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UNIMODAL SOCIAL PREFERENCE CURVES IN UNIDIMENSIONAL UNFOLDING 
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Abstract 
The unfolding technique is placed in the wider context of social choice theory, median procedures and strictly 
unimodal distance models for rankings. Results from social choice theory can be used to construct a framework 
for the unidimensional unfolding model; for example, given single-peaked preference functions for individuals, 
Simple Majority Rule yields the median ranking as a group consensus ranking. Coombs' (1954) and Goodman's 
(1954) results fit into this theoretical framework: if the data follow a strictly unimodal distance model, the 
ranking of the median individual on the quantitative J scale is equal to the group consensus ranking according to 
Simple Majority Rule, the median ranking is a folded J scale, and the social preference function is single-peaked 
on the unidimensional unfolding scale. Also, the maximum likelihood (ML) criterion and the minimum-number- 
of-inversions (MNI) criterion for the best J scale yield the same J scale. These theoretical results are illustrated in 
two empirical sets of data. 
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1 INTRODUCTION 

According to Coombs, an unfolding technique is an algorithm for constructing a psychological space 

from preference data, which can be preference rankings, ratings, or dichotomous data. If the 

psychological space consists of one dimension, it is called a joint scale or J scale, and the unfolding 

technique is called unidimensional unfolding. The dimension found can be seen as the latent structure, a 

common frame of reference, in a certain field of research. The framework in which the unfolding model 

is interpreted here is that of social choice theory and, in particular, that of strictly unimodal distance 

models for rankings. Just as the (unimodal) normal distribution is found to mirror the frequency 

distribution of many numerical variables, a unimodal or single-peaked distribution of rankings often 

arises on the unfolding scale. The single-peakedness of the aggregated preferences (aggregated over all 

individuals, hence, the name social preference) has important consequences for interpretation: the social 

preference function decreases on either side of the ranking of the mean or median individual (see Section 

2) towards the ends of the J scale. Socially most preferred options are found in the center of the J scale, 

less popular options toward both ends. Mostly, the ends of the J scale have opposite connotations: the J 

scale may be described in terms of a bipolar continuum. In folding the quantitative J scale in the social 

ideal point (point of highest social preference), the median ranking arises as a folded J scale (see below), 

with options ranked in order of decreasing social preference. In addition, given such a strictly unimodal 

probability model for rankings, the minimum-number-of-inversions (MNI) and maximum likelihood 

(ML) solutions for the best / scale must be the same. This is because the median ranking (the ranking 

that minimizes absolute distance or, equivalently, the total number of inversions with respect to all other 

rankings) is an admissible ordering of the best J scale and coincides with the modal ranking (the ranking 

that maximizes the likelihood function). This is discussed in Section 3. 

Coombs' (1950, 1954, 1964) unidimensional unfolding model was devised for the analysis of 

complete rankings of preference, where N individuals rank n options O/,.., Oj.On e O, where j = 

1, 2,..., n, and O denotes the set of options from most to least preferable. In the unfolding model, each 

individual and each option is represented on a single dimension, called the J scale. The locations 

associated with individuals are called ideal points, and represent the best possible option from the 

individual's point of view. Admissible orderings on the unidimensional unfolding scale correspond to 

Single-Peaked Preference Functions (SPFs). An SPF can be defined as follows: if the J scale consists 

of the options Oj, 02, 03.On in this order, then in passing from one option to the next, each 

individual's preference function monotonically rises to a peak (i.e., at the ideal point), and then drops 

off monotonically. Each individual's preference ordering of options is thus given by the rank order of 

the distances of option points from the ideal point, with nearer options being most preferred. 

Let the / scale for n options denote an n-scale, and let A, B, C, £>,... denote the successive options 

on the scale. Midpoints are represented in lowercase, e.g., ah is the midpoint between options A and B. 
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J scales are named according to the first admissible ordering on the J scale, which corresponds to the 

order of the options along the J scale. Possible orderings of preference correspond to segments of the J 

scale (see Figure 1). The Figure shows a 3-scale with options A, B, and C. Between the options A and 

B is the midpoint ab\ to the left of the midpoint ab is the segment ABC; this represents the set of ideal 

points of individuals with A>p B, A>p C and B>p C (thus, nearer to A than to B or C, and '>p' 

denotes ’is preferred to') To the right of the midpoint ab is the segment BAC\ the set of ideal points of 

individuals with B>pA, B>p C, A>p C (thus, nearer to B than to A or O, and so forth. Four out of six 

(=3!) orderings are admissible orderings, two are not represented on the J scale and, hence, are 

inadmissible orderings for this scale. 

With four options, two distinct 4-scales arise, depending on the order of the midpoints ad and be 

(see Figure 2). In Figure 21 their order is ad, be, in Figure 211 this is be, ad. So, there are two distinct 

midpoint orders or quantitative 4-scales. These 4-scales differ only in the admissible orderings in the 

midst of the J scale (BCDA and CBAD, respectively). The quantitative J scale is defined as a strict order 

of options and of the midpoints between the options. If we disregard the particular order of the 

midpoints, the qualitative J scale arises. The qualitative J scale is defined as a strict order of the options 

only, this is denoted the J order. Midpoints are not strictly ordered on the qualitative J order: they are 

partially ordered, and admissible orderings cannot be represented on a unidimensional continuum, they 

can be represented in a lattice of orderings. A lattice is a special type of network, defined by the property 

of having a minimal element (the intersection or meet) and a maximal element (the union or join, see 

Birkhoff, 1967). For n=3, there is only one quantitative 3-scale, for n=4 two (see Figure 2), for n=5 

twelve. With larger numbers of options, the number of quantitative J scales that can be derived from one 

qualitative J order, increases very quickly (for n=9, this number is 4,451,496,278). In considering that 

there are n//2 distinct qualitative J orders, it should be clear that the total number of possible quantitative 

J scales is very large. 

