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THE UNDERSHOOT OF THE RE-ORDER LEVEL FOR ITEMS SOLD SINGLY, 

a case study 

Abstract 

For the design of a new automatic order system a study is made 

of some properties of a periodic review stock control system for 

items sold singly. When at the end of a day the stock level is 

lower than a minimum level m an order is made to increase the 

stock level up to a maximum level M . The undershoot is the 

difference between the re-order level m - 1 and the stock 

level m - d on the moment an order is made. The probabilities 

P(d) are calculated without approximations for several values 

of D = M - m . For the demand a Poisson distribution is 

assumed. First the probabilities of all stock levels below the 

minimum stock level are calculated for one specified day after 

the last order. This gives the probability distribution of 

orders in time. The undershoot distribution is found by adding 

the results for all days. Special cases are D = 0 and D = «> . 

The case D = <» corresponds with the approximation known for 

large order quantities. This approximation appears to apply for 

all the order quantities that can be expected in the near 

future. Expressions for the mean and the standard deviation of 

the undershoot were achieved by looking at the moment that the 

stock falls below the minimum stock. The results are compared 

with experimental data for car parts sold singly. Corrections 

needed for the calculation of m are discussed. 
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1. Introduction 

About twenty years ago a car factory introduced a computerised 

order system to supply car dealers automatically with parts 

from regional centres. Every month orders were made to bring the 

stock levels again up to the maximum level M . Only parts were 

selected that had a regular demand. The mean demand did not need 

to be high, a mean monthly sales of one item is normal for car 

parts. The Dutch importer adopted the system but after some 

years this importer changed from monthly to weekly and finally 

to daily orders and supplies. A minimum stock level m was 

introduced to limit the number of orders. Now both levels m 

and M were calculated for the selected parts and the dealers 

could add minimum stock levels for slow moving parts. 

After the reduction of the review time and the introduction of a 

minimum stock level considerable reductions in stock value were 

achieved but some problems remained unsolved. Both levels m 

and M were calculated as constant time supplies, the mean 

demand in one month multiplied by a factor. This approach was 

easy to implement in computer programs but it is known to be not 

optimal [14]. After many changes in the programs a new system 

with more theoretical background was develloped and recently 

implemented. For D = M - m a modified EOQ formula is now being 

used. One aspect of the calculation of the minimum stock in this 

new system, the estimation of the undershoot u of the re-order 

level m - 1 , is the main subject of this article. 

When at the end of a working day the economic stock is m - d , 

d > 1 , an order is made in a batch process in the evening. The 

most usual situation is d = 1 but d > 1 also occurs 

frequently. The delivery time, also called replenishment lead 

time [14], is two days. This delivery time is not much longer 

than the review time, one day, and so the undershoot u = d - 1 

cannot be neglected in the calculation of the minimum stock m . 

In the literature on stock control the undershoot is often not 

even mentioned [2,3,4,5,6,16]. For all the expressions that can 

be found for the mean and variance of the undershoot [7,13,14] 

approximations were used and some results are only valid for 

special cases such as sporadic demand or continuous review. 
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Expressions for the mean and variance of u for continuous 

review and discrete demand are given by Silver and Peterson [14] 

which they say to derive from Karlin [9]. An approximation for 

P(u) for periodic review with u as a continuous variable, is 

given by Tijms and Groenevelt [15]. These results were found by 

using renewal theory and assuming D is large. Tijms and 

Groenevelt say that D+l > 1^ a , a is the number of items sold 

in one review period, is enough for a good approximation. 

Expressions for the mean and variance of u in case of periodic 

review are given by Hill [7], who uses methods similar to those 

of Hadley and Whitin [6]. Hill assumes large order quantities 

but does not say how large orders have to be. Hill distinguishes 

two components of the undershoot, closely related to the two 

components of the demand distribution [4,13]. One component of 

the undershoot is caused by the sales transaction that brings 

the stock under the minimum stock. The other component is caused 

by the possibility of more than one sales transaction in the 

review period. The first component is only important for parts 

not sold singly. Most car parts are sold singly so that case had 

to be understood first. This proved to be also a good start for 

the more complicated situation of parts not sold singly. 

