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Abstract 

A nonparametric probabilistic model for parallelogram analysis can be 

regarded as a latent trait model with unimodal tracelines without specific 

assumptions about the functional form of the tracelines. Certain desirable 

empirically testable consequences can be derived, if two additional 

assumptions are postulated: total positivity of orders 2 and 3 for the 

traceline family. These rather technical assumptions are equivalent to two 

measurement related properties. The empirically testable consequences are 

formulated as properties of the correlation matrix and the conditional 

adjacency matrix. The correlation matrix is appropriate for distinguishing 

cumulative latent trait models from models for parallelogram analysis. The 

rows of the conditional adjacency matrix can be regarded as an estimate of 

smoothed-out tracelines of the row items. A test for the unimodality of 

these rows is also proposed, and can be regarded as a test for the 

unimodality of the tracelines. 
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1. Introduction 

Unidimensional probabilistic parallelogram models for pick any/n data can 

be regarded as latent trait models, where persons and items are represented 

on the same scale, and where the probability of a positive response of a 

person to a given item tends to be higher when the distance between the 

position of the person and the position of the item on the latent trait is 

smaller. When the distance between the positions of the person and the item 

completely determines the person's response, we get the deterministic 

parallelogram model of Coombs (1950, 1964). Coombs formulated probabilistic 

versions of this deterministic model in terms of Single-Peaked Preference 

Functions: the person's preference is assumed to be a unimodal function of 

the positions of the items on the latent dimension, with its maximum on the 

person's position. 

In the following, a mathematical model formulated in terms of item 

response theory will be presented as a probabilistic parallelogram (or 

unfolding) model for pick any/n data. This approach along the lines of item 

response theory deviates from Coombs' approach. The probabilistic model 

proposed here is not formulated in terms of Single-Peaked Preference 

Functions, but in terms of unimodal tracelines, i.e., the probability of a 

positive response to a given item is modeled as a unimodal function of the 

position of the person on the latent trait. However, if the preference is a 

monotone function of the distance between the position of the person and the 

position of the item, and if this function is the same for all persons, the 

model in terms of preference functions can be translated into a model 

formulated in terms of tracelines. 

The set of items that together constitute the scale is supposed to be 

given. The items should have been selected in such a way that they are good 

indicators of the latent dimension. Persons are assumed to agree about the 

position of the items on the latent trait, although they themselves may have 

different positions on the latent trait. Each person is confronted with the 

same data set of items, and the response to each item can be positive 

("agree") or negative ("disagree"). 



57 

The aim of this nonparametric model for dichotomous responses on a set of 

items is 

(1) to maintain the idea of unfolding and parallelogram analysis, viz. of 

modeling the associations between the responses by the existence of a latent 

trait, where closer proximity between persons' and items' positions leads to 

a higher probability of positive responses, and 

(2) embody this idea in a minimal set of assumptions without specifying 

assumptions concerning the functional form of the tracelines or of the 

probability distribution of the person's positions on the latent trait, 

(3) in such a way that consequences can be derived that reflect the basic 

idea expressed in (1), and that allow to test the model assumptions on the 

basis of the observed data. 

In the following section our unidimensional model is formulated in terms 

of item response theory. In Section 3, properties of two diagnostic matrices 

are discussed, namely properties of the correlation matrix and of the 

conditional adjacency matrix. In Section 4, a statistical test for the 

properties of the conditional adjacency matrix is discussed. Section 5 

presents the analysis of two empirical datasets. The last section contains a 

discussion of the proposed method. 

2. Formulation of the Nonparametric Model for Parallelogram Analysis 

As to the data structure, it is assumed that there are n items, indicated 

by .n; they are supposed to be located along the latent trait in 

the order given. The response of a person on item i is considered to be a 

random variable X^; = 1 if the person responds positively to item i, and 

0 otherwise. A positive response to an item will also be expressed by 

stating that the person chooses this item. The vector of responses of a 

person is the random vector X = (X^, ..., Xn). We make the usual assumptions 

of the existence of a latent trait and local stochastic independence, 

reflecting the "pick any" data collection design and the unidimensionality 

of the set of items: 
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Al. There exists a unidimensional latent trait, /3, such that every person 

has a position on this latent trait; the probability that a person with 

trait value responds positively to item i is denoted p^(/3). This 

probability, regarded as a function of /3, is the traceline of item i. 