Admissible orderings on the J scale correspond to so-called/o/ded J scales. This can be explained as 

follows. When the J scale is picked up and folded in any (ideal) point, a folded J scale arises: the 

options project on the folded J scale in order of increasing distance from the folding point, and the first 

option corresponds to the ideal option (see Figure 3). The number of admissible orderings in the J 

structure is 2n"1, and is equal to the number of ways folded J scales can be constructed (Coombs, 1964; 

Davison, 1979). For a quantitative J scale this number is (§+1 (i.e., the number of midpoints plus one). 

Unfolding can be distinguished from other scaling techniques for analyzing ranking data in the 

following way. From the set of individual rankings, we wish to determine the J scale on which 

individuals as well as options are ordered, such that the individual preference rankings are single-peaked 

preference functions, instead of monotonically increasing functions (cumulative functions as in 

Thurstone scaling (Thurstone and Chave, 1929), Rasch analysis (Rasch, 1960), and Mokken scaling 

(Mokken, 1971), or step functions as in Guttman’s scalogram model (Guttman, 1950)). 
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For a variety of reasons, however, individuals generally do not all produce rankings consistent with 

one underlying qualitative or quantitative J scale, and a variety of methods have been developed for the 

unfolding of imperfect data. Many start from a distance model and a metric or non-metric loss function 

(e.g., Roskam, 1968; Carroll, 1972; Reiser, 1981; 1987); others rely on parametric functions to 

describe the choice probabilities (e.g., Sixth 1973; Jansen, 1983; Desarbo and Hoffman, 1986; 

Andrich, 1988, 1989; Formann, 1988, Hoijtink, 1990, Bdckenholt and Bockenholt, 1990). Almost 

invariably, the latter techniques are suited for dichotomous data only. Still other methods for 

dichotomous data minimize the number of disturbances with respect to some expected matrix or null 

model (e.g., Leik and Matthews, 1968; Van Schuur, 1984; Cliff et ah, 1988). A seriation procedure for 

paired comparisons data was used by Bossuyt (1990), and a latent structure approach for dichotomous 

data is used by Post (1992). 

Our approach differs from existent procedures since neither a parametric distance model nor a 

parametric function is used to describe individuals’ preferences, and instead, a minimum-number-of- 

inversions criterion (MNI) is used. This criterion has not yet been used in unfolding analysis. The 

procedure begins with a nonparametric distance measure related to Kendall's (1970) t: the number of 

inversions between an individual’s ranking and the qualitative J structure or the quantitative J scale. A 

distance measure formally equivalent to the Kendall x-distance, but explicitly designed to handle 

incomplete and partially ordered data, is the Kemeny distance (Kemcny and Snell, 1972). Both are 

based on May's (1952) paired comparisons distance (Van Blokland-Vogelesang, 1991, Ch. 2). For 

each distinct J scale, the number of inversions between each individual ranking and each admissible 

ordering of the J scale is assessed; each individual ranking is assigned the admissible ordering from 

which it has a minimum number of inversions. Thus, for each individual ranking the number of 

inversions from each admissible ordering on each qualitative or quantitative J scale has to be assessed. 

The best quantitative J scale is the one for which the total number of inversions from individuals' 

rankings is a minimum: 

N 
min d(Qi,Pvut) (1) 

where v = 1,..., V = (2)+!. the number of admissible orderings on a quantitative n-scale; 

«= 7,..., U(n), the number of quantitative n-scales that can be derived from one/order; 

t = 1,..., n!, the number of J orders for n options; 

Qi is an individual ranking, i = 1,...,N; 

Pvul is the Vth admissible ordering on the quantitative J scale belonging to the t* J order. 

We shall not go into the specific combinatorial optimization strategy that is used to find the best / scale. 

This is discussed in Van Blokland-Vogelesang (1991). 
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In Section 2, the relation between social choice theory, medians, and consensus rankings is 

discussed, in Section 3 the benefits of using a strictly unimodal distance model for rankings. In Section 

4, our unfolding procedure is used to analyze the NUCLEAR data concerning attitudes with respect to 

nuclear energy; in Section 5, the TRAFFIC data concerning attitudes with respect to measures to reduce 

environmental pollution are analyzed. Section 6 closes with a discussion. 

2 SOCIAL CHOICE THEORY, MEDIANS, AND CONSENSUS RANKINGS 

The unidimensional unfolding model can be situated in the context of social choice theory. A main 

issue in this particular field of research has been the construction of a social preference out of a variety 

of individual preferences. The problem is to establish a fair procedure to combine the individual 

rankings to reach a group consensus ranking. This problem is related to the unfolding problem, since 

there is a strong connection between the existence of a unidimensional unfolding scale, the conditions 

under which group consensus rankings are transitive rankings, and the uniqueness of median and mean 

rankings (see next paragraph). This tradition and its ramifications are amply described in Luce and 

Raiffa (1957), Sen (1982), Fishbum (1972), Riker and Ordeshook (1973), Vickrey (1960), Roberts 

(1976), and many others. 

