as an approximation to the continuous normal one. This reasoning has a double advantage: in the 

first place the accuracy of the Gauss-Hermite integration is no longer of primary concern, since the 

basic model postulates a specific discrete distribution; in the second place, there is a natural way 

to generalize this model to a more general family. Fixing Q at a particular value, the above model 

may be relaxed in two respects: the weights or probability masses, oiv q=l,...,Q, attached to the 

quadrature points or nodes may be considered as variable (with the only restriction of being 

nonnegative and their sum being one) while the nodes remain fixed, or, still more general, nodes 

as well as weights may be considered as variable. The latter problem will not be considered in 

detail here. In the case where the weights have to be estimated, these very weights act as 

parameters of the model, although the distribution function does not belong to a parametric family, 

this being a reason to call it a non-parametric or semi-parametric distribution. Strictly speaking, 

the distribution is a simple multinomial distribution with index 1. By straightforward algebra, it is 

found that in each iteration of the EM-algorithm, the cj-values are given by 

E h^lY,) 
"j = v-’ 0=1,-,Q). (16) 

E E h(<5,|Yv) 
q v 

Of course, changing the parameters oi will automatically change the mean and the variance of the 

distribution. In order to keep the mean at zero and the variance at 1, a simple linear transformation 

of the nodes can be carried out, together with the accompanying transformation of a, S and the y- 

parameters described above. 

Estimates of the standard errors of the parameter estimates through the inversion of the observed 

information matrix can be computed without evaluating the second partial derivatives of the log- 

likelihood function (12a), using an identity given by Louis (1982), which requires only evaluation 

of the expressions (15) and their partial derivatives. A more detailed discussion of this method is 

contained in Verhelst and Glas (1993). 

Testing the Model 

An overall test of the model is given by the well known G2 test: 
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G2 = 2NJ] p.lnfi (17) 
• ir» 

where the sum runs over all possible response patterns, p„ denotes the observed proportion and irs 

the expected proportion of pattern s. G2 is asymptotically chi squared distributed with 2k - 1 - r 

degrees of freedom, where r is the number of parameters estimated. In order to test a restricted 

model against a more general one, the difference of the associated G2 statistics is asymptotically 

chi squared distributed with the difference between the number of estimated parameters giving the 

number of degrees of freedom. This test is only possible if the parameter space of the restricted 

model is a subspace of the parameter space of the more general model. However, if the overall test 

yields a significant result, indicating that the model assumptions are not valid, one might need a 

more specific test to find out which of the assumptions fail. For example, one or a few items may 

violate the model assumptions, and eliminating them might result in a valid model for the remaining 

items. 

If the parameters of the model are known, a class of one-degree-of-freedom tests is easily 

constructed as follows. Let K = 2k and let S be the index set {1,...,K} and let the response patterns 

be ranked in some arbitrary but fixed way. Define the K-variate random variable Z = (Z,,...,ZK) 

as 

1 if response pattern s is observed, 

z. = (18) 
0 otherwise, (s=l,...,K). 

Let t.ij be the conditional probability of observing pattern s given d, then Z is distributed 

multinomially with parameter x = (x1,...,xK), where x, is given by 

T. = (19) 

Now, let I be any strict and non-empty subset of S, and define Z, as 

z. = E z.' (20) 
»ei 

then it follows easily that 

X, = E(Z,) = 53 X„ and var(ZI) = x.U-x,). (21) 
sei 

Since for all observations in the sample, Z is identically distributed, the average of the Z,, i.e. the 

proportion of response patterns belonging to I and denoted ph is asymptotically normally 

distributed. Hence the statistic 
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(22) 

follows asymptotically the standard normal distribution. 

In case the parameters are estimated from the data, it does in general not suffice to replace the 

theoretical proportions x, by their estimates in order to preserve the asymptotic normality of the 

test statistic; a suitable correction has to be applied to the the test statistic itself. This correction 

is easily derived for exponential family models, but not otherwise (Glas & Verhelst, 1990). 

Experience in the framework of a generalization of the Rasch model (Verhelst, 1992) shows that 

ignoring the correction does not lead to gross errors in many cases. Therefore, (28) with the ML- 

estimates substituted for the true theoretical probabilities will be used as test statistic. 

As to the choice of I, the approach of van Schuur (1989) will be followed. In the deterministic 

model, a partial response pattern (1 0 1) on the items i, j and h with y, < y, < yh is evidence 

against the model. In a probabilistic model, the proportion of this partial response pattern can be 

compared with its expected value using (22) and defining I as the subset of response patterns 

comprising this partial pattern. As a shorthand notation this subset will be denoted as {i,j,h}. From 

the above definition it is clear that 

(ij.hj = f Fjfi?) [ 1 -Fjfi?)] Fh(t?) g(i)) dt?. (23) 

In order to summarize the many test statistics having item i as the middle or as a lateral item in an 

illegal triple, one can define I as the subset of response patterns having at least one illegal triple 

comprising item i. This subset will be denoted as {i}. Finally, an overall test is constructed by 

choosing I as the subset of response patterns comprising at least one illegal triple. This subset will 

be denoted as { }. In contrast to (23), there are no compact expressions for T(i) and for t(). So, for 

each of the K possible response patterns, it has to be checked if they belong or not to {i} or { }. 

