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Abstract 

This paper examines an approach to fixed factor analysis. It means that we study a model in which 

the factors are fixed variables. Within this model, each individual can be characterized by a set of 

factor scores, which are model parameters. In contrast to the usual, random factor model, 

individual differences are in that way, part of the model. Fixed factor analysis may thus come closer 

to the aims of behavioral research, where one is often interested in describing the individuals in 

terms of a small number of factors or where it can be inappropriate to consider the individuals as a 

random sample from a well-defined population. Fixed factor models already exist for a long time 

but they have not become very popular. A reason for this is that under the assumption of 
multivariate normality, the method of maximum likelihood estimation fails. In the model discussed 
here restrictions are imposed that solve this problem. This is accomplished by defining the fixed 

factor model as a special version of the reduced rank regression model. All model parameters, i.e. 

factor scores, loadings and uniquenesses, are estimated by an alternating maximum likelihood 
algorithm. The proposed technique is illustrated with two real data examples. 
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1. Introduction 

Most often the interest of factor analysts is in finding general structural laws, describing or 

explaining the observed relations among a set of variables by means of a small number of 

unobserved factors. The factor analysis model is usually embedded in a statistical framework which 

means that concepts such as replication and random sampling make sense. Indeed, the model with 

its so-called structural parameters, factor loadings and unique variances, focusses on structural 

aspects of the data. Although the factor model incorporates the individual scores on the common 

factors, the factors itself are considered to be random variables. Hence, individual differences are 
conceived as just 'error'. In fact, the so-called/actor scores in the common factor model, can never 

be determined because they are not parameters in the model. If, for some reason, these scores are 

still desired, they have to be 'estimated' indirectly, utilizing ad-hoc procedures. The only way to 
derive real estimates of factor scores, is to let individuals add their factor scores as parameters to the 

model. Fixed factor models contain these person parameters. 

In this paper we will discuss a factor analysis model with fixed factors, defined as a special case of 

a class of generalized linear models. This class of models arises from a multivariate reduced rank 

regression model with a generally parametrized residual covariance matrix and was discussed in De 
Leeuw, Mooijaart and Van der Leeden (1985) and in Van der Leeden (1990). 

2. Historical context and further introduction 

Factor analysis has had its origin in psychology. With the development of the product moment 

correlation coefficient at the end of the nineteenth century, Karl Pearson provided scientists with a 

powerful instrument to establish relationships between variables used to quantify the human 

behavior for the study of the mind. At first, the correlation coefficient merely served as a descriptive 

measure. Gradually however, with a rapidly increasing number of studied variables, the attention 

shifted to theories that could explain the observed relationships. Spearman (1904) was one of the 

first to formulate a theory to account for the intercorrelations of a number of testscores. He assumed 

a general ability, common to all the tests, and a specific ability, specific to each test. It was the first 
common factor model. 

In the twenty years that followed, many authors, such as Burt, Pearson, Thomson, Garnett and 

Holzinger, made contributions to the 'factors of mind', which culminated in the 'multiple factor 

analysis' of Thurstone. Underlying these developments, the basic assumption always remained that 

the correlations among a number of observed variables could be explained by a smaller number of 

unobserved factors or latent variables, whereas the relations between those factors and the observed 
variables could be described by a linear model. 

At the time of World War II, factor analysis was well established and widely employed 

throughout the U.S. Army for large-scale testing problems. In the 1950s and early 1960s, factor 

analysis was frequently used with the aim to bring order and meaning to the many relations among 

large numbers of variables. According to Harman (1967), its primary goal was to attain scientific 

parsimony and economy of description. Clearly, in these developments and applications the 
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emphasis was mostly on structural aspects of the tecnique and it seemed very natural to assume that 
the factors were random variables. 

The random factor model became very popular. Lawley (1940) and Rao (1955) connected the 

model with modern statistical theory. The first practical algorithms to estimate its parameters, i.e. 
loadings and uniquenesses, were presented by Joreskog (1967). The method of maximum 

likelihood (ML) is currently the most popular, providing for consistent and efficient estimates of the 

structural parameters, with asymptotically a multivariate normal sampling distribution. Finally, the 
development of factor analysis even resulted in a very general approach to structural modelling of 
data (cf. Joreskog, 1969). 

This dominant 'structural perspective' has caused for instance, that factor scores received little 
attention in classical books about factor analysis, such as Thurstone (1947) and Harman (1960, 

1967). It is also obscuring the fact that alternative factor models have been developed in which the 

factors are fixed variables, i.e. the factor scores are fixed unknown parameters which have to be 

estimated. This kind of fixed factor model, is attributed to Young (1941) and generalized by 
Lawley (1941). 

Nevertheless, fixed factor models can not be found very often in the literature. A reason for this 
observation is that, apart from the fact that most factor analysts had a different conception of the 

technique and its aims, the fixed score model is more complicated from a statistical point of view. 
True, Lawley (1941) derived the likelihood equations, but Anderson and Rubin (1956) showed that 

the likelihood function is unbounded and maximum likelihood estimates do not exist. They also 

derived alternative estimates of the structural parameters based on the distribution of the covariances 

of the observed variables. These estimates appeared to be consistent and asymptotically normal, 
with covariances equal to those of the ML estimates under the random score model. Actually, they 

also showed that both the ML estimates of the structural parameters under the random score model 

and under the fixed score model, have the same asymptotic distribution. Anderson (1984) gives an 
extensive review regarding these topics. 

From the results of Anderson and Rubin, it was concluded that the estimates of the structural 

parameters in the random score model could be applied in all cases, which made it somewhat futile 

to look for alternative estimation methods for the fixed score model. This fact tended to make the 

fixed score model even more unpopular, which is quite unfortunate because factor analysis models 

that incorporate individual factor score parameters, apart from structural parameters, may often 

come closer to the aims of social scientific research. Frequently, the interest is in the individual 

differences, i.e. in describing the individuals in terms of a smaller number of factors, and not only 

in the structure of the data. In fact, Young (1941) and Whittle (1952) even argued that the fixed 

score model is more suitable for most applications they knew. Indeed, if one is explicitly interested 

in individual scores or if it is inappropriate to consider the individuals as a random sample from a 
well-defined population, one has to apply the fixed score model. 

Ultimately the distinction between the random and fixed factor model, and the greater popularity 

of the random model, is perhaps of a philosophical nature. The previously described developments 

make cigar that factor analysis has been dominated for a long time by the nomothetic approach that 

is familiar from psychophysics, focussing on general structural laws and considering individual 

differences as error. The fixed factor model is more idiografic, it can be used to describe 

individuals succinctly. Hence, it comes closer to the spirit of many factor analytic studies in applied 
social sciences. It may be clear that the distinction between random and fixed factors has important 
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implications for the recent, so-called 'factor score controversy’, a discussion on the indeterminacy 
of factor scores, to which many authors made contributions. See e.g. Green (1976), Guttman 

(1955), Harris (1967), Heermann (1963), Schonemann (1971, 1973), Schonemann and Wang 

(1972), McDonald (1974), Mulaik (1976) and Mulaik and McDonald (1978), McDonald and 
Mulaik (1979). Obviously, within the fixed factor model this subject can be studied more clearly. 