Consensus Ranking, Median Ranking, and Simple Majority Rule 

A rule for determining the group consensus ranking from a set of rankings is called a group 

consensus function. Examples are Simple Majority Rule (De Condorcet, 1785), Borda Rule 

(Borda,1781), Plurality Rule (Malkevitch and Meyer, 1974) and Lexicographical Rule (Tversky, 1969). 

The most important rule is Simple Majority Rule, which can be defined as follows: given a set of 

rankings PP1,...,Pn, let the group decision be: rank option A over B if and only if a majority 

(more than half) of the individuals ranks A over B. However, Simple Majority Rule sometimes fails to 

yield a transitive ranking. This phenomenon is called the voting paradox. For example, suppose there 

are three options A, B, and C, and three individuals (N-'i) and the three rankings are P, = ABC, P2 = 

BCA, and P3 = CAB. The group consensus ranking P would then have B>p A, B>p C, C>p A Since 

a ranking is asymmetric'^' by definition, such a group ranking is impossible, it would not be transitive. 

When a number of individuals ranks n options, each ranking may be represented as a point in 

geometrical space. Kemeny and Snell (1972) define a consensus ranking as the point that is in best 

agreement with the set of rankings at hand. Two reasonable points are the median ranking and the mean 

ranking. The median of a set of rankings is defined as a point B in geometrical space such that the sum 

I A relation is asymmetric if A >p B, then not B >p A, for all options A and B. The relation of strict preference 
A>p B is transitive and asymmetric. A complete ranking is a strict ordering without ties. 
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of all absolute distances d(P,,B) is a minimum. The mean of a set of rankings is defined as a point C 

such that the sum of all squared distances d(Pi,C)2 is a minimum. These definitions of median and mean 

rankings are straightforward generalizations of the classical definition for points on a line in Euclidean 

space, where the median is the middle point, and the mean is the center of gravity for a set of points (sec 

Kcmcny and Snell, 1972). 

To determine the mean ranking, it is not necessary to check all distances between all rankings. The 

mean ranking for a set of options can be obtained by first summing the ranks for each option, then 

dividing this rank sum by N, the number of individuals, and rearranging the options according to 

increasing mean ranks, provided low ranks represent most preferred options* . The option with the 

smallest mean rank is the most preferred on average, and has the first position in the mean ranking. For 

example, for three rankings ABC, BAC, and BCA, the mean rank for A is (l+2+3)/3 = 2, for B: 

(2+l+l)/3 = 1.33, and for C: (3+3+2)/3 = 2.66. Therefore, the mean ranking is BAC. 

A method to determine the median ranking is the following: invert adjacent options in the mean 

ranking and check whether the total number of inversions from individuals' rankings diminishes. If it 

does not, the search stops, otherwise, the current pair of options is inverted, the revised ranking 

becomes the new candidate solution for the median ranking, and the search continues on the revised 

ordering (Feigin and Cohen, 1978; Fligner and Verducci, 1988). Another method to determine the 

median ranking is due to Hays (1960): construct the paired comparisons matrix (dominance matrix 

according to Coombs, 1964), in which the options are arranged along rows and columns in the same 

order. The cells in this matrix show the frequency with which row options are preferred over column 

options. Row and column options are permuted simultaneously, until the sum of the above-diagonal 

elements is maximal. The resulting row (or column) order of options constitutes the median ranking. 

This optimization task goes under different names (see Hubert, 1976, for a review). However, with 

rankings, medians and means need not be unique. In the situation in which the voter’s paradox occurs, 

neither the median nor the mean yields a unique ranking. Bogart (1973, 1975) showed the benefits of 

the median ranking as a group consensus ranking: if Simple Majority Rule gives rise to a strict ranking, 

then this ranking is the unique median unless for some options A and B the number of individuals 

preferring A to 6 is equal to the number preferring Bio A. Essentially, Bogart showed that medians arc 

unique precisely when there is a majority winner for each pair of options, that is, precisely when the 

situation of the voting paradox does not occur. 

These definitions and calculations of the mean and median rankings apply to complete rankings as well as to 
incomplete rankings, provided each individual's preference pattern is stated in the form of a ranking in which the 
lowest rank denotes most preferred. For example, dichotomous scores can be represented as a ranking by defining 
1 = chosen, 2 = not chosen. The same applies to rating data. 
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Arrow, Black, Coombs, and Goodman 

Arrow (1951) stated five conditions a 'fair' group consensus ordering should satisfy: (1) 

Unrestricted Domain for Preferences (all possible preference rankings are permissible); (2) Positive 

Association of Social and Individual Values (if A>pi B for every i, then the social outcome is A>p By, 

(3) Independence of Irrelevant Alternatives (the social outcome remains the same if an option is deleted); 

(4) Citizen's Sovereignty (the social outcome is not imposed by some kind of Government); (5) Non- 

Dictatorship (the social outcome is not determined by a single individual). Simple Majority Rule is the 

only rule that satisfies all of Arrows' conditions, except the impUcit requirement of a unique, transitive 

ordering, which may be violated. In posing restrictions on the domain of rankings (and, thereby, 

violating Arrow's first condition, the unrestrictedness of preferences), Black (1948a,b) and Arrow 

(1951) proved the following important result; they showed that the top choice of the median (middle) 

individual on the qualitative J scale yields the social ideal, the option that is most preferred by the group 

as a whole: the group consensus. 