A2. The responses of a person on the various items, given the latent trait 

value, are independent: 

n x. 1-x. 
P(X-x|/3-j80) - n Pi(/30) 1(l-pi(/30)) 1 . 

i-=l 

The further assumptions, A3 to A5, are assumptions regarding the tracelines 

p^()9) to p^C/?) . For cumulative models, the tracelines would be required to 

be non-decreasing in , see Mokken and Lewis (1982) and Sijtsma (1988). For 

parallelogram models, in contrast, the tracelines are required to be 

unimodal. 

A3. For every item i, the traceline p^(£) is a unimodal function of (3. Let 

6^ be a value where pi(y3) is maximal. It is possible that there is an 

interval of values where p^(/3) is maximal, in which case 6^ is not 

unique. The 6^ can be chosen in such a way that they are non-decreasing 

as a function of i: 6, < < ... <6 
12 n 

The value 6^ is regarded as the position of item i. 

Assumption A3 is a statement about the conditional distributions of the 

response vector X, given values of /3. To have properties of the 

parallelogram model that can be tested on the basis of a sample of persons, 

however, we need statements about the distribution of X without conditioning 

on the non-observable value of ft, but under the assumption that {) has been 

drawn at random from a population of /3-values. It turns out that assumptions 

Al through A3 do not suffice to derive testable consequences of the model. 

Therefore, we need two somewhat technical assumptions for the tracelines, 

which are expressed below in assumptions A4 and A5. 

A4. The family of tracelines {p^(/3)|i=l,...,n} is Totally Positive of order 

two (TP2), i.e. Pj (/3)/p^(/3) is a non-decreasing function of (3, for ail 
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This technical assumption is equivalent to the following measurement 

property concerning the relation between the order on the latent trait of 

the items and the order of the persons: When items i and j are ordered 

according to then knowing only that Xj - 1 should lead to a higher 

estimate of the person's latent trait value than knowing only that - 1. 

For a proof, see Post & Snijders (1992) or Post (1992). These references 

also indicate that Assumption A4 is applicable to cumulative (monotone) 

models as well as parallelogram (unimodal) models. 

We shall also need a somewhat more complicated analogue of A4, which is 

particularly appropriate for parallelogram models and not for cumulative 

models. 

A5. The family of tracelines (pi(/9)|i-l.n) is Totally Positive of order 

three (TP^) , i.e. for all and the determinant 

pi(^l) P1(/S3) 

Pjt/^) Pj(^2) 

pk(V W W 
> 0 

This technical assumption is equivalent to the following measurement 

property concerning the relation between the conditional probability that a 

person has a central position on the latent trait, given that item i is 

chosen for i = 1, ..., n. For an item with a very small value of 8. this 

probability will be low; for an item with a central position on the latent 

trait this probability will be larger, and for an item with a very high 

value of 6^ this probability will be low again. A further discussion is 

given in Post & Snijders (1992) and Post (1992). 

Postulating A4 and A5 as additional assumptions makes it possible to 

derive testable consequences of the model defined by Al to A3, as explained 

in the following section. 
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3. Two Diagnostic Matrices 

How should one check in empirical data whether items form a scale 

according to parallelogram analysis as embodied in assumptions Al to A5? In 

this section we discuss two diagnostic matrices, namely the correlation and 

conditional adjacency matrix. Certain properties for these matrices can be 

derived from assumptions A1-A5. A scale of items can be evaluated by 

checking these required properties. The conditional adjacency matrix is a 

variant of the adjacency matrix used as a diagnostic in MUDFOLD (Van Schuur, 

1984, 1988; see also Van Schuur's contribution in this volume). For the 

latter matrix no properties could be derived under our model. For details 

and proofs, the interested reader is referred to Post and Snijders (1992) 

and Post (1992). 