As was argued in a previous subsection, the method of maximum likelihood fails if it is applied 

directly to the fixed score model. The reason why is well understood (cf. Anderson, 1984). 
Intuitively this problem can be made clear by realizing that each individual adds her own factor 

scores to the set of parameters. For this reason, the factor score parameters are called incidental. 

However, if the number of individuals tends to infinity, the number of parameters tends to infinity 

too. Hence, one can imagine that there is actually too much freedom in the fixed score model. 

One way out of the problem is to impose restrictions in the fixed score model and study the 

effect of these restrictions on the maximum likelihood estimates. The approach discussed in this 

paper is a restricted form of fixed factor analysis. In situations where the fixed factor model is 

preferable to the random model, and if the restrictions make sense, our model can be a useful 

addition to the literature. 

3. The fixed factor model 

Applying matrix notation, the fixed score model can be written as 

[1] Y = FB + E 

where Y is the Nxt matrix of observations, that is, we have N observations on t variables. F is the 
Nxs matrix containing the factor scores on .v factors and B is the sxt matrix of factor loadings. We 

will assume that E, the matrix of random error components, follows a matrix normal distribution 

with zero expectation and parameters I and £, notated as E - A(0,I,E) or as Vec(E') ~N(0,In ® 
X) (cf. Nel, 1977). Vec(E') indicates the column vector in which E' is stacked column by column 

and ® denotes the Kronecker product. Hence, each row of E is independent, normally distributed 

with dispersion matrix X. Because we are discussing a factor model, X is diagonal, resulting from 

the usual assumption of mutually uncorrelated error components. Thus, the unknown, incidental 

parameters contained in F, the loadings in B, as well as the unique variances in X have to be 

estimated in model (1). This could be accomplished by maximizing the likelihood function. More 

conveniently, we could minimize f, the negative logarithm of this function, ignoring some irrelevant 

constants, given by 

[2] f(B,F,X) = N loglXI + tr[(Y - FB)X''(Y - FB)'] 

The problems that Anderson and Rubin have described regarding the minimization of [2], arise 

because we can always find F and B such that X is singular. For instance, choose f, = yL and A., 

= (100 ... 0)'. This yields a,, = 0 and thus IXI = 0. This results in loglXI -°o and thus f(B,F,X) 

—> -oo, which means that the likelihood has no maximum. So, ML estimates do not exist, neither 

for the incidental parameters, nor for the structural parameters. 
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In order to solve this problem restrictions can be studied either on X or on F and B. That is, 

restricting X to be diagonal appears not to be sufficient. Whittle (1952) proposed to restrict X to be 

scalar, i.e. X = ol. This restriction changes f into 

[3] f(B,F,X) = Nt loglol + a 'trKY - FB)'(Y - FB)] 

Hence, minimizing [3] only gives problems if Y = FB and this situation will be very unlikely in 

practice. Actually, this restriction defines principal components analysis or singular value 
decomposition. Although this restriction solves the problem, it is not the solution we are looking 

for because the assumption that all error variances are equal is rather strong and certainly not self- 
evident in many cases. 

Restricting B, the matrix of factor loadings, could provide another type of solution. In 

confirmatory (random) factor analysis, for instance, B is usually restricted while X is kept 

diagonal. However, in fixed factor analysis, this will not solve the problem with respect to the 
incidental parameters, i.e. the factor scores, because the problem remains that it will often be 

possible to find F and B such that at least one column of Y is fitted exactly. As was explained 

above, the result of this is (at least) one vanishing error variance. 

A third way of solving the problem of the unbounded likelihood, is to restrict the factor scores 

F. In the next section, we will discuss a class of these restrictions, arising from the formulation of 

the fixed factor model as a reduced rank regression model with a diagonal error covariance matrix. 

An attempt has been taken to solve the problem of ML estimation in unrestricted fixed factor 

analysis. McDonald (1979) gives a method of simultaneous estimation of factor scores and 

loadings. He defines fjfF.B) as the minimum of function [2] over all diagonal X and f2(F, B) as 
the minimum of (2) over all positive definite X. He suggests to find F and B so that the difference 

between f2(F, B) and f](F, B) is maximized. Because the log likelihood ratio of two partial 

likelihoods is maximized, the resulting estimates are called maximum likelihood ratio estimates. 
McDonald shows that this log likelihood ratio is bounded below by zero, if and only if X is 
diagonal. 

Thus, estimates of both structural and incidental parameters in the fixed factor model can be 

found minimizing a log likelihood ratio based on an alternative hypothesis. Without reference to 

such alternative hypothesis, as was pointed out by Anderson and Rubin (1956), the likelihood is 
unbounded. 

However, McDonald shows that the maximum likelihood ratio estimates of the factor loadings 

and error variances in the fixed factor model are the same as the corresponding ML estimates in the 

random factor model. According to Anderson and Rubin (1956), this means that these estimates are 

consistent. It also appears however, that the estimates of the factor scores, the incidental 
parameters, are not consistent. 

Because of these results McDonald states that, regarding the estimation in the fixed factor model, 

his findings are purely of theoretical interest. They mainly suggest the use of the structural ML 

estimates of the random model. In general, factor score estimates are arbitrary because the factor 
scores are not identified. 

An additional discussion concerning maximum likelihood ratio estimation is given by Etezadi- 
Amoli and McDonald (1983). 
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4. A restricted fixed factor model 

In this section we will discuss a fixed factor model with restrictions on the factor scores. Suppose 

F is decomposed as XA, where X is a N\r matrix of known constants and A is a rxs matrix of 

weights. Hence we consider a model given by 

[4] Y = XAB + E 

If we let M = AB, then Equation 4 obviously defines a regression model with fixed regressors. If 

M is not of full rank and it holds that rank(M) < s < min(r,r), Equation 4 defines the so-calles 

reduced rank regression model. These kind of regression models are discussed in e.g. Tso (1981) 
and Anderson (1984). In the field of econometrics, model [4] is called a functional errors-in- 

variables model (cf. Geary, 1948; Tintner, 1946, 1952; Malinvaud, 1964; Gleser, 1981 and Kelly, 

1984). From a regression point of view, such as in econometrics, it will be more likely to conceive 

M = AB as defining a special kind of regression model. In this factor analysis context however, it 

is very natural to interpret the decomposition F = XA as a restricdon on the factor scores. 

Several possibilities to impose linear restrictions are imaginable. For instance, we can think of X 

as a 'design' matrix. By assigning subjects equal rows in X, we require these subjects to have the 

same factor scores. X may contain for instance, dummy variables coding some categorical 

(background) variables. If numerical variables are collected in the columns of X, other columns 
could consist of powers of these columns, defining a non-linear trend in the factor scores (although 

the model still remains linear in its parameters). In our illustrations, we will make use of both 

possibilities. 

An important implication of these restrictions is that the factors F are in the vector space spanned 

by the variables contained in X. This explains why we can find real factor score estimates. Clearly, 

the factors are found as linear combinations of the columns of X. The elements of the parameter 

matrix A act as weights and are found optimally. Hence, we do not find 'components' concerning 

the total observed space, as is the case with principal components analysis, but our factors are 

found within a part of this space. These factors serve as explaining variables regarding the observed 
interrelations among the y-variables. 