Coombs (1954) and Goodman (1954) showed that an analogous, but stronger, assertion holds. 

They proved that the ranking of the median individual on the J scale is equal to the group consensus 

ranking according to Simple Majority Rule if and only if preference rankings are restricted to be SPFs 

on a common quantitative J scale. If the J scale is folded downwards in the ideal point of the median 

individual, the preference ranking of the median individual arises as a folded J scale. The options project 

onto this folded J scale in order of increasing distance from the median individual's ideal option. Thus, 

socially most preferred options are in the center of the / scale, the social preference decreases for options 

towards the end of the J scale, on both sides (see Section 1). 

3 STRONG UNIMODALITY: SAME RESULTS FOR ML AND MNI CRITERION 

Coombs' (1954) and Goodman's (1954) results, that the median ranking is a folded J scale when 

individuals' preference rankings are restricted to SPF's on a common quantitative J scale, see above), 

have been generalized to preferences that are not necessarily single-peaked functions (Van Blokland- 

Vogelesang, 1991,1992). We showed that the median ranking is a group consensus ranking in general 

-whether or not individuals' rankings are SPFs-, if the rankings satisfy a strictly unimodal distance 

model for rankings, e.g., Mallows' (1957) 0-model or, equivalently, Feigin and Cohen's (1978) model. 

This result was established using a nonparametric distance measure between rankings, which is based 

on the number of inversions between rankings. The Kemeny distance and the Kendall-x distance are 

examples of such a distance measure. In addition, we proved that the median ranking is a folded J scale 

in general if the data follow a unimodal distance model for rankings. Any ranking model for which 
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probabilities of rankings strictly decrease with increasing numbers of inversions from the median 

ranking can be used. Feigin and Cohen's (1978) model is is but one example of such a model. 

To show this, let ca= (Oj , (02.0)n denote an arbitrary ranking of n options. Let the probability 

function P(co) represent a probability model on rankings, in particular, let Pg(ai) stand for the Feigin and 

Cohen model. A ranking com is a modal ordering if it uniquely maximizes F((0). A probability model on 

ranking data is strictly unimodal if it has a modal ordering <%j, and the probability P((0) is nonincreasing 

as 0) moves farther from (Dm along a certain type of path (see Critchlow, Fligner, and Verducci, 1988). 

In the unfolding case, the quantitative unfolding scale represents a 'path' along admissible orderings, 

each step from an admissible ordering to the next one has one more inversion from the first one. 

Suppose the modal ranking corresponds to one of the admissible orderings, (Dm, of the J scale, then this 

admissible ordering has the highest probability. Each step on the J scale away from (Dm moves into an 

admissible ordering with one more inversion from (Om, thus, with a lower probability, resulting in a 

single-peaked or unimodal distribution on the quantitative J scale. No other scale can have a larger 

probability (Van Blokland-Vogelesang, 1992). This is in analogy with the usual definition of strict 

unimodality for univariate probability distributions. Thus, the strictly unimodal distance model for 

rankings can be seen as a nonparametric analogue of the normal distribution for real numbers on a line. 

Feigin and Cohen's model is strictly unimodal, since the probability Pg((0) decreases according to 

increasing Kendall or Kemeny distance from a 'basic' ordering co0\ hence, the basic ordering cd0 is the 

modal ordering. At the same time, the maximum likelihood (ML) estimate for the basic ordering, co0, is 

given by the value of 0)o for which the total number of inversions with respect to all rankings EjX( <60 , 

Oi) is a minimum (Feigin and Cohen, 1978). This means that in this model, the median ordering is the 

ML estimator for co0, thus the median ranking and modal ranking are the same for this model. Estimates 

based on the ML criterion and on the MNI criterion thus must yield the same results given the Feigin and 

Cohen model. Since the modal and median ranking coincide for any strictly unimodal model, this must 

be true for any strictly unimodal distance model for rankings, not only for Feigin and Cohen's model. It 

follows, that the ML criterion and the MNI criterion must yield the same solution for the best 

quantitative J scale if the rankings follow a strictly unimodal distance model for rankings. 

Using these results, we proved that the median ranking is an admissible ordering of the best 

quantitative J scale, and hence, is a folded J scale. Since the median ranking is a consensus ranking in 

general (without the restriction of SPF's), it follows that the group consensus ranking is a folded J scale 

and is the Simple Majority Rule ranking if and only if there are no ties in the Simple Majority ranking. 

This constitutes the generalizability of Coombs’ and Goodman's assertions under rather general 

conditions. 

For all sets of data which have been analyzed to date, the median ranking proved to be a folded J 

scale and was equal to the Simple Majority Rule ranking (Van Blokland-Vogelesang, 1989, 1991, 
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1992). This result is the more remarkable since these sets often contained a high level of error, and the 

number of individuals was often small. 