The Correlation Matrix 

The correlation matrix is frequently used as a measure for association, 

but it also makes sense for item response models. In the cumulative Mokken 

model, for example, all correlations are necessarily nonnegative (Mokken, 

1971). For the parallelogram model also negative correlations are possible. 

The correlation matrix is a square symmetric matrix with as its (i,j) 

element 

P(i,j) - P(i)p(j) 
R(iJ) = -—-— (1) 

7[p(i)(l-p(i))p(j)(l-p(j)}1 

where p(i) is the proportion of persons in the sample choosing item i, and 

p(i,j) is the proportion of persons in the sample choosing both item i and 

item j. 

If two items are close together on the latent trait, persons tend to 

either choose them both or not choose them both, resulting into a positive 

correlation. If two items are widely separated in the sense that where the 

traceline of the one item assumes large values, the traceline of the other 

assumes low values, then persons will tend to differ in response towards 
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these two items, resulting in a negative correlation. Davison (1977) derived 

for a metric unidimensional unfolding model that the correlation matrix 

exhibits a simplex pattern (Guttman, 1954), i.e. the correlations are non¬ 

decreasing from the first column towards the diagonal and non-increasing 

from the diagonal towards the last column. It can be shown that for our 

model a weaker property is satisfied. If Al to A5 hold then the population 

version of the correlation matrix exhibits the following sign pattern 

1. Each row (column) has zero, one or two sign changes 

2. If there are exactly two sign changes in a row (column), the first sign 

must be negative. 

The Conditional Adjacency Matrix 

The conditional adjacency matrix is a square asymmetric matrix with as its 

(i,j) element the relative frequency of persons responding positively on 

item i among persons responding positively on item j, i.e. 

P(i|j) " P(i,j)/P(j) (2) 

where p(j) and p(i,j) are defined above (it is assumed that p(j)>0 for all 

j). Since in general no designs are considered in which persons are asked to 

respond twice independently on the same item, the diagonal elements of this 

matrix are not defined. 

Consider the response of a person, drawn at random form a population of 

persons with a distribution of latent trait values with probability density 

function g(/9) . Then the expected value of p(i|j) can be expressed as 
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This shows that the i'th row of the conditional adjacency matrix can be 

regarded as an estimate of smoothed tracelines of item i, with smoothing 

kernel g^(^). It can be proven that the expected value of the conditional 

adjacency matrix has two properties under the nonparametric model, namely: 

1. Each row exhibits a unimodal pattern, i.e., the elements first increase 

up to a maximum, after which they decrease. 

2. The maximum of the row is in the column to the left of or identical to 

the column that contains the maximum of the following row, except for 

possible inversions around the diagonal, i.e., where the maximum in row i 

is in element (i,i+l) and the maximum in row i+1 is in element (i+l,i). 

The latter needs some explanation. The maximum of the row must be defined 

with caution, because the diagonal element is not defined. If p(i|i+l) is 

the maximal element in row i, then the 'true' maximum will be either in cell 

(i,i) or in cell (i,i+l). After all nothing is known about the diagonal 

element. Similarly, if p(i+l|i) is the maximal element of row i+1, the 

'true' maximum will be either in cell (i+l,i) or in cell (i+1,i+1). 

Therefore the case where the maximum in row i is in cell (i,i+l), and where 

the maximum in row i+1 is in cell (i+l,i) does not indicate that the second 

property is disturbed. In the following, property 1 is called the 

unimodality property, and property 2 the moving maxima property. 