A well known example of a (random) (single) factor model, in which the factor is found as a 

linear combination of some observed variables, is the so-called Multiple Indicators and Multiple 
Causes (MIMIC) model (Jbreskog & Goldberger, 1975). Joreskog and Goldberger develop ML 

and other estimation procedures for a model in which multiple indicators, as well as multiple causes 

of a single latent variable are observed. In that way, model [4] with s = 1, i.e. with A equal to a 
column vector, can be considered as a version of the MIMIC model. 

Taking X as a design matrix causes the sample to be divided into distinct groups. Within these 

groups, the subjects have identical scores on the x-variables, meaning that they also have an 
identical set of factor scores. If for instance, X contains dummy variables, coding the information 

from several explanatory (background) variables, this certainly makes sense. It is reasonable to 

assume that people of which we have obtained identical score profiles for the x-variables, can, to a 

certain extent, be considered homogeneous. Hence, in our fixed factor model, the assumption is 

that, for instance, people having the same religion, the same age, the same income, etc., will 

respond similarly to an underlying factor, found as an optimal linear combination of these variables. 
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This assumption seems to be even more reasonable, if we let the number of explaining x-variables 

increase, since this will reduce the size of the individual groups. It can be attractive, for instance, to 

add interaction variables to X, which possibility we have used in our illustrations. In the extreme 

case, row profiles in X become almost unique, so that virtually every individual is considered as a 

separate ’group', having its own unique set of factor scores. 

5 . Estimation and identification 

In this section we will develop a stepwise algorithm for the estimation of the parameters of our 

restricted fixed factor model. Assuming multivariate normality, we will maximize the (full 

information) likelihood function over the parameters contained in A, B and X utilizing an 

alternating procedure. Because of the similarity with alternating least squares techniques, we could 

call our algorithm an alternating maximum likelihood (AML) procedure, a terminology also used by 

De Leeuw (1989). 

It should be noted that since we are considering a factor analysis model, X, the covariance 

matrix of the error components, is restricted to be diagonal. In the algorithm described in the 
sequel, this restriction leads to an analytical solution for the parameters contained in X. Since this 

feature makes the estimation proces not a standard maximum likelihood procedure, we will give a 
complete description of the algorithm. 

At first however, we have to note that basically our model is not identified. It could be written as 

Y = XAZZ^B + E, with Z * I equal to any square, nonsingular matrix of order s, so that A and 

B are not uniquely determined. Hence, A* = AZ and B* = Z~*B are proper solutions too. If we 

require the factor scores XA to be orthogonal, a rather common assumption in factor analysis, it 

can be shown that A and B are determined up to an orthogonal rotation. In that case it holds that 

A'X'XA = I, and so A*'X'XA* = Z'A'X'XAZ = Z'Z = I, which shows that Z must be 

orthogonal. In the case of ^ = 1, the solutions for A and B will be determined up to a scalar. 
Clearly, whenever we have found estimates of A and B, these matrices may be subject to 

orthogonal rotation. Compared to random factor analysis, this fact is hardly surprising. In the next 

subsections, the orthogonality retriction on XA appears to be very useful to simplify the estimation 

procedure. However, after estimation we could drop this restriction on the factor scores. This is 

allowed because Z may be any square, nonsingular matrix and it implies that, theoretically, 

estimates for A and B may also be subject to oblique rotation. 

By the restriction A'X'XA = I the variances of the factor scores are set equal to N. It can easily 

be shown that by dividing A by VlV and multiplying B by V/V, an equivalent solution is obtained in 

which the factor scores have unit variances. In that case, the elements of B may be interpreted as 
corrrelations of the variables with the factors. 

For the estimation of the parameters contained in A, B and X, we have to minimize function f, 
given by Equation 2, rewritten as 

[5] f(A,B,0) = N loglXI + tr[(Y - XABjX 'fY - XAB)'] 

We will write X = X(0), a common notation to express that the elements of X are functions of the 
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unknown covariance parameters collected in the vector 0. Because 

model, 0 will only hold parameters for the diagonal elements of Z. 

First we will find an expression for 6 in terms of A and 0. The 

respect to B is given by 

[6] df/dB = IZ’VA'X'Y - A'X'XAB) 

Hence, equating df/dB to zero yields as an estimator for B 

[7] 6 = A'X'Y 

under the restriction A'X'XA = I. Notice that 6 contains the coefficients of the regression of Y on 

X A. Substitution of 6 simplifies the optimization of f. Instead of minimizing f(A,B,0), we can 

minimize the function g(A,0), given by 

[8] g(A,0) = max f(A,B,0) 

= A logIZI + tr[(Y - XAA'X'YjZ 'fY - XAA'X'Y)'] 

we are considering a factor 

partial derivative of f with 

which simplifies into 

[9] g(A,0) = N loglll + tr[Y'(I - XAA'X'JYn1] 

under the restriction A'X'XA = I. 

Now the alternating optimization of g(A,0) is started. In step 1, 0 is fixed and g (the -2 log 

likelihood) is minimized over the parameters in A. In step 2, A is fixed and g is minimized over the 

parameters in 0. These steps are repeated and in each step, the parameters being held fixed, are 

updated with the results of the previous step. The procedure stops when a certain convergence 

criterium has been reached, i.e. when the estimates of both A and 8 have become stable. 

Step 1 

Find A for fixed 0. In the case that 0 is fixed, minimizing g is equivalent to maximizing the 
function 

[10] g*(AI0) = tr[Y'XAA'X'YZ‘] = trtA'X'YZ’1 Y'XA] 

under the restriction A'X'XA = I. 

Now let X be decomposed by a Gram-Schmidt orthogonalization as X = X*T, where the 

columns of X are orthogonal and T is an upper-triangular matrix. Function g can now be written 
as 

[11] g*(AI0) = tr[A'T'X*'YZ4Y'X*TA] 

where A'T'TA = I. If we define P = X*'YZ1Y'X*, g* simplifies into 



[12] g*(AI0) = trfA'T'PTA] 
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This function has to be maximized for orthogonal TA. Because the matrix A has s columns, g* is 

obviously maximized, if we let TA be the eigenvectors corresponding to the s largest eigenvalues 

of P. Let G be these eigenvectors, then we can write as an estimator for A 

[13] A=T1G 

It must hold that A'X'X A = I, which condition can easily be verified. Clearly, k'X'xk = 
A'T'X 'X T A = AT'TA = I, while G = TA and G'G = I. 

Step 2 

Find $for given A. So function g(0IA) (Eq. 9) has to be minimized over 0. Now define Q = (l/N) 

Y'(I - XAA'X')Y. For given A, this matrix can be computed and can be considered a (temporary) 
estimate of X. Hence, minimizing g(0IA) is equivalent to minimizing the function 

[14] g“(0IA)= loglXI + trIQX'1] 

Because we are considering a factor model, X is diagonal. This means that function g** reduces to 

I15] g**(0IA) = I log(Ojt) + X q;i a,-;1 
i i 

Now the partial derivative of g** with respect to a,,- is given by 

[16] ag*7aai; = X a,;1 - X q,-,- a,;2 
1 1 

Equating 9g*7c)a;; to zero yields as an estimator for o;; 

[17] ^ = a,= qa 

It can easily be shown that for CT;i = qi; the second order derivative of g** is positive, so for a,-,- = 

q;,- the minimum of g is attained. Note that this estimator is only valid if the uniquenesses are non¬ 
zero. 