UNFOLD: Finding Coombsian Unfolding Scales 

With UNFOLD (Van Blokland-Vogelesang and Van Blokland, 1990), the best qualitative and the best 

quantitative J scales are determined for a selection of up to nine options out of a maximum number of 24 

options. The search procedure consists of optimizing the MNI criterion: the best (qualitative or 

quantitative) J scale has a minimum number of inversions with respect to the individual rankings, see 

formula (1). The search procedure for the best J scale is a combinatorial one, based on two new 

procedures, a lower bounding strategy and a branch-and-bound search through all possible J structures, 

to find the best quantitative J scale (see Section 1). Since all possible solutions are checked, a global 

solution is found. Because of computational labor, the length of the J scale is restricted to nine. The 

search procedure consists of finding the best possible subset of nine options from a given set of options 

(< 24). Incomplete rankings can be analyzed too (see Section 2). To be able to compare incomplete 

rankings to the admissible (strict) orderings of the J scale, ties are untied using a primary approach to 

ties (cf. Van Blokland-Vogelesang and Van Blokland, 1990: Van Blokland-Vogelesang, 1991). In the 

output, more J scales are printed, in order of increasing number of inversions (#INV), thus starting with 

the best one. Also the number of perfect fitting rankings (#PERF, i.e., the number of individuals 

whose rankings fit the J scale perfectly) is given for each J scale. The J scale for which this number is a 

maximum is the dominant or ML scale (cf. Lingoes and Coombs, 1975) 

Goodness-of-Fit 

The goodness-of fit of the unfolding model to the data can be tested by comparing observed and 

expected numbers of inversions between individuals' rankings and the quantitative J scale given Feigin 

and Cohen’s model (see Van Blokland-Vogelesang, 1991). However, this procedure applies only to 

complete rankings; for incomplete rankings and dichotomous data, a different procedure should be used. 

Critchlow (1985) presents a procedure for incompletely ranked data on the basis of Mallows' (1957) 

model, quite comparable to our procedure for complete rankings using Feigin and Cohen's model. 

4 NUCLEAR-DATA 

Two sets of data are analyzed; first, we illustrate our unfolding procedure in the NUCLEAR-data 

(Formann, 1988) and, after this, in the TRAFFIC-data (Section 5). The NUCLEAR-data consists of five 

options, the TRAFFIC-data of ten options. Since UNFOLD only can handle subsets of up to nine options 

(see above), the best qualitative and quantitative J scales for nine out of ten options have been 

determined for the TRAFFIC-data. 
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The NUCLEAR-data consists of five options pertaining to the attitude of respondents with respect to 

nuclear energy. Responses are dichotomous scores by 600 individuals. The five options are: 

A. NOALT: In the near future alternative sources of energy will not be able to substitute nuclear energy; 
B. DIFFDE: It is difficult to decide between the different types of power stations if one carefully considers all their 

pros and cons; 
C. PROBSOL: Nuclear power stations should not be put into operation before the problems of radio-active waste 

have been solved; 
D. SAFEPRO: Nuclear power stations should not be put in operation before it is proven that the radiation caused 

by them is harmless; 
E. CLOSFOR: The foreign power stations now in operation should be closed down. 

Median Ranking for NUCLEAR-Data 

The median ranking for the NUCLEAR data is C D E B A: PROBSOL, SAFEPRO, CLOSFOR, DIFFDE, 

NOALT; the sum of the ranks (see section 2) for each of these options is given in Table 1. From this we 

see that options PROBSOL and SAFEPRO are very close in priority, CLOSFOR and DIFFDE also are not far 

apart, other options are more different. The dominance-matrix for this data is presented in Table 2, and 

represents the number of times a row option is preferred over a column option (see Section 2). For 

example, CLOSFOR is preferred 75 times over PROBSOL, PROBSOL is preferred 271 times over CLOSFOR. 

From the dominance matrix, the paired comparisons values for each option pair can be derived. A 

majority, i.e., more than half of all (600) choices was obtained only for D\ SAFEPRO over A: NOALT: 

fr(D>pA) = 347, and for C: PROBSOL over A: NOALT. fr(C>pA) = 323, which means that a majority of 

the respondents does not want to accept nuclear power stations unconditionally, but only after it has 

been proven that the problems of radio-active waste have been solved (SAFEPRO) and that the radiation 

caused by them is harmless (PROBSOL). Since PROBSOL is most popular, we would have expected a 

larger majority for OpA than for D>pA because of transitivity conditions. Thus, despite the fact that 

PROBSOL is judged more important than SAFEPRO, when it comes down to a choice between nuclear 

power stations or 'no alternative' (option A; NOALT), SAFEPRO is a more popular argument than is 

PROBSOL. The unfolding scale does reflect this conflict in the relative positions of options PROBSOL and 

SAFEPRO with respect to NOALT, because options on the J scale are aligned in order of increasing 

preference towards the social ideal option, and in order of decreasing preference away from it. (see 

Figure 1). In addition, in the median ranking CLOSFOR has the third, middle position, it is preferred over 

DIFFDE and and NOALT, but dominated by PROBSOL and SAFEPRO. Thus, CLOSFOR might mean 

"preferably, close unsafe power stations rather than accepting the fact that there is no alternative". 

Best Unfolding Scale for NUCLEAR-Data 

The best quantitative J scale, both according to the ML and to the MNI criterion is A B c D E. For this 

scale, #INV = 130, #PERF = 486 (81%). In Figure 1, the order of the options on the best quantitative 

5-scale A B C D E: NOALT, DIFFDE, PROBSOL, SAFEPRO, CLOSFOR is shown. The social ideal, the most 

popular option, is PROBSOL, the first option in the median ranking (see above). Options are ordered on 
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the quantitative 5-scale in order of increasing priority towards the social ideal PROBSOL, and in order of 

decreasing priority away from it. Therefore, the median ranking is a folded J scale and is the group 

consensus ranking according to Simple Majority Rule. For complete rankings, this was proved to hold 

if rankings satisfy a strictly unimodal distance model for rankings (see Section 3). To the left of the 

social ideal, noalt and DIFFDE are located, options that stand for passive acceptance of nuclear energy; 

the social ideal, PROBSOL, and the options to the right of it, SAFEPRO and CLOSFOR, stand for active 

action for the sake of protection of the environment. Thus, the unfolding scale clearly is a continuum 

from passive acceptance of nuclear energy to active measures against unreliable nuclear power stations. 