From literature study and from De Kok [11] it became clear that 

not much is known about the undershoot distribution in case of 

small order quantities. There is a general tendency to reduce 

order quantities to achieve flexible production and inventory 

systems [5]. A determination of the accuracy of the usual 

approximations by comparing approximated and unapproximated 

results may therefore also be useful for other situations. 

The probabilities P(d) are calculated for periodic review and 

Poisson demand without using approximations. Graphs are given of 

the probabilities P(d,n) of a stock level m - d on the 

moment an order is made, n days after the previous order. The 

calculation of P(d,n) gives an indication of the dispersion in 

the time between orders. Expressions for the mean and the 

variance of the undershoot are derived for two special cases. 

The numerical results are illustrated with experimental data. 

Some corrections of the minimum stock are discussed. 
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2. General case 

The probabilities P(d) can be calculated by summation of 

P(d,n) over all possible daynumbers n . So the first question 

to be answered is: What are the probabilities P(d,n) of a 

stock level m - d at the end of day n while on day n - 1 

the stock level was not less than the minimum m ? To answer 

this question the distribution of the demand A(k) in a period 

of k days must be known for any integer k > 1 . If the sales 

transactions are independent and consist of one unit, a Poisson 

distribution can be used with mean ka and a number of units 

sold j : 

-ka j 

P(A(k) = j) = e (ka) (1) 

j! 

The stock level V(k) , k days after the last order, is: 

V(k) = M - A(k) (2) 

The probability P(d,l) that stock level m - d is reached one 

day after the order generation is: 

P(d,1) = P(V(1) = m - d) 

= P(A(1) = D + d) 

-a D+d 

= e_a ( 3 ) 

(D + d)! 

The calculation of P(d,n) with n > 1 is more complicated 

because there are several stocks levels m + i possible at day 

n - 1 . A summation has to be made over all possible values of 

i , 0 S i < D . Sales during the first n - 1 days and sales 

at day n are independent. Hence the probabilities of reaching 

level m + i from M , and m - d from m + i can be 

multiplied to give P(d,n,i) , the probability of reaching stock 

level m - d from level m + i at day n : 



P(d,n,i) P(V(n - X) = m + i) P(A(1) = d + i) 

P(A(n - 1) = D - i) P(A( X) = d + i) 
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-na D-i D+d 

= e_(n - 1)_a 

(D - i)! (d + i) ! 

The probabilities P(d,n) can now be calculated from: 

D 

P(d,n) = E P(d,n,i) 

i=0 

where n > 1. The expression for P(d) is: 

oo d 

P(d) = P(d,l) + E E P(d,n,i) 

n=2 i=0 

(4) 

(5) 

(6) 

In (4), (5) and (6) there is no direct dependence on m or M . 

Only the values of a , d and D have to be varied to get an 

impression of the behaviour of P(d,n) and P(d) . For 

numerical results see Table 1 and Figure la and lb. 

3. Special case: D = 0 

For slow moving service parts M = m and hence D = 0 is the 

most usual situation. If D = 0 is substituted in (3), (4) and 

(5), the expression for P(d,n) reduces to an equation which 

also can easily be derived directly: 

P(d,n) = P(A(n - 1) = 0)) (P(A(1) = d) 

-na d 

= §_§_ (7) 

d! 

For this special case the sununation over n can be carried out 

as a simple summation of a geometric series, giving: 



132 

P(d) 

d a 

a / ((e - 1) d!) (8) 

With (8) the results in Table 1 for D = 0 were checked. The 

results (7) and (8) can be seen as an exponential decay process 

as described in atomic physics. If D = 0 then P(d) given by 

(8) is the transition probability from state V = M to state 

V = M - d . If D > 0 there are possible states in between M 

and m - d and the decay process becomes more complicated. 