Therefore these tests are only useful if the number of items is not too large. 

Examples 

In Table 1 the results of some analyses of the ’nuclear energy’ data (N=600) are summarized. 

Both solutions with five items yield a scale that is clearly interpretable as a bipolar scale as 

suggested by the initial ordering given in the introductory chapter. It is clear, however, that the 

solution with the normal distribution (weights fixed) does not fit the data very well. Although the 

analysis with estimated weights yields a significant drop of the G2 statistic, the solution does not 

reproduce the data very well. Both analyses used five quadrature points, and in the analysis with 
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of the ’exact’ conditional distribution of the Maximum Likelihood (ML) estimator given 6 and its 

approximation I(tf)'A. ’Exact’ is put between quotes because the ML estimator for the zero response 

pattern (no proposition is supported) does not exist. In the calculation of the conditional distribution 

of the ML estimator given the estimator for the zero pattern was chosen to be equal to d 

itself,so as to prevent a distortion of the results by this problem. Moreover, the probability of a 

zero pattern is smaller than 1 % for in the two plots for resp. -3.65 < 0<2.13, and -2.10<0<2.10, 

and smaller than 0.3% in the center of the plots. The two plots show that, the information function 

gives, in general too optimistic an impression of the accuracy of the ML estimator, especially round 

the mean of the y parameters of the scale. However, the differences are relatively small. 

Besides the variance of the ML estimator also its bias [i)-E(d 11))] is an important property. The 

bias function for the two examples is shown in Figure 7. For the zero response pattern, the above 

mentioned strategy is applied again. From the plots it emerges that, with respect to the Rasch 

model and the Partial Credit model the bias of the ML estimator is reversed. The estimator tends 

toward the center instead of away from it. 

0 520 
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0.344 

0.256 

0.168 

0.080 

-0.008 

-0.096 

-0.184 

-0.272 

-0.360 
■2.3 -1.4 -0.5 0 4 1.3 2.2 3.1 4 0 

Figure 7 Bias [i)-E(i5| i?)] of the ML estimator 

There are many reponse patterns in the present two examples for which the likelihood shows more 

than two maxima. Fortunately most times the local maxima are located at a large enough distance 

from the global maximum and the initial estimator to cause serious problems, although 

straightforward application of the Newton algorithm in the computation of the estimate may cause 

problems. The secant method showed very efficient. However, the likelihood of pattern 10010 in 

the ’nuclear energy’ example shows that problems cannot be excluded. The first plot in Figure 8 

shows that two (almost) equal maxima are not imaginary. The second plot shows that the likelihood 
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for the pattern with only ones allows an ML estimator. One of the two extreme patterns in this 

model causes no problem in this respect. 

Figure 8 The log-likelihood function (solid line) and its derivative 

Discussion 

The main idea of the present paper is to apply an IRT model, developed for monotone items to 

non-monotone items. This is possible through the introduction of latent responses (the X) and by 

the construction of a special many-to-one mapping of the latent responses onto the domain of the 

observations (the Y). Although this key idea is very simple, it causes a lot of problems which are 

only partially solved. The main problem is that by this mapping, the resulting model does not 

belong to the exponential family. As a consequence, the likelihood function can have several local 

maxima, and the final solution may depend rather heavily on the starting values. Standard 

procedures, such as the Newton-Raphson algorithm may easily fail (see Figure 8), not only in the 

estimation of i5, but also for the other parameters: it can easily be seen from (5) that all partial 

derivatives with respect to a 7 parameter and 1? are similar. As a consequence the development of 

a reliable computer program to compute the estimates depends on many ad hoc rules and the one 

example reported where convergence was not reached, is but one example of the misery 

encountered in the analysis of a considerable number of data sets. 

Adding parameters, such as allowing the 5 or a parameters to vary or trying to estimate the nodes 

of the ^-distribution, certainly will aggravate the problem. For the examples reported, the analyses 

with free weights required about 10 times as many iterations as the analyses with fixed weights. 

Apart from the algorithmic problems, however, there is also a hard theoretical problem: There 

is no proof that the model presented here is identified, and the use of the model is justified through 
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the finding of plausible and interpretable solutions. But some work on an extension of the model 

with free 5 parameters (not reported here) shows that in many cases no solution is found, or the 

computed solution is highly implausible. It is our conjecture that this extension yields an 

unidentified model. 

From the point of view of interpretation, all these problems are caused because the data collection 

procedure is not able to distinguish between a latent ’0’ and ’2’ response. With regard to future 

investment of effort in unfolding models an important decision is at stake. On can continue to 

develop clever heuristics to face the computational problems mentioned and try to prove that the 

model and its extensions are identified (or not). But it is also possible to try to devise clever data 

collection procedures which allow for a distinction between a latent ’0’ and ’2’. One might for 

example ask the respondent, after the collection of the binary responses, if he is able to classify the 

rejected items into two piles using the criterion of similarity with regard to the reasons of rejection, 

and to rankorder to two piles with repect to the subset of endorsed items. If successful!, the latent 

zeros and twos are distinguished, although not identified. The use of this information can be a 

challenge for future model development. 
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