Table 1 
NUCLEAR-data: Median ranking and sum of ranks for each option. 

Option CD ERA 
Acronym PROBSOL SAFEPRO CLOSFOR DIFFDE NOALT 
Rank sum 102 110 298 317 404 

Table 2 
NUCLEAR-data: Dominance Matrix: number of times a row option is preferred over the column option. 

PROBSOL SAFEPRO CLOSFOR DIFFDE NOALT 

PROBSOL - 82 271 250 323 
SAFEPRO 74 207 261 347 
CLOSFOR 75 19 - 191 249 
DIFFDE 35 54 172 - 177 
NOALT 21 53 143 90 

social preference 

Quantitative 5-scale: options and social preference function for the NUCLEAR-data. 
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5 ANALYSIS OF EMPIRICAL DATA: TRAFFIC-DATA 

The TRAFFIC-data (Doosje and Siero, 1991) consists of ten options used to measure the change in 

attitude towards car-use in response to an information campaign advocating measures for the protection 

of the environment. The data are pre- and post-information campaign measures and are dichotomous 

scores collected from 600 respondents (300 pre-measures, 300 post-measures, independent samples). 

The purpose of the research was to assess whether the information campaign changed the attitude 

towards car-use and environment. The ten options are: 

A. CARSTAY: Car use cannot be abandoned. Some pressure on the environment has to be accepted; 
B. DECREA: A cleaner environment demands for sacrifices like a decreasing car usage; 
C. MAXTAX: The environmental problem justifies a tax burden on car driving so high that people quit using a 

car, 
D. HIGHTAX: Putting a somewhat higher tax burden on car driving is a step in the direction of a healthier 

environment; 
E. OTHPOLL: It is better to deal with other forms of environmental pollution than car driving; 
F. EXTROA: Instead of environmental protection measures with respect to car use, the road system should be 

extended; 
G. NOTHREA: Technically adapted cars do not constitute an environmental threat; 
H. SELFDE: Considering the environmental problems, everybody should decide for himself how often to use the 

can 
I. NOCONC: People who stay driving a car are not concerned with the future of our environment; 
J. PAYTAX: Car users should have to pay taxes per mile driven. 

Median Ranking for TRAFFIC-Data 

The median rankings for the pre- and post-information campaign TRAFFIC-data are given in Table 3. 

From the Table, it can be seen that option B:DECREA increased in priority as a result of the information 

campaign, it has a second position in the post-campaign median ranking as compared to a fourth 

position in the pre-campaign median ranking. Option F: extroa decreased in priority, it fell down from 

a sixth position in the pre-campaign campaign median ranking to a eighth position in the post-campaign 

median ranking. Apart from these two shifts, the pre- and post-campaign median rankings are the 

same.Generally speaking, measures to reduce car usage gained in priority, they have gone up in the 

median ranking as a result of the information campaign. 

From the Table, it can be seen that the ranksums for the options NOCONC and MAXTAX hardly differ: 

245 and 246 for the pre-campaign data and 253 and 258 for the post-campaign data. Therefore, these 

options may have the same connotation: if people are not concerned with the future of our environment 

and keep driving a car, the environmental problem justifies a tax burden on driving so high that people 

quit driving a car. The same is true for the options OTHPOLL and SELFDE for the pre-campaign data, 

having ranksums 79 and 80, respectively. This may be interpreted as 'environmental pollution is due to 

other causes than car use, hence, everyone should decide for himself how often to use a car'. Also, 

PAYTAX and HIGHTAX have nearly the same ranksums, in the post-campaign data: 174 and 177, 
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respectively, denoting that there is hardly any difference between requiring some tax or a high tax from 

people driving a car 

Table 3 
TRAFFIC-daia: Median ranking and sum of ranks for each option, pre- and post-campaign measures. 

PRE-CAMPAIGN 

a.ehb gfj d I c 
CARSTAY . OTHPOLL SELFDE DIXREA NOTHREA EXTROA PAYTAX IflGHTAX . NOCONC MAXTAX 

57 . 79 80 112 120 179 183 188 245 246 

POST-CAMPAIGN 

A B E H . G . J D F I C 
CARSTAY DECREA OTHPOLL SELFDE . NOTHREA . PAYTAX HIGH! AX EXTROA NOCONC MAXTAX 

44 68 76 87 118 . 174 177 203 253 258 

Table 4 
TRAFFIC-data: Unfolding scales for MN1 solution; pre-campaign measures (top) and post-campaign measures 

(bottom). 

MM, PRE-CAMPAIGN, 

F G E H A B . D I C 
EXTROA NOTHREA OlHPOLL SELFDE CARSTAY DECREA . HIGHTAX NOCONC MAXTAX 

MM, POST-CAMPAIGN 

F G E . A BJD I C 
EXTROA NOTHREA OTHPOLL . CARSTAY DECREA PAYTAX HIGHTAX NOCONC MAXTAX 

Table 5 
TRAFFIC-data: Unfolding scales for ML solution; pre-campaign measures (top) and post-campaign measures 

(bottom). 