4. Mean and variance if D = 0 

From (8) expressions for the mean and variance of d can be 

derived. In these derivations d is a more natural choice for 

the stochastic variable than u . From (8) and the definition of 

the expectation value it can be shown that if D = 0 : 

E(d) = a / (1 - exp(-a)) 

E(d2) = E(d) (1 + a) 

The mean of the undershoot u is: 

H = E(d) - 1 (11) 

The variance is both for d and u given by: 

a2 = E((d - E(d))2) 

= E(d) (1 + a - E(d)) (12) 

From (10) and (12) it follows that if D = 0 and a >> 1 the 

mean and variance of d are both equal to a . From (8) it can 

also directly be seen that if a >> 1 then P(d) is a Poisson 

distribution with mean a . 

Using a second order approximation for the exponent in (9) it 

can be seen that if D = 0 and a << 1 the mean and variance 

of u are equal to ha . For these first two moments a Poisson 

distribution with mean ^a can be fit to P(u) . 

(9) 

(10) 
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o.o2a - 

0.026 - 

0.024 - 

0.022 - 

0.02 - 

0.018 - 

days after the previous order the next order is 

made. 

Upper curve: a=0.1,D=5,d=l 

Lower curve: a=0.1,D=5,d=2 

Figure lb: Probabilities of an order point m - d , when n 

days after the previous order the next order is 

made. 

Upper curve: a=0.3,D=15,d=l 

Lower curve: a=0.3,D=15,d=2 
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5. Special case; D = °° 

For a small value of the mean daily sales a the results in 

Table 1 are independent of D . This can easily be explained. 

If a << 1 the only possible amounts of the daily sales A(l) 

can be assumed to be 1 and 2 . So V = m - 2 at the moment 

of ordering, can only be reached from V = m . This means that 

for the calculation of P(2) the value of D can be set to 

zero although the actual D may be much larger. This conclusion 

reduces the problem of finding P(d) for small a for any D 

to the special case treated in the previous sections. 

If a < 1 but a is not very small then A(l) = 1 , A(l) = 2 

and A( 1) = 3 will be possible. Stock level m - 2 will 

usually be reached from m and m + 1 . So P(d) will hardly 

depend on D if D > 1 . In Table 1 it can be seen that, in 

general, for any a there is a D' so that for D > D’ the 

values of P(d) do not change anymore within the accuracy of 

the table. This is approximately the formal definition of the 

statement that the limit of f(d,D) = P(d) exists for D to 

"infinity". An expression for the calculation of this limit will 

now be derived. 

The value of P(d,l) given by (3) can be seen to be very small 

if D >> a , so this term in (6) can be neglected. The remaining 

expression for P(d) can be written as: 

D oo 

P(d) = S {P(A(1) = d + i) E P(A(n - 1) = D - i)} (13) 

i=0 n=2 

The summation over n can be written as: 

oo D-i “ 

E P(A(n - 1) = D - i) = a E 

n=2 (D - i)! n'=0 

where n' = n - 1 is used. The term for n' =0 could be added 

because its value is zero. 

D-i -n'a 

n' e (14) 
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Figure la and lb show that the distribution in time is spread 

over many days so the summand in (14) may be treated as a 

continuous variable. This can also be seen from the distribution 

of the demand in D / a days, this is a Poisson distribution 

with mean D and standard deviation VD . If D >> a , then 

also D / VD >> a , so the uncertainty in the moment of reorder 

must be much larger than one day. From these arguments we may 

conclude that the last summation in (14) can be replaced by an 

integral. The result is remarkably simple: 

00 

D-i 

a_ 

(D - i)! 

= 1 / a (15) 

«> D-i -n' 

£ n' e 

n' =0 

D-i 

(D - i)! 

D-i -ax 

it e dx 

Substitution of (15) in (13) gives: 

D 

P(d) = (1 / a) E P(A(1) = d + i) (16) 

i = 0 

Again using D >> a , the last summation can be extended to 

infinity and so: 

P(d) = (1 / a) P(A(1) > d) (17) 

The final result (17), derived for Poisson demand, is a special 

case of more general expressions for D = oo [14,15]. Numerical 

results are given in Table 1. 