The estimation procedure can be summarized as: 

(1) Take some starting values for X(0), i.e. the au's. 
(2) Estimate A for fixed 0, from X = T 1G (Step 1) 

(3) Compute Q = (l/N) Y'(I - XAA'X')Y and set ai; = q,, (Step 2) 

(4) Update X with £, and repeat step 1 and step 2 untill convergence. 
(5) Estimate B from 6 = A'X'Y. 
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In De Leeuw, Mooijaart and Van der Leeden (1985) and Van der Leeden (1990), the estimation 

procedure described above is discussed more generally. They consider a class of multivariate 

reduced rank regression models with a general parametrization of the residual covariances. This is 

accomplished by fitting a covariance structure model on Z. Hence, there is no simple analytical 

solution available for t. In step 2, such solution requires an iterative procedure. The fixed factor 

model discussed in this paper can, of course, be considered as a special case of this general setup. 

One might consider using the LISREL program (cf. Jdreskog and Sdrbom, 1984) (or similar 

programs like EQS (Bentler, 1989) or LISCOMP (Muthen, 1987)), as an alternative for the 

estimation procedure for fixed factor analysis. However, this does not appear to be a very fruitful 

approach. There are a few ways of thinking. First, treat X as a set of fixed variables, Y as a set of 

observed, stochastic variables and use a model with so-called 'fixed x'. In LISREL terminology, 

this means that one set of latent variables is set equal to X, whereas the other set of latent variables 

(which are the factors in our model) are found as linear combinations of the variables in X. In that 

way, if more than one single factor is involved, we have a generalized MIMIC model (see also 

Sections 4 and 7). This approach is the only way to estimate the regression parameters in A and B, 

as well as the covariance parameters in E, at the same time (it should be noticed here that with X, 

we indicate the diagonal covariance matrix of the error components, and not the covariance matrix 

of the observed variables). However, computationally it has the disadvantage that we may have to 
deal with a huge covariance matrix as input for LISREL (e.g. see Example 1 in the sequel, in which 

more than 100 dummy variables are considered as columns of X). Moreover, it is a questionable 

action to compute covariances from dummy variables coded by zeros and ones, containing possibly 

very small proportions. It will be questionable even when these dummy variables are being 

preprocessed, by estimating tetrachoric correlations under the assumption of normality of an 
underlying unmeasured continuous variable. 

A second way of dealing with our model in LISREL, is treating it as a multi-sample covariance 

analysis. In that way the (product) matrix XAB defines a design matrix dividing the sample in a 

number of subsamples. This design matrix is partially unknown, because the columns of X that 

code the groups are weighted by the parameters contained in A and B. These parameters can not be 

estimated in such multi-sample analysis, hence it will only give an approximation of the setup 

provided by our model, and only as far as the elements of X are concerned. Another disadvantage 
is that one will be confronted with a large number of possibly small, unstable subsamples. One may 
conclude that this approach is not very attractive. 

A third approach could be to perform a LISREL analysis upon the residual covariances based on 

a least squares solution for A and B. This is not equivalent to our full information maximum 
likelihood procedure, but resembles a restricted maximum likelihood procedure. 

The alternative ways of dealing with our fixed factor model in LISREL (or similar programs) 
mentioned above, are treated in more detail in Van der Leeden (1990). It seems to us that the third 
approach is the most attractive. 
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6 . Testing hypotheses 

Obviously, it would be desirable to have the possibility of testing hypotheses about different 

models and to have some measure of the goodness-of-fit. Tests we could use are so-called 

likelihood-ratio tests. These are defined as follows. Suppose we want to test the null hypothesis Hq 
: 9 s Gq against the alternative hypothesis Hj : 0 e 0], where Gq, G] cz fl, the whole parameter 

space, and Gq and 0! are disjoint. Most of the time it holds that O = 0O + 0, In those cases we 

may also write Hj : 0 e Q - 0O, which means that no specific alternative hypothesis is considered. 

Now considering the value L(0O) of the likelihood function maximized under H0, and the value 

L(f2) of the likelihood function maximized over the whole parameter space Q, the likelihood-ratio 
is defined as 

[18] X = L(0o)/L(Q) 

Because Gq c fl, L(0q) < L(f2) and so 0 < A. < 1. The value L(9o) is an indication of the 

likelihood that Hq is true', so if X is near 1, the null hypothesis is favored. If X is near 0, other 

parameter values than those restricted by H0 are more likely and H0 is not tenable. Based on this X 

a critical region can be constructed, and a likelihood-ratio test is defined. Wald (1943) showed that, 
for large sample sizes, -2 log X is chi-square distributed with degrees of freedom equal to the 

number of independent parameters estimated in £2, minus the number of independent parameters 
estimated in G0. So, it is possible to have a so-called most powerful test. 

The likelihood-ratio test formulated without a specific alternative hypothesis, is able to test the 
goodness-of-fit of a particular model with 9 = Gq. To maximize the likelihood function over £2, 

requires the formulation of a so-called null model or fully saturated model which can be derived by 
letting all parameters unconstrained. 

In our case however, specifying an unconstrained model, causes several problems. It requires a 
matrix X which is square (order N xN) and of full column rank, and at the same time, a matrix E 

which is completely free. If X is square and of full rank, a special case would be if X = 1^, each 

individual observation has its own set of model parameters. In that case, however, the likelihood 

function is unbounded and ML estimates do not exist. So, testing against a model with X being 
made 'almost' lN, or with X being completed with random columns until 'almost' order (N x N) 

with full column rank, does not seem to accomplish a suitable null model. Besides, this solutions 
may result in severe computational problems. 

Testing against a model with a free error covariance matrix X, which is not a problem in 

particular and perhaps the most realistic idea, will only provide a test of a specific covariance 

structure of X. It will not gain insight into the fit of a particular model as a whole. In that case, we 

will not have the possibility of testing the model constraints imposed by AB, i.e. the rank 
restrictions, against an absolute null model. 

Clearly, a suitable null model is not easily formulated and a proper test of the goodness-of-fit of 

a particular model is not available. However, what we can do using likelihood-ratio tests, is 

creating a model-hierarchy of nested models and test these various models against each other, to 

establish which model is the most appropriate. In that way we consider null hypothesis H0 : 0 s 

Gq, against alternative hypotheses of the form H, : 0 e 0!, where 0O, G, cz £2 and 0O and 0, are 
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disjoint, but where it holds that Cl * 0O + O,. So the model under Hj is conceived as some implicit 

null model and likelihood-ratio tests can be constructed in a similar way as described above. 