4. Testing the Properties of the Conditional Adjacency Matrix 

Both properties of the conditional adjacency matrix can be inspected 

visually. But if the unimodality patterns in the rows are disturbed, or if 

the maxima do not have the required pattern, it still is a question whether 

these deviations are due to sample fluctuations or not. In Post (1992), a 

statistical test for the properties of the conditional adjacency matrix is 

derived, directed especially at the unimodality property. In the following, 

first a test statistic for the unimodality property for each separate row is 

discussed. After that we consider the positions of the maxima within the 

rows . 
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Denote by the vector p(k|«) the k'th row of the conditional adjacency 

matrix, by the vector P(k|*) its population version, and by N’^S(k) its 

estimated covariance matrix, where N is the number of persons. Our null 

hypothesis is that the row vector P(k|*) is unimodal. Note that this 

hypothesis does not include a statement about the position of the maximum 

element. Therefore we have to consider all possible positions of the maxima. 

Let M(i) be the set of all unimodal vectors for which element i is the 

maximum. The proposed test statistic for our hypothesis is 

min [ min (N(p(k|.) - P(k|•))'S(k)'1(p(k|•) - P(k|.))) ] , (3) 
i P(k|.)eM(i) 

Perlman (1969) derived upper and lower bounds for the asymptotic 

distribution of this test statistic under the null hypothesis, and also 

provided an explicit formula for calculating the p-level of the test 

statistic for a given data set. 

The test procedure is as follows. The term between braces has to be 

minimized under the restriction that P(k|*) is unimodal with the maximum in 

element i. This minimization problem is a quadratic programming problem 

under a set of linear restrictions, and can be solved by several computer 

algorithms. The minimum has to be computed for each unimodal pattern M(i), 

i=l, ..., n. For each given i the resulting p-value corresponds to a test of 

the hypothesis that the row is unimodal with the maximum in i. The second 

minimum (over i) yields the unimodal pattern with the maximum position that 

provides the largest p-value. In the following this p-value is called the 

maximal p-value. The maximal p-value corresponds to the test for the 

unimodality property. For details, see Perlman (1969) and Post (1992). 

The procedure outlined in the last paragraph yields a matrix of p-values: 

element (i,j) is the p-value for the hypothesis that row i is unimodal with 

maximum in column j, see for example Table 4; the diagonal is empty. This 

matrix can be used to investigate the moving maxima property. There is also 

another reason to consider this matrix of p-values. If a row of the 

conditional adjacency matrix is nearly horizontal, several (or even almost 

all) of the p-values will be relatively large: the data are compatible with 
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uniraodal patterns with the maximum in several possible positions. Such a 

nearly horizontal row in the conditional adjacency matrix with many 

relatively large entries in the matrix of p-values suggests that the 

traceline for that row item is quite flat, which is not a very interesting 

case within the context of parallelogram analysis. In fact, such items are 

often poor items which should be detected, and in some cases they should be 

removed from the item set. This implies that the variation of the p-values 

in a row indicates the peakedness of the unimodal traceline, provided that 

the maximum of the p-values is not too small. A small variation of p-values 

indicates a poor item. 

To summarize, the maximal p-value for each row can be used for testing the 

unimodality pattern of each row. The matrix of p-values for unimodal rows 

with maxima in given columns can be used to investigate the moving maxima 

property. Last but not least, the variation of the p-values within rows can 

be used as an indication for the peakedness of the unimodal tracelines of 

the row items. 

5. Analysis of Two Empirical Data Sets 

Attitude towards Nuclear Energy 

Formann (1988) constructed a questionnaire about attitude towards nuclear 

energy. Five statements about nuclear energy were submitted to six hundred 

persons. We will use the scale found by the search procedure of MUDFOLD (see 

for details, the contribution about MUDFOLD by Van Schuur to this volume). 

Table 1 presents the scale defined by the five statements. The scale can be 

interpreted as a dimension ranging from strongly in favor of, to strongly 

against nuclear power. 

The sign pattern of the correlation matrix in Table 2 is in agreement with 

the requirements: each row has exactly one sign change. The conditional 

adjacency matrix in Table 3 shows a perfect pattern. Each row satisfies the 

first property of the conditional adjacency matrix, a unimodal pattern, 
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Table 1 

The Scale for the Statements about Nuclear Energy 

Obtained by the MUDFOLD Procedure 

A: In the near future, alternate sources of energy will not be able to 

substitute nuclear energy. 