MI. PRE-CAMPAIGN 

F GEHA B.JC I 
EXTROA NOTHREA OTHPOLL SELFDE CARSTAY DECREA . PAYTAX MAXTAX NOCONC 

ML, POST-CAMPAIGN 

F G I .A B J D C I 
EXTROA NOTHREA OH II‘OIL . CARSTAY DECREA PAYTAX HIGHTAX MAXTAX NOCONC 

Best Unfolding Scale for TRAFFIC-Data 

The TRAFFIC-data consist of ten options; using UNFOLD, the best qualitative and the best quantitative J 

scales are determined for a selection of nine out of ten options. In Table 4, the MNI solutions for the 

best pre- and post-campaign quantitative 9-scales arc presented, in Table 5, the ML solutions for the best 
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pre- and post-campaign quantitative 9-scales are given. Total numbers of inversions between individual 

rankings and the admissible orderings of the quantitative J scale, #INV, and the number of perfect fitting 

rankings, #PERF, are given in Table 6, for each solution. For the MNI solution, the total number of 

inversions, #INV, is 285 for the post-campaign data is considerably smaller than for the pre-campaign 

data, where #INV = 371. This means that the variance of the distribution of rankings about the median 

ranking is smaller for the post-campaign data. So, after the information campaign, people's opininions 

are more homogeneous. In the same way, for the ML solution, #PERF =147 (49%) for the pre¬ 

campaign data and 164 (55%) for the post-campaign data. These results are consistent with earlier ones: 

the number of inversions about the median ranking was smaller for the post-campaign data, denoting a 

more homogeneous set of data. 

In the following paragraphs, first the differences between the MNI and ML solutions for the best J 

scale is discussed, then the differences between the pre- and post-campaign J scales. After this, some 

general interpretation of the found results follows. 

Table 6 
TRAFFIC-data: Best 9-scales out of ten options according to MNI- and ML criterion, pre-and post campaign data. 

CRITERION | PRE/POST | 9-SCALE | #INV | #PERF 

MNI 
(N=300) 
ML 
(N=300) 

PRE 
POST 
PRE 

POST 

FGEHABDIC 371 
FGEABJDIC 285 
FGEHABJCI 
FGEABJDCI 

147 
164 

MNI- and ML solutions for the Best J Scale 

Although the ML criterion is not the one that is used in UNFOLD to determine the best quantitative J 

scale, the ML solution is presented here. Our solution may not be the global one, as is the case for the 

MNI solution, but if the social preference function is not too far from unimodality, the ML solution 

should be included in one of the ten best qualitative J orders in the UNFOLD-output (see Section 3). So, 

we decided to present this estimate of the ML solution together with the MNI solution. 

In comparing the MNI and ML solutions, we may conclude that they are not really the same, they 

differ in the order of the last two options, NOCONC and maxtax, both for the pre- and post-campaign 

data (see Table 6). As was argued above, NOCONC may be thought to coincide with maxtax. Apart 

from this, the best quantitative J scales for the post campaign data are the same for the ML and MNI 

criteria. For the pre-campaign data, there is another slight difference. This is discussed in the next 

paragraph. 
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Differences Between J Scales for Pre- and Post Information Campaign Data 

The best quantitative 9-scales for the pre- and post information campaign data differ in the inclusion of 

one option and the exclusion of another one, the differences being the nearly the same both for the MNI 

and the ML solution. The pre-campaign J scales include an extra option, selfde, just to the left of the 

social ideal CARSTAY, denoting persona] freedom with respect to car use (less concern with the 

environment). Instead of SELFDE, the post-campaign 9-scales include one option of the PAYTAX-FUGHTAX 

pair, denoting active measures against environmental pollution as a result of car use, to the right of 

CARSTAY with DECREA in between. OTHPOLL and SELFDE are next to each other in the pre-campaign J 

scale. As was argued above, they may have the same connotation. The same applies to PAYTAX and 

might AX in the post-campaign J scale. The pre-campaign best MNI J scale includes only might ax from 

the PAYTAX-HIGHTAX pair, the pre-campaign ML J scale only PAYTAX. Both post-campaign J scales 

include only OTHPOLL from the OTHPOLLSELFDE pair. Thus, the interpretation of the pre- and post¬ 

campaign J scales is really different: the post-campaign quantitative J scales include an extra option 

concerning the need for active action against environmental pollution at the cost of an option 

disregarding such a need; for the pre-campaign quantitative J scales, the reverse is true. 

In conclusion, the results for the TRAFFIC-data are not as convincing as for the NUCLEAR-data. This 

is due to the higher level of error in the data: for the MNI solution, the mean number of inversions is 

1.24 and 0.95 for the pre- and post-campaign TRAFFIC-data, respectively, as compared to 0.22 for the 

NUCLEAR-data. For the ML solution, the number of perfect fitting rankings is 49% and 55% for the 

pre- and post-campaign TRAFFIC-data, respectively, as compared to 81 % for the NUCLEAR-data. 