Nested models can be created by adding columns to X, or by choosing different rank 

restrictions. For instance, we can add columns with variables defining interactions of variables 
already conained in X. Choosing a larger s gives a solution with more factors. Relaxing the rank 

restrictions will allow a larger number of linear combinations of original predictor variables to act as 

predictors, and so on. Applying likelihood-ratio tests, we can decide if the addition of parameters in 

these ways provides for a more suitable model. In our illustrations we will make use of such model- 

hierarchy. 
Wald statistics (cf. Buse, 1982), which could provide an alternative way of testing, are not 

applicable in our model. Using Wald tests one is able to evaluate hypotheses of the kind whether 

certain parameters can be constrained to zero, instead of letting them unconstrained during 

estimation. In our case, however, testing such hypotheses is not very useful for two reasons. First, 

since we consider a factor model, the error covariance matrix X is restricted to be diagonal, whereas 

its elements are unrestricted. Hence, we are not interested in constraint (or zero) diagonal elements 

of X, and we are never considering any unconstraint off-diagonal elements of X. Second, in our 

model, the other set of parameters in matrices A and B is meant to be unconstrained at any time. 

We do not have the possibility to impose constraints on these parameters, except for the rank 
restriction. This restriction, however, is not accomplished by the estimation of model parameters, 

but chosen by the user. 

7 . Relations with other models 

The general linear model in Equation 4 can be considered defining a broad class of multivariate 

analysis techniques. The fixed factor model discussed in this paper is formulated as a submodel of 

this class. For our purposes, the residual covariance matrix X is restricted to be diagonal, which 
results from the assumption of mutually uncorrelated uniquenesses, one of the basic assumptions in 

factor analysis. The introduction of the fixed matrix X, which in general solves the problem of the 

unbounded likelihood, can be interpreted as a restriction on the factor scores, causing (small) 

groups of individuals to have the same set of factor scores. However, manipulating X and/or 

structuring X in different ways, results in a variety of other model interpretations, which we will 

briefly summarize in this section. A comprehensive discussion of these submodels, including their 

consequences for parameter estimation is given in Van der Leeden (1990). 

If X is restricted as X = al, unknown, diagonal but with equal elements, the technique is 
equivalent to redundancy analysis (cf. Van den Wollenberg, 1977; Israels, 1987). This restriction is 

a special case of the general structure X = oX0, where a is unknown and X0 is a known matrix, 

which states that X is proportional to X0 with respect to a parameter a. For instance, Gleser (1981) 

and Kelly (1984) have studied multivariate 'errors-in-variables’ regression models with 

(non)homogeneous error variances, that incorporate this restriction. Here, there is also an 

interesting relationship with applications to longitudinal data. For instance, X could handle a serial 

correlation problem arising from, say, a Markov process, in which X0 is completely defined by the 

Markov parameter, i.e. X0 is proportional to the unknown, homogeneous error variance a (cf. 
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Intriligator, 1978). We could also consider a block-diagonal Z. or specify certain patterns of free 

and fixed elements in the error covariances. 

If it is assumed that Z is completely free and unknown, the technique relates to canonical 

correlation analysis. For instance, Tso (1981) and Izenman (1975) studied reduced rank regression 

models under this assumption and stipulated this relationship. If the rank of XA is restricted to one, 

we have a version of the so-called MIMIC model. MIMIC with an unconstrained Z has been 

discussed by Hauser and Goldberger (1971). Bagozzi, Fornell and Larcker (1981) discuss the 
relationship between the canonical correlation model and MIMIC within the framework of linear 

structural relations models. 

A special kind of models emerge if Z is completely known. Such models are considered for 
instance, in econometrics (cf. Tintner, 1946, 1952; Geary, 1948 and Malinvaud, 1964). These 

authors study ’errors-in-variables' models to describe economic systems, where in some cases the 

variances of the all disturbances appear to be known. 

In an earlier section of this paper, we have mentioned some possible choices for X. Especially 

we have emphasized the interpretation of X as a design matrix. Also numerical variables could be 

collected in the columns X. Different choices for X, combined with certain structures of Z, again 

yield other model interpretations and applications. For instance, if X consists of only one column 

containing the scores on a categorical variable, and Z is unconstrained, we have a model similar to 

discriminant analysis. If X contains a set of predictor variables and we are studying a structural 

relations model fitted on 'meaningful' residual covariances in Z, we have a version of covariance 

analysis. In that case, Z is interpreted as the covariance matrix of the variables in Y, adjusted for 

the effects of the x-variables. And so on. 

8. Example 1 : STIMEZO data 

In this section we will illustrate our fixed factor model with a real data example. The data for this 

illustration come from a survey, held in 1974, among 575 respondents (see Veenhoven and 

Hentenaar, 1975). We will call them STIMEZO data. In this survey, people were asked to give 

their opinion with respect to statements about several controversial issues, such as abortion, capital 

punishment, euthanasia, etc. Also some background information about the respondents was 

recorded. We analyzed data obtained from 535 respondents, that contained no missing values. The 

variables we have chosen for our analysis, are described in Table 1. 

We will analyze the variables concerning capital punishment (CP) and abortion (AB) with the 

fixed factor model. Previous knowledge about the data made us decide to take for X a design 

matrix constructed from the background variables REL, POL and EDU. The categories of these 

variables were coded with dummy variables, i.e. the columns of X contain ones and zeros. Also 

several interaction variables were calculated and added as dummy variables to X. 

Given the set of CP and AB variables, we will have to determine which model is appropriate to 

find factors from the columns of X, giving a satisfactory explanation of the interrelations among the 

CP and AB variables. For instance, one can think of models with or without interactions, 
incorporating less than three background variables, etc. 
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Table 1. Description of the variables in the analysis 

- Three statements about CAPITAL PUNISHMENT 

CPI Taking hostages should be punishable by death. 
CP2 Murder should be punished by death. 
CP3 In times of war killing people is justifiable. 

- Four statements about ABORTION 

AB1 It is the woman's right to have an abortion if she wants it. 
AB2 Medical prctitioners who perform abortion are not better than murderers. 
AB3 People who agree with abortion have little respect for life. 
AB4 Abortion is justifiable under no circumstances. 

The previous statements have the response from (1) = agree completely to (5) = disagree completely. 
The responses of AB1 are reordered, in order to get a positive correlation with AB1, AB2 and AB3. 

- Three BACKGROUND variables 

REL Religion, with categories 
PRO (1) Protestant 
REF (2) Reformed 
RC (3) Roman Catholic 
NON (4) None 

POL Political preference, with categories 
LEF (1) Left 
DEN (2) Denomination 
LIB (3) Liberal 
RI (4) Right 
NON (5) None 

EDU Educational level, with categories 
A (1) LO, VGLO (*) 
B (2) ULO 
C (3) VHMO 
D (4) Professional training or university 

(*) LO, VGLO, ULO and VHMO are abbreviations of typical Dutch schooltypes. In our opinion it 
is therefore irrelevant to translate them. The four categoriesof EDU range from elementary school to 
university. They are denoted by A, B, C and D, with D indicating the highest level. 