B: It is difficult to decide between different types of power stations if 

one carefully considers all their pros and cons. 

C: Nuclear power stations should not be put into operation before the 

problems of radioactive waste have been solved. 

D: Nuclear power stations should not be put into operation before it is 

proven that the radiation caused by them is harmless. 

E: The foreign power stations now in operation should be closed down. 

Table 2 

The Correlation Matrix 

Item ABODE 

A 

B 

C 

D 

E 

1 .09 

.09 1 

.12 .12 

.15 -.01 

.33 -.21 

.12 -.15 

.12 -.01 
1 .13 

.13 1 

-.20 .32 

-.33 

- .21 
-.20 
.32 

1 

Table 3 

The Conditional Adjacency Matrix and the 

Maximal P-value for Unimodality per Row 

I tern 

A 

B 

C 

D 

E 

A B C D 

.371 .35 

.53 - .49 

^89 .87 
.73 .81 .83 

.26 .39 .45 

.29 

.46 

.85 

.57 

E maximal 

_p-value 

.17 1.00 

.36 1.00 

.75 1.00 

.94 1.00 

1.00 

1 The underlined elements are the maxima. 
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which is confirmed by the maximal p-values all being 1.00. The moving maxima 

property is also satisfied: the positions of the maxima are from top left 

down to the right. 

The matrix of p-values presented in Table 4 gives p-values for all 

possible unimodality patterns for each row. The underlined elements are the 

p-values larger than 0.05. We propose that these are considered as 

candidates for the position of the maximum of the row. For the first row two 

positions for the maxima are likely, namely positions B and C. The two other 

possible unimodality patterns with the maximum in columns D and E are rather 

Table 4 
The Matrix of P-values with as its (i,j) Element 
the P-value for the Unimodality Pattern for Row i 

with Maximum in Column j. 

Item ABODE 

a - i.oo1 Hz Too Too 
B 1.00 - ^Q8 .00 
C 1.00 .96 - JL8 .00 
D .00 .00 .00 - 1.00 
E .00 .00 .00 1,00 

1 The underlined elements are p-values larger than .05 

unlikely. The second and third row both have three likely positions for the 

maxima. This implies that these rows have a horizontal pattern on a large 

part of the scale. From a measurement point of view these items have a 

rather limited value, because they do not give much information about the 

latent trait. The fourth and fifth rows are perfect. For both rows, there is 

one unimodality pattern for which the p-value is 1.00, and for all other 

possible unimodality patterns the p-values are 0.00. These items might have 

monotone tracelines. 

We conclude that this scale of five items satisfies the assumptions of the 

nonparametric model. But because of the fact that rows B and C of the 

conditional adjacency matrix both could have three possible unimodal 

patterns, one might consider dropping one of these two. 
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Attitude towards Car-Use and Environment 

Hoijtink introduced, in his editorial to this volume, data about the 

attitude towards car-use and environment. We have information about 

responses of 600 persons to ten statements concerning car-use in relation to 

environment. For 300 persons, we have pre-information campaign measures; for 

the other 300, we have post-information campaign measures. We shall analyze 

the scale obtained by the MUDFOLD procedure for all 600 persons (for 

details, see Van Schuur's contribution). The scale can be interpreted as a 

dimension ranging from strongly in favor of, to strongly against car use. In 

Table 5, the scale is presented. 

The correlation matrix (Table 6) exhibits a perfect pattern: each row 

(column) has one sign change. There is a block structure in the pattern: the 

set of items consists of two subsets, the items within each subset having 

positive correlations. It is therefore possible that this scale consists of 

two cumulative scales, namely a scale formed by items A to E (with 

decreasing tracelines), and a scale formed by items F to J (increasing 

tracelines). 

Checking the properties of the conditional adjacency matrix (see Table 7), 

we see that there are only small disturbances in the unimodality pattern of 

the first five rows. The disturbances are mostly due to items H and I. The 

maximal p-values, however, are very large for these rows which indicates 

that we cannot reject the hypothesis of unimodality on account of these 

data. The other rows show a perfect pattern, and have therefore maximal p- 

values equal to 1.00. Still, reversing items I and J would improve the 

pattern of the matrix. The moving maxima property is perfectly satisfied. 