Expression (16) suggests that all stock levels before an order 

is made have the same probability. This is not true, low stock 

levels are more probable on the day before an order is made. A 

direct 'physical interpretation' of the expressions (16) or (17) 

is not possible. The derivation of the mean and variance from 

(16) or (17) is also not simple. For that purpose another 

approach of the undershoot is chosen. 
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6. Mean and variance if p = co 

For the general result (4) and hence for (17) two periods were 

considered, before and after the beginning of the day that the 

order is made. If d = <» can be assumed it is useful to look 

more closely at the moment that the stock falls below the 

minimum stock level m . 

For items sold singly, the undershoot is the demand after the 

moment at time t when the stock level V = m - 1 is reached. 

The time t is expressed as a fraction of the review time. The 

undershoot distribution is the composition of the distribution 

of t and the demand in the period between t and 1 . If 

D >> a the distribution of t will be uniform, the dispersion 

in the moment of re-order is much larger than one day. In that 

case the mean value of t is ^ . The mean undershoot is the 

mean demand in a period with average duration Js , so: 

H = *5 a (18) 

Also the variance of a composed distribution can be derived from 

the mean and variance of the composing distributions [2,16]. In 

case of a uniform distribution of t the variance of t is 

1/12 and the variance of the undershoot is given by: 

a2 = ha + a2 / 12 (19) 

From (19) it can be seen that if a << 1 the dispersion in t 

can be neglected. In that case the dispersion in the demand is 

relatively large and (19) reduces to: 

a2 = ha (20) 

The expressions (18) and (20) illustrate that for a << 1 the 

undershoot distribution is close to a Poisson distribution with 

mean *5 a as was found for D = 0 and a << 1 . In contrast to 

(11) and (12) the expressions (18) and (19) can also be derived 

from results in literature [7,14]. For the application of the 

standard results for continuous review [14] the transaction size 

must be assumed to be the sales in one review period. 
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Table 1 

The probability distribution P(d) , m - d is the stock when 

an order is made, for several values of D = M - m and the mean 

daily sales a . The undershoot is u = d - 1 . 

a d D=0 D=1 D=3 D=5 

0.05 1 

2 

0.975 

0.024 

0.975 

0.024 

0.975 

0.024 

0.975 

0.024 

0.975 

0.024 

2 

3 

0.951 

0.048 

0.002 

0.952 

0.047 

0.002 

0.952 

0.047 

0.002 

0.952 

0.047 

0.002 

0.952 

0.047 

0.002 

0.3 1 

2 

3 

0.858 

0.129 

0.013 

0.864 

0.123 

0.012 

0.864 

0.123 

0.012 

0.864 

0.123 

0.012 

0.864 

0.123 

0.012 

2 

3 

0.771 

0.193 

0.032 

0.787 

0.180 

0.029 

0.787 

0.180 

0.029 

0.787 

0.180 

0.029 

0.787 

0.180 

0.029 

1 

3 

5 

1 0.582 

2 0.291 

3 0.097 

5 0.005 

1 0.157 

2 0.236 

3 0.236 

5 0.106 

1 0.034 

2 0.085 

3 0.141 

5 0.177 

7 0.105 

10 0.018 

0.630 0.632 

0.266 0.264 

0.081 0.080 

0.004 0.004 

0.261 0.325 

0.273 0.269 

0.214 0.190 

0.070 0.059 

0.086 0.194 

0.144 0.207 

0.182 0.189 

0.153 0.108 

0.069 0.041 

0.009 0.005 

0.632 0.632 

0.264 0.264 

0.080 0.080 

0.004 0.004 

0.317 0.317 

0.266 0.267 

0.192 0.192 

0.062 0.062 

0.213 0.199 

0.197 0.192 

0.172 0.175 

0.107 0.112 

0.046 0.048 

0.006 0.006 
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7. Applicability of the approximation D = co 

The results in Table 1 can be used to see in which cases the 

usual approximation D = «> holds. For parts with a < 0.5 the 

approximation d = <» can be used even if D = 0 , in that case 

the probabilities P(d) do hardly depend on D . 

In general the actual value of D must be larger than a value 

dependent on a , as was shown in the beginning of section 5. 