By manipulation of the design matrix, a 'model-hierarchy' was studied. The results are summarized 

in Table 2, in which a notation is used that is custom in hierarchical loglinear modeling. We have 

indicated the variables REL, POL and EDU, with [1], [2] and [3] respectively. For instance, a 
model which incorporates POL and EDU and a first-order interaction between both variables, is 

denoted by [23], and so on (cf. Fienberg, 1980). For each model in this hierarchy, Table 2 gives 

which interactions are involved, the -2 log L values and the total number of parameters to be 

estimated. 
As we have already explained in a previous section, we can decide if one model is more 

appropriate than another in the hierarchy of nested models, by evaluating the difference between the 
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Table 2. -2 log L values and the lolal number of 
parameters to be estimated for various factor 
models as applied to the data of Table 1; 
REL=[1], POL=[2] and EDU=[3] 

model abbreviation -2 log L # parameters 

[1] 
[2] 

[3] 
[1][2] 

[121 
[1] [3] 
[13] 
[2] [3] 
[23] 
[1][2][3] 
[12][13][23] 
[123] 

11956.85 23 
11566.32 25 
12343.65 23 
11457.04 31 
11418.66 53 
11808.98 29 
11667.78 47 
11461.90 31 
11363.41 53 
11348.83 37 
11175.35 99 
10989.22 141 

corresponding -2 log L values. Under the assumption of normality, this difference is chi-square 
distributed with degrees of freedom equal to the difference between the number of parameters to be 

estimated undereach model. From Table 2, it appears that all %2 values, based on the difference 

between the last model and the other, less inclusive, models are significant. So, taking for X all 
background variables and adding all interactions, is a meaningful thing to do. Thus, in the sequel, 

we will consider the most comprehensive model described in Table 2. 

In Table 3, the varimax rotated factor matrix of the two factor solution, corresponding to model 

[123] is presented. This means that for this solution, we have restricted the rank of X to be equal to 

two, i.e. our algorithm has found two optimal linear combinations of the columns of X, which will 

account for the observed interrelations among the CP and AB variables. 

Table 3. Varimax related factor loadings (covariances) 
for the two factor solution for the variables 
concerning capital punishment (CP) and 
abortion (AB) 

variables FI F2 

CPI .066 -.662 
CP2 .007 -.644 
CP3 .200 -.228 
AB1 .776 .098 
AB2 .648 -.166 
AB3 .881 -.122 
AB4 .719 -.164 

From Table 3, it becomes clear that the four abortion variables are well explained by the first factor, 
while the second factor deals with capital punishment. It appears that the solution of model [123] 

explains 22.9% of the total observed variance. The variable CP3 does not fit so well in the solution. 
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An explanation for this fact could be that ’killing people in times of war' is conceived by the 
respondents as a somewhat different issue than punishing people by death for some committed 

crime. 
In the preceding section, it was explained that the linear restrictions which arise from the 

premultiplication with X, cause the sample to be subdivided into as many groups as there are 

different rows in X.This grouping can be attractive for interpretation. In this case, combining the 

three background variables, yield a 4 x 5 x 4 three-dimensional array. Thus, the individuals could 

be subdivided into eighty different groups. However, not all combinations really existed in the data. 

After the removing of empty cells, 63 combinations of the categories of REL, POL and EDU were 

left for interpretation. Speaking in terms of the analysis of variance, we have main effects, as well 

as first and second order interactions. 

The factor score estimates for individuals in the same group are equal. One way to interpret 

these scores is to make plots with the 63 groups. A plot with all 63 points however, would be 
rather complex. For instance, one can find four different points for each educational level together 

with the combination Reformed/Right and this will probably make it obscure to see which effects 

really exist. Therefore, to simplify the interpretation, we have plotted the scores corresponding to 

the centroids of the categories of each background variable. For instance, the combinations just 

mentioned are then reduced to one point, Reformed/Right, in the plot where all categories of the 

variable EDU have been taken together. In fact, by doing so, the interaction effect of that variable is 

reduced. For each pair of background variables, the centroids over the remaining third variable are 

plotted in Figure 1, 2 and 3. 

As we have already described, one can identify two factors: the first factor deals with abortion, 

the second with capital punishment. To interpret the first factor, we consider Figure 1. 

Figure 1, the plot of the centroids over educational categories, shows, on the first dimension, 

points which projections can be ordered from 'very religious’ (Reformed, Protestant) and political 

'right', through religious and 'no political preference', towards non-religious and political 'left' or 
'liberal'. This is also illustrated in Table 4, in which the mean scores on the abortion variables and 

the scores on the first factor are given for each group defined by a combination of REL and POL. In 

this table a high score on the abortion variables indicates a pro-abortion opinion. 

Table 4. Mean scores on the abortion variables, scores on the first factor and frequencies 

RI DEN NON LEF LIB 

1.57 3.08 
REF -2.64 -.87 

11 33 

1.75 2.77 
PRO -2.55 -1.25 

5 28 

2.75 2.76 
RC -1.39 -1.26 

1 60 

4.88 
NON - 1.37 

- 2 

3.11 3.25 3.25 
-.86 -.65 -.76 

7 4 5 

3.46 3.73 3.90 
-.25 .11 .31 
24 31 12 

3.64 3.95 4.02 
-.08 .33 .56 
46 31 26 

4.14 4.34 4.52 
.65 .82 1.04 
65 102 42 
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From Table 4, it is evident that the mean scores for all groups defined by these two background 
variables and the corresponding factor scores on the first factor, can be ordered almost perfectly in a 

double monotone way. It is also possible to make an almost perfect monotone ordering of these 

scores over all cells. These facts support the conclusion that on the first factor, at the left side of the 

plot in Figure 1, one finds individuals who have a negative opinion towards abortion, are politically 

at the'right' and religious. At the right side of the plot, one finds individuals who have a positive 

opinion towards abortion, are politically at the 'left' or 'liberal' and non-religious. 

1 - 

REF/RI 

RC/RI 

PRO/DEN 

PRC 

PRO/NON. 

:^EF RC/LIB 

" NON/NON 
ilRO/DEN " 

NON/UB 

-2 - 

PRO/RI REF/DEN 
RC/N( )N r RC/LEF 

RC/DEN ■ 
REF/NON 

REF/LEF 
■ 

REF/LIB 

NON/LEF 

NON/DEN 

"1- 
2 3 

factor 1 

Figure 1. Centroids for the categories of the variable educational level (EDU); 
combinations of religion (REL) and political preference (POL) 

To interpret the second factor, we consider Figure 2 and 3. From these figures it becomes clear that 

the educational level is most important to the second factor. One can see that for both background 

variables POL and REL, the centroid points are roughly ordered from low educational level at the 

top, towards high educational level at the bottom of the plot. On the contrary, the corresponding 

categories of the other variables have no clear ordering on the second dimension. It appears that 



96 

2 - 

RI/A 

RI/B 
DEN/A NON/A 

UB/A 

■ LEF/A 

UB/^ NON/B 
_LEF/B 

-2 - 

DEN/B NON/D 

LIB/D 

LIB/C 

NON/C 

DEN/C 
■ ■ 

DEN/D 
LEF/C 

LEF/D 

RI/D 

factor 1 

Figure 2. Centroids for the categories of the variable religion (REL); 
combinations of political preference (POL) and educational level (EDU) 

people with a higher educational level are much more against capital punishment than those with a 
lower educational level. It also appears that the centroid points of Figure 2 and 3 can only be 

ordered over all cells according to the mean score on the CP variables. Such ordering will be less 

perfect than the one on the abortion factor. Certainly, a double monotone ordering cannot be 
accomplished. 