From the correlation matrix we had the indication that this scale consists 

of two cumulative scales. This is confirmed by this matrix. Recall that the 

rows of the conditional adjacency matrix can be regarded as estimates of 

smoothed tracelines. If items I and J are reversed, then we see that the 

first five rows each have a non-increasing pattern which suggests a non¬ 

increasing traceline, and that the last five rows each have a non-decreasing 

row which suggests a non-decreasing traceline. Comparing items C and D with 

each other, it is seen that these rows and columns are very similar. 
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Table 5 

The Scale for the Statements about Car-Use and Environment 

Obtained by the MUDFOLD Procedure 

A: Instead of environmental protection measures with respect to car use, the 

road system should be extended. 
B: Technically adapted cars do not constitute an environmental threat. 

C: It is better to deal with other forms of environmental pollution than car 

driving. 
D: Considering the environmental problems, everybody should decide for 

themselves how often to use a car. 
E: Car use cannot be abandoned. Some pressure on the environment has to be 

accepted. 

F: A cleaner environment demands for sacrifices like a decreasing car usage. 

G: Car users should have to pay taxes per mile driven. 

H: Putting a somewhat higher tax burden on car driving is a step in the 

direction of a healthier environment. 
I: The environmental problem justifies a tax burden on car driving so high 

that people quit using a car. 
J: People who keep driving a car, are not concerned with the future of our 

environment. 

Table 6 

The Correlation Matrix 

Item ABCDEFGHIJ 

A 

B 

C 

D 

E 

F 

G 

H 

I 
J 

1 
.28 

.29 

.28 

.14 

- .35 

- .28 

- .22 
-.20 
-.17 

.28 

1 
.32 

.23 

.12 
- .25 

-.31 

-.27 

- .25 

-.13 

.29 

.32 

1 
.24 

. 11 
- .25 

- .29 

- .24 

-.24 

-.19 

.28 

.23 

.24 

1 
.13 

- .18 

- .27 

-.25 

- .23 

- .12 

.14 -.35 

.12 -.25 

.11 -.25 

.13 -.18 

1 - .10 
- .10 1 
-.06 .29 

-.08 .29 

-.22 .22 
-.13 .20 

-.28 -.22 

-.31 -.27 

-.29 -.24 

-.27 -.25 

-.06 -.08 
.29 .29 

1 .33 

.33 1 

.29 .30 

.12 .21 

-.20 -.17 

-.25 -.13 

-.24 -.19 

-.23 -.12 

-.22 -.13 

.22 .20 

.29 .12 

.30 .21 

1 .29 

.29 1 
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Table 7 

The Conditional Adjacency Matrix and the Maximal P-value 

for Unimodality per Row 

Item 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

ABC 

■471 .45 

.78 - .70 

.91 .86 

.89 .80 .78 

.90 .87 .86 

.49 .61 .63 

.23 .27 .32 

.25 .28 .32 

.06 .09 .11 

.09 .13 .13 

D E F 

.45 .39 .26 

.67 .63 .52 

.81 .76 .67 

.75 .67 

.86 - .81 

.65 .68 

.32 .39 .50 

.32 .38 .49 

.11 .12 .21 

.14 .15 .22 

G H I 

.20 .23 .15 

.42 .44 .32 

.59 .61 .50 

.58 .58 .49 

.81 .80 .65 

.86 .87 J)3 
.61 

.59 - J3 

.29 .30 

.22 .27 ^42 

J maximal 

p-value 

.19 .97 

.46 .60 

.56 .98 

.61 .77 

.73 .91 

.90 1.00 

.53 1.00 

.62 1.00 

.39 1.00 

1.00 

1 The underlined elements are the maxima. 

This could indicate that the positions of the items C and D are close 

together on the scale. The same can be said about items G and H. 