From Table 1 it can be seen that if D + 1 > 1*5 a the d = “ 

approximation can be used, as was suggested by Tijms en Groene- 

veld [15] and De Kok [10]. In the automatic order system the 

standard economic order quantity will be used with some correc¬ 

tions, if a > 0.5 roughly D + 1 = EOQ will hold. So the 

approximation D = <» can be used if: 

V (500 a Cb / (Cv P)) > 1*5 a (21) 

with Cb = order costs in FI, Cv = stock costs in one year for 

Fl 1,- of stock and P = sales price in Fl. The number of 

working days in a year is set to 250. For parts send to car 

dealers approximately Cb / Cv = 15 and so: 

a < 3333 / P (22) 

Parts with a price above Fl 1000,- will not be automatically 

delivered so (22) holds for a < 3,3 . Expensive parts sold 

singly have at most a = 3 so the approximation d = °o can 

be applied in the automatic order system. 

They approximation D = “ may not hold in the future. If the 

stock costs Cv are increased by a factor 4, as was advised 

recently [5] to avoid hidden problems, some care has to be taken 

with the approximation D = °o . Also the tendency to reduce the 

number of stock points [12] can make the appoximation D = «> 

invalid. Daily delivering orders may become too expensive and 

the review time might become one week, which would increase the 

mean sales in one review period by a factor 5. In that case, to 

keep the required service level, the approximation 0=0 can 

be used for parts with a > D + 1 . 
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Mean daily sales 
□ 45 orders - th. mean - Lm + 2 * stddv 

Figure 2: The undershoot of the minimum stock level for 45 

orders of articles sold singly. The straight line 

gives the expectation value and the curved line the 

expectation value plus two times the expected 

standard deviation, both as calculated from the mean 

daily sales. The data points can also be compared 

with the probabilities in Table 1 for 0=00, with 

d = underhoot + 1 and a = mean daily sales. 
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8. Experimental data 

Experimental data were collected in a period before the 

implemenation of the new system was started. The order system 

produced a daily list of all orders generated for car dealers in 

Holland. On this list the stock level on the end of the day is 

given. The minimum and maximum stock levels were derived from 

the mean monthly sales, so it was possible to make a graph of 

the mean sales versus the undershoot which is given in Figure 2. 

Data were selected for articles which are almost always sold 

singly, such as oil filters, air filter elements and antenna's. 

For each car only one item is needed. For small a the real 

undershoot values may have been limited by the minimum stock. 

The order quantities are large enough to assume d = °° for 

the theoretical distribution of the undershoot. The expected 

mean and standard deviation given by (18) and (19) are calcula¬ 

ted from the mean daily sales. Graphs are given in Figure 2. 

The mean of the daily sales a is calculated from a moving 

average of the monthly sales. If less than one item is sold in 

one month the error in a can be quite large [4]. A simulation 

showed that the standard deviation in a may range from 10% 

for a > 0.5 up to 30% for a < 0.5 . In case of a trend in 

the sales data the error in a can even be much larger. All 

points were omitted where a trend or irregularity in the sales 

could be recognised. For a < 0.5 two moving averages with a 

different time constant could be compared. Some of the omitted 

points with a positive trend in the sales data showed a large 

undershoot with a probability lower than 0.5% in Table 1. This 

analysis showed that including a correction for the trend in the 

calculation of the minimum stock is quite useful. 

In Figure 2 most of the data points scatter around the expected 

mean value of the undershoot but still some data points deviate 

more than two standard deviations from the mean. Deviations lar¬ 

ger than 2a are not directly in conflict with the probabili¬ 

ties given in Table 1 under D = °o . Some data points with 4a 

deviation from the mean still have a probability of about 3%. 

These deviations illustrate that the probability distibution 
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P(d) is quite asymmetric. This is mainly caused by using a 

demand distribution for a period of only half a day. For the new 

expression of m the demand in a period of about three days is 

considered and only a small correction for asymmetry is applied. 

In Figure 2 there remains one point, with a = 0.7 and d = 5 , 

which has a probability in Table 1 lower than 1%. This still can 

be a normal undershoot but there may be another explanation. In 

a more recent data set also one case of extreme large undershoot 

seemed to occur. A stock correction on the same day, triggerd by 

the order picking, appeared to be the reason of the low 

administrative stock level at the end of the day. 