The horizontal spread of the points in Figure 2 and 3 can be explained by an interaction with 

REL and POL. Roughly, one finds again individuals who are religious and political 'right' at the 
left side of these plots, versus individuals who are non-religious and political 'left' or 'liberal' at the 
right side. 

Concluding one can say that on the second dimension, that is, on the second factor, at the top of 

the plot one finds individuals with a low educational level who favour capital punishment, while at 

the bottom of the plot, individuals are located with a high educational level who have a strong 
negative opinion towards capital punishment. 
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Figure 3. Centroids for the categories of the variable political preference (POL); 
combinations of religion (REL) and educational level (EDU). 

9. Example 2 : SUICIDE data 

For a second example serving to illustrate our fixed factor model, data have been analyzed collected 

with a 63-item suicide-attitude questionnaire. This questionnaire has been constructed and used by 

Diekstra and Kerkhof in a large-scale study on attitudes towards suicide (Diekstra & Kerkhof, 

1989). The data we have used are the results of the administration of this questionnaire in 1975 to a 

sample from the population of Nijmegen, a Dutch, medium size town. We have called them 

SUICIDE data. In total, the sample consisted of 712 subjects. After removing the respondents with 
missing data, 545 subjects were left for our analysis. 

We have analyzed 19 attitude scales that Diekstra and Kerkhof constructed from the original 63 

items. Each scale is recoded to 5 categories. The scales combine so-called ’referents' and 'attitude- 
components'. The theory underlying these terms comes from the social learning theory of suicidal 

behavior (cf. Diekstra, 1985). In this theory, it is stated that suicidal behavior is chosen and goal 

directed. Whereas the suicidal person may consider suicide the only way left to solve a problem, the 
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Table 5. Description of the variables in the analysis 

Nineteen attitude scales with respect to attitudes towards SUICIDE, recoded to five- 
point scales, a high score indicating a tolerant attitude towards suicide. 

AFFS affective-self 
AFFB affective-beloved 
AFFP affective-people 
INSS instrumental-self 
INSB instrumental-beloved 
INSP instrumental-people 
CONS consequences-self 
CONP consequences-people 
RIS right to-self 
RIS right to-people 

Three BACKGROUND variables 

ABNS abnormality-self 
ABNB abnormality-beloved 
ABNP abnormality-people 
FYSS fysical-self 
FYSB fysical-beloved 
FYSP fysical-people 
SOCS social-self 
SOCB social-beloved 
SOCP social-people 

AGE Age as a numerical variable, ranging from 16 to 71 years 

EDU Educational level, with categories 
A (1) LO(*) 
B (2) LBO, MAVO 
C (3) MBO, HA VO 
D (4) HBO 
E (5) University 

BO Membership of broadcasting organization, with categories 
NON (1) None 
KRO (2) KRO (**) 
VARA (3) VARA 
AVRO (4) AVRO 
NCRV (5) NCRV 
VPRO (6) VPRO 
EO (7) EO 
TROS (8) TROS 

(*) As we have already mentioned concerning the STIMEZO example, these categories are 
not translated. The five categories range from elementary school to university. 
(**) It is also irrelevant to translate these categories. If membership is considered to be an 
indicator for political preference, one can say that members of the religious KRO, NCRV and 
EO will favor parties ranging from 'centre' (KRO) to the Right (NCRV, EO). AVRO and 
TROS can be associated with the Liberal parties and members of the socialistically oriented 
VARA and modem VPRO will favor parties of the Left. 

consequences of this behavior however, may be very harmful for close relatives or other persons in 

the direct or more wider surroundings. This implies that people may differ in their opinions 
concerning suicide, depending upon whether the supposed suicidal person would be the respondent 

him -or herself, or someone else, e.g. their most beloved or people in general. It is this 

differentiation that is indicated by the term ’referents'. As 'attitude-components' one can distinguish 

between affective, cognitive and instrumental components. This so-called three components model 

of attitude is well known in social psychology (see e.g. Schuman and Johnson, 1976). 
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An example of a scale that is considered to be cognitive, is the question concerning 'the right to 

commit suidide'. Combining this scale with the 'referents' yields the following three scales: 'Do 

you think / you / your most beloved / people in general / have the right to commit suicide?', which 
must be scored 'always, mostly, sometimes, mostly not or never'. 

In the sequel we will denote the scales by abbreviations such as 'affective-beloved' (AFFB), 

'instrumental-self (INSS), 'right to-people' (RIP), etc. It should be noted that not all possible 

combinations of 'referents' and 'attitude-components' are included. According to Diekstra and 

Kerkhof these missing combinations are neither possible nor meaningful, given the contents of the 

items. For further details concerning this questionnaire and the underlying theory we refer to 
Diekstra and Kerkhof (1989). 

Apart from the 19 scales, we have also used for this illustration the background variables age 
(AGE), educational level (EDU) and membership of a broadcasting organization (BO). In the Dutch 

broadcasting system a number of broadcasting organizations or 'unions' operate at the same time. 
Each of these unions is having her own identity and people can obtain membership of them. 

Because of this identy, membership of a certain broadcasting union can be considered an indicator 

of political preference. In Table 5 a brief description is given of the attitude scales and the 
background variables. 

We have analyzed the 19 scales with our fixed factor model, constmcting the factors from a 

design matrix X, containing the variables AGE, EDU and BO. What distinguishes this example 

from the previous one, is that AGE is collected in X as a numerical variable, that is, as one column. 

Also the second power of this variable is added. In this way we can fit the factor scores with a 

polynomial of second degree. Analyses using a design matrix containing the third power of the 

variable AGE, were also carried out, but not reported here. Although, according to the likelihood- 

ratio tests, the addition of this variable appeared to be a significant contribution, the results of these 

analyses appeared to be rather unstable. It was observed that the polynomials of third degree, 
describing the relationship between AGE and the factor scores, were too much determined by 

outliers, i.e. subjects showing extreme responses. Interpretation of these curves would therefore be 
very unreliable. 

As in the first example, a model-hierarchy was studied. Various two-factor models were applied 

to the data in order to establish which model would be the most appropriate. According to the 

different likelihood-ratio tests, it appeared (again) that the most comprehensive model [1234], i.e. 

the model incorporating all interactions, was most suitable. In Table 6, the various models from this 
hierarchy are summarized. 