Interpretation of Pre- and Post-Campaign J Scales 

The options to the left of the social ideal CARSTAY are EXTROA, nothrea othpoll and selfde (pre¬ 

scale only), denoting 'no need to decrease car use for the sake of the environment'. The most extreme 

option here is EXTROA: instead of environmental protection measures with respect to car use, the road 

system should be extended'. The social ideal itself, CARSTAY, (car use cannot be abandoned, some 

stress on the environment has to be accepted), seems to be a factual acceptance of car use under certain 

conditions. To the right of CARSTAY, DECREA, PAYTAX and/or MIGHT AX (see above), NOCONC, and 

MAXTAX are found, options that represent measures of increasingly strict character with respect to car 

use, with the exception of NOCONC. Therefore, both the pre- and post-campaign quantitative J scales can 

be interpreted as a continuum from 'no measures at all with respect to car use' to 'require a maximal tax 

burden from people who stay driving’. In addition, the post-campaign J scale stresses more the need for 

active action against environmental pollution, as was argued above. This difference may be attributed to 

the information campaign. 
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Median Ranking and Folded J Scale 

From the median rankings in Table 3, it can be seen that CARSTAY is socially the most preferred 

option. Options on the best post-campaign 9-scale (the MNI solution) are aligned in order of increasing 

preference towards the social ideal, CARSTAY, and in order of decreasing preference away from it, 

Therefore, for this scale, the median ranking is a folded J scale, and is the group consensus ranking 

according to Simple Majority Rule, as was the case for the NUCLEAR-data. Thus, for the MNI solution 

for the post-campaign data, the social preference curve is unimodal. As will be shown shortly, the MNI 

solution for the pre-campaign data is nearly unimodal. The ML solution has a larger departure from 

unimodality, both for the pre-campaign data and for the post-campaign data. Concluding, only for the 

post-campaign data for the MNI criterion is the median ranking a folded J scale, and, hence, is the social 

preference curve unimodal over the J scale. 

Unimodality of the Social Preference Curve 

As was shown above, in the case of the MNI solution, the social preference curve for the post¬ 

campaign data, is unimodal. For the best pre-campaign 9-scale (the MNI solution), OTHPOLL and SELFDE 

are in the wrong order; their ranksums differ by only one (see above); furthermore, OTHPOLL (£) was 

chosen over SELFDE (//) just one time less than SELFDE was chosen over OTHPOLL: {v(E>pH) = 42 > 41 

= fr(H>pE), thus, these options nearly coincide. Thus, for the TRAFFIC-data, and using the MNI 

criterion, the social preference function is unimodal over the post-campaign quantitative 9-scale, it is 

nearly unimodal over the pre-campaign quantitative 9-scale. 

In using the ML criterion, NOCONC and MAXTAX are in the wrong order on the pre- and post-campaign 

quantitative J scale; however, in view of the ranksums of these options (see above), the departure from 

unimodality is very small. Just as for the MNI solution, for the ML solution for the pre-campaign J 

scale, OTHPOLL and SELFDE are also in the wrong order. 

We conclude that for the TRAFFIC-data, the MNI criterion yields more often a unimodal social 

preference curve. In total, the results for this data are not very satisfying, due to a lack of homogeneity 

among judges scoring the statements. Thus, viewpoints are not in general converging on measures to be 

taken for the sake of protection measures against environmental pollution. 

6 DISCUSSION 

The main purpose of the paper was to show the benefits of using a strictly unimodal distance model 

for rankings. If rankings follow such a distribution, then (1) the median (or modal) ranking is a central 

ordering; (2) the social preference function is single-peaked over the quantitative J scale; this means that 

the social preference increases towards the social ideal option and decreases away from it; (3) the median 
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ranking is an admissible ordering of the quantitative J scale, and (4) is the Simple Majority Rule ranking 

- provided there are no ties in the median ranking; (5) the ML and MNI solutions for the best quantitative 

J scale are the same. These results were proved to hold for complete rankings. In this paper, this theory 

was applied to dichotomous data. 

Two sets of data were analyzed, first the NUCLEAR data, pertaining to attitudes of people with respect 

to nuclear energy, secondly, the TRAFFIC data, concerning a possible change in attitudes of people with 

respect to measures to be taken to reduce environmental pollution. 

For the NUCLEAR-data, the social preference function is unimodal over the quantitative J scale, both 

for the MNI and for the ML criterion; the median ranking is a folded J scale and is the group consensus 

ordering according to Simple Majority Rule. The MNI and ML criterion yield the same quantitative J 

scale. For the TRAFFIC-data, and using the MNI criterion, the social preference function is unimodal 

over the post-campaign quantitative 9-scale only, here the same conclusions apply as for the NUCLEAR- 

data. The social preference function is nearly unimodal over the pre-campaign quantitative 9-scale, and 

even less so for the ML criterion. 

The total number of inversions, #INV, for the post-campaign data is considerably smaller than for the 

pre-campaign data, pointing to the fact that the variance of the distribution of rankings about the median 

ranking is smaller for the post-campaign data. This is in line with the larger number of perfect fitting 

rankings, #PERF, for the post-campaign data. So, after the information campaign, and using the MNI 

criterion, people's opininions are more homogeneous, which yields a better J scale. 

In total, the results for the TRAFFIC-data are not as convincing as for the NUCLEAR-data. This is due 

to the higher level of error in the former; for the MNI solution, the mean number of inversions is 1.24 

and 0.95 for the pre- and post-campaign TRAFFIC-data, respectively, as compared to 0.22 for the 

NUCLEAR-data. For the ML solution, the number of perfect fitting rankings is 49% and 55% for the 

pre- and post-campaign TRAFFIC-data, respectively, as compared to 81% for the NUCLEAR-data. 

Viewpoints are converging on measures to be taken for the sake of protection against nuclear power 

stations, but not in general converging on measures to be taken for the sake of protection against 

environmental pollution. Maybe, the latter measures concern restriction of individual freedom. 
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