9. Time between orders 

The time between two subsequent orders is equal to the time to 

sell at least the minimum order quantity D + 1 . The graphs 

given in Figure la and lb show that the mean time between two 

subsequent orders T is approximately (D + 1) / a . A more 

accurate expression for T can be obtained by adding the 

expected undershoot (18) to the minimum order quantity. In case 

of Poisson demand and D >> a the result is: 

T = (D + 1) / a + h (23) 

Expression (23) can also be derived by using a result from 

renewal theory [8] and the relation between mean and standard 

deviation for a Poisson distribution. 

In the literature on stock control no expressions were found for 

standard deviation in the time between orders. The graphs in 

Figure la and lb show that the dispersion in the time between 

two orders is large if a << 1 . This implies that, in case of 

many dealers and a large assortment of slow moving articles, the 

stream of automatically generated orders to the central store 

will be almost constant. The number of orders in one day will 

not vary very much. In the old system the montly dealer orders 

were spread over the days in one month. This is not neccessary 

anymore, which simplifies the system. 
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10. Conclusions and discussion 

Calculations of undershoot probabilities were used to test the 

applicability of the approximation D = » and for an interpre¬ 

tation of experimental data. For the current situation the 

order quantities are large enough to assume D = “ . 

For the expression of m in the new automatic order system, 

using D = <» , a uniformly distributed variable is added to the 

delivery time. Half a day is added to the delivery time of two 

days to obtain the mean lead time. The variance of the lead time 

is 1/12 , which cannot be neglected for fast moving parts. This 

approach is also used for parts not sold singly. The first two 

moments were determined for the composition of the distributions 

for the lead time, customer arrival and transaction size. In the 

expression for m a separate term is included for the event 

that brings the stock under the minimum stock. 

When the stock costs or the review time increase, the assumption 

D = oo may not be valid anymore for expensive fast moving 

parts. For these parts the approximation D = 0 can be used. 

The approximation D = 0 can also be simplified, a worst case 

approximation can be applied. The first customer can be assumed 

to arrive directly at the beginning of the review period and the 

minimum stock can be calculated by including a full review 

period in the lead time, as was suggested by Brown [1]. This 

approach must not be used for all parts because this would 

increase the stock value of slow moving parts without a reason. 

Looking at the moments when things happen made it possible to 

understand the system, which increased the flexibility in the 

design process. The dispersion in the time between orders was 

found to be large enough to result in a constant flow of orders. 

Poisson demand could be extended to compound Poisson demand. 

Fluctuations in the delivery time could be included by adding 

another uniformly distributed variable to the delivery time. The 

time oriented approach could also be explained to the people who 

support the dealers. This gave them more background to tell the 

dealers what they can expect from the new system: lower stock 

values and still a good service degree for all parts in stock. 
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Glossary 

a = mean number of items sold in one review period 

Cb = order costs in FI 

Cv = stock costs in one year for FI 1,- of stock 

d = difference between minimum stock and the stock on the 

moment an order is made 

D = M - m 

i = difference between stock on the day before an order is 

made and the minimum stock level 

j = number of items sold in k days 

k = number of days in the period for which a Poisson 

distribution is defined 

m = minimum stock level 

M = maximum stock level 

P = sales price in FI 

P(d) = probability of stock m - d on the moment, at the 

end of the day, that an order is made 

P(u) = probability of undershoot u 

P(d,n) = probability of stock m - d at the end of day n 

P(d,n,i) = probability of stock m - d at the end of day n 

while at the end of day n - 1 the stock is m + i 

o = standard deviation of the undershoot 

t = time between the last stock review and the moment that 

the stock becomes smaller than the minimum stock m 

T = mean time between two subsequent orders 

u = undershoot, u = d - 1 

p = mean undershoot 

V = stock level 

= inventory position 

= stock on hand - backorders + orders - committed 

V(k) = stock level k days after the last order 

(Remark: in the text all the variables and arithmetical 

expressions are surrounded by spaces.) 

on tvangen 4-3-1992 
geaccepteerd 26-5-1992 
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