From the matrix of p-values (Table 8) we get information about the 

peakedness of the tracelines. If the p-values are large within a row for 

several unimodal patterns, we regard the traceline of the row item as being 

rather flat on a large part of the trait. 

Table 8 

The Matrix of P-values with as its (i,j) Element the P-value for the 

Unimodality Pattern for Row i with Maximum in Column j. 

Item ABCDEFGHIJ 

A 

B 

C 

D 

E 

F 

G 
H 

I 
J 

.60 

.98 

.77 

.91 

.00 

.00 

.00 

.00 

.00 

. 971 

,50 

.05 

.64 

.00 

.00 

.00 

.00 

.00 

.79 

.05 

.00 
,44 

.00 

.00 

.00 

.00 

.00 

.77 

.01 

.01 

.44 

.00 

.00 

.00 

.00 

.00 

.00 .00 .00 

.00 .00 .00 

.00 .00 .00 

.00 .00 .00 
.05 .05 

.00 - ^65 

.00 .00 

.00 .00 Jl 

.00 .00 ^67 

.00 .01 .03 

.00 .00 .00 

.00 .00 .00 

.00 .00 .00 

.00 .00 .00 

.05 .01 .01 

.85 1.00 1.00 

.51 1,00 .16 

1.00 .85 

.73 - 1.00 

,18 1.00 

1 The underlined elements are p-values larger than .05 
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From Table 8, we learn that item E has a rather flat traceline on a large 

part of the trait. Six unimodal patterns are possible. This item is 

therefore a candidate for removal from the scale. The other items seem to 

have more peaked tracelines and seem therefore to be more discriminating. 

Summarizing these findings we conclude that the scale obtained from 

MUDFOLD is a good scale, although we would prefer on account of the 

conditional adjacency matrix a reverse order of I and J, and remove on 

account of the matrix of p-values item E from the scale. Further, we should 

be aware of the relative closeness of items C and D, and of items G and H. 

6. Discussion 

In this paper we introduced a nonparametric parallelogram model for pick 

any/n data. This model is formulated in terms of item response theory with 

unimodal tracelines. Our goal was to formulate a model by a minimum set of 

assumptions without specifying the forms of the tracelines of items and the 

probability distribution of the persons. This should lead to testable 

consequences that reflect the basic idea of parallelogram analysis. 

In addition to the usual assumptions, such as existence of the latent 

trait and local independence, we assumed unimodal tracelines. This, however, 

turned out to be insufficient for deriving testable consequences. Two 

additional, rather technical assumptions have to be postulated, namely the 

assumptions that the family of tracelines is totally positive of orders two 

and three. These assumptions are equivalent to two measurement related 

properties. The mathematical assumptions pose certain restrictions on the 

family of tracelines. For example, these are not satisfied by the family of 

PARELLA tracelines (Hoijtink, 1990, 1991; and see Hoijtink's contribution to 

this volume). This raises the question whether these mathematical 

assumptions are too restrictive for empirical applications. In Post (1992, 

Ch.4) this question is studied. 

The correlation matrix and the conditional adjacency matrix turned out to 

be appropriate diagnostic tools. The correlation matrix is appropriate for 
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distinguishing cumulative scale structures from parallelogram scale 

structures. The conditional adjacency matrix provides more information. The 

rows of this matrix can be regarded as estimates of smoothed tracelines of 

the row items. The test for the unimodality of the rows is useful but rather 

conservative, and not very powerful. The variation of the p-values of the 

possible unimodality patterns within a row turns out to be an appropriate 

diagnostic for the peakedness of the tracelines. 

Because of the fact that the correlation matrix and the conditional 

adjacency matrix have properties that can be derived under a probabilistic 

model, and because of the fact that the latter matrix contains information 

about the form of the tracelines, they are essential additions to the 

diagnostic matrices used in MUDFOLD (Van Schuur, 1984, 1988), and PARELLA 

(Hoijtink, 1990, 1991). The variation of p-values for all possible 

unimodality patterns within a row is a useful diagnostic tool for 

recognizing flat tracelines. For details, see Post (1992), and Tempel 

(1991) . 
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