In the sequel, we will focus upon the interaction between AGE and the other background 

variables, and the square relationship between factor scores and AGE, defined by the variable 

AGE2. In order to stress the importance of the other background variables EDU and BO and their 

interaction with AGE for factor construction, both factor matrices corresponding to the solutions for 

model [12] and [1234] are given in Table 7. It should be noted that the factor loadings in this table 

are not varimax rotated, because it appeared that such rotation did not result in improved 

interpretation of both models. Instead, we chose to maximize the loadings on the first factor. 
Clearly, the factor loadings in Table 7 show that the addition to X, of the variables EDU and BO 

and their interactions with the variable AGE, results in a more convincing model. The overall 

loadings of model [12] are much lower compared to those of model [1234], In fact, for model [12] 
one can hardly speak of the existence of a second factor. The improvements attained by model 
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Table 6. -2 log L values and the total number of 
parameters to be estimated for some factor 
models applied to the data of Table 5; 
AGE=[1], AGE2=[2] (*), EDU=[3] and BO=[4] 

model abbreviation -2 log L # parameters 

[12] 
[3] 
[4] 
[11(3] 
[12][3] 
[131 
[123] 
[1][4] 
[12][4] 
[141 
[124] 
[3][4] 
[34] 
[1][3][4] 
[12] [3][4] 
[13] [14][34] 
[123][124][34] 
[134] 
[1234] 

33316.38 
33488.73 
33262.71 
33086.78 
33056.59 
33054.80 
32965.47 
33071.00 
33067.90 
33042.71 
32998.50 
33085.57 
32975.77 
32902.99 
32881.50 
32725.43 
32592.62 
32524.34 
32286.49 

57 
61 
67 
63 
65 
71 
81 
69 
71 
83 
99 
75 

113 
77 
79 

137 
161 
175 
233 

(*) AGE2 indicates the second power of the variable AGE 

Table 7. Factor loadings (covariances) for the two-factor solutions 
concerning the models [12] and [1234] 

[12] 

variables FI F2 
[1234] 

FI F2 

AFFS .347 -.041 
AFFB .319 -.017 
AFFP .184 -.092 
ABNS .334 .042 
ABNB .198 -.082 
ABNP .271 .046 
CONS .258 .033 
CONP .240 .132 
RIS .169 -.022 
RIP .348 .075 
INSS .124 .068 
INSB .056 .064 
INSP .237 .106 
FYSS .385 -.025 
FYSB .241 .020 
FYSP .020 -.028 
SOCS .391 -.178 
SOCB .365 -.051 
SOCP .148 .052 

.446 -.183 

.428 -.143 

.303 -.146 

.573 .234 

.314 .018 

.603 .061 

.477 .326 

.470 .373 

.289 .009 

.626 .096 

.208 -.044 

.259 .137 

.405 .051 

.577 -.212 

.450 -.225 

.249 -.065 

.364 -.420 

.362 -.375 

.194 -.053 
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[1234] are also reflected in the total amount of variance accounted for by the two factors, which 

increased from 4.8% for model [12] to 13.9% for model [1234], 

Interpretation of the solution for model [1234] yields a general first factor on which all variables 

have positive, moderately high loadings. The scales dealing with 'the right to commit suicide for 

people in general' and the question 'whether people who commit suicide are abnormal' have the 

highest loadings. The second factor roughly distinguishes between the affective, fysical and social 

components on the one hand and the abnormality-self and consequences components on the other 
hand. 

An interpretation of this kind corresponds with the findings of Diekstra and Kerkhof, who also 

reported a first factor dealing with general tolerance towards suicide. Our second factor can be 

imagined as making a distinction between emotional and rational arguments, which topics are 

separated into further detail in the remaining factors of the solution of Diekstra and Kerkhof. 

In terms of factor scores it means that a high score on the first factor indicates tolerance towards 
suicide. A high score on the second factor means more emphasis on rational rather then on 

emotional aspects concerning suicide. 

Another way to illustrate the importance of the interaction of the background variables is shown 

in Figure 4. In this plot the factor scores of the first factor of model [12] are plotted against the 

variable AGE, together with the centroids for all combinations of the categories of EDU and BO. 

That is, for each group of respondents, defined by a combination of categories of EDU and BO, the 

Figure 4. Factor scores of the first factor of model [12], plotted against AGE and 
centroids for all combinations of the categories of EDU and BO 
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Table 8. Contingency table of the variables EDU and BO 

BO 
NON KRO VARA AVRO NCRV VPRO EO TROS 

A 33 28 
B 79 43 

EDU C 49 31 
D 18 11 
E 6 3 

8 34 6 
17 46 10 
6 16 13 
2 7 1 
3 1 1 

1 
8 
7 
3 

19 128 
18 214 
10 135 

3 50 
1 18 

185 116 36 104 31 19 3 51 545 

mean age and mean factor score serve as the coordinates for a point in Figure 4. The number of 

respondents in each of these groups is shown in Table 8, which presents the contingency table of 

EDU and BO. 

In Figure 4, the existence of interaction is shown in two ways. First, if the categories of the 

variable BO are arranged along the curve, given one category of EDU and vice versa, one derives a 

different ordering for each combination. Second, for each group of respondents defined by a 

combination of categories of EDU and BO, the variable AGE is differently distributed. Looking at 

Table 8 however, it appears that we have to be somewhat careful about these arguments, because 

one observes really small groups, that might be very unstable. As far as interpretation is concerned, 
we can conclude that in general, over all groups of respondents described in the preceding, older 

individuals tend to be less tolerant towards suicide then the younger ones. 

For further interpretation, we will consider model [1234], Taking the small group sizes into 

account, we have focussed upon the eight largest groups of respondents as determined by 

combinations of the categories of EDU and BO. In Table 8, these groups are indicated by printing 

their frequencies in bold face numbers. For each factor, the factor scores, which will be on 

polynomials of second degree, are plotted against the values of the variable AGE. These plots are 
given in Figures 5 and 6. 

From Figures 5 and 6, it becomes clear that different relationships hold between factor scores 

and AGE for the different groups of repondents. For the first factor (Figure 5), we see that some 
polynomials show the general trend. For instance, for the groups C/NON and B/KRO, it holds that 

with increasing age, people tend to have lower factor scores, indicating less tolerance towards 

suicide. For some groups, such as C/KRO, we observe a slight increase in tolerance with 

increasing age but only to the age of approximately 35 years. In the remaining groups, e.g. 

B/AVRO and B/NON, there appears to be an increase in tolerance starting around an age of 
somewhere between 40 and 50 years. 

For the second factor (Figure 6), one can observe that in general, older people tend to have 

higher factor scores indicating a shift to a more rational attitude towards suicide, with increasing 

age. For some groups we see a change towards more emotional considerations. For instance, in the 
B/KRO group there is a switch somewhere around the age of 45 years. There is also one group, 

A/AVRO, in which the respondents show a more emotional view with increasing age up to 
approximately 45 years, and then shift to rational arguments. 
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Figure 5. Factor scores of the first factor of model [1234], plotted against AGE 
for the eight largest groups of respondents 

Figure 6. Factor scores of the second factor of model [1234], plotted against AGE 
for the eight largest groups of respondents 
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Although the curves in Figure 5 and 6 make it possible to do some interesting, speculative 

interpretation concerning attitudes towards suicide in relation with the variables AGE and BO, they 

mainly serve to illustrate the square relationship of factor scores and AGE in our factor model. 

More systematic information is gained by inspecting the mean factor scores for each occuring 

group, for both factors, which are given in Table 9 and 10. 

Table 9. Mean factor scores concerning tire first factor for all combinations of the 
variables EDU and BO 

BO 
NON KRO VARA AVRO NCRV VPRO HO TROS 

A -.01 -.95 -.42 -.76 -.51 -.- -.- -.29 
B .46 -.72 .38 -.23 -1.11 1.25 -.- -.37 

EDU C .86 -.08 .72 -.23 -.94 1.94 -.50 -.95 
D .87 -.50 -.40 -.21 .39 1.02 -.12 -.36 
E 2.20 .34 1.45 .46 1.87 3.64 -.- .44 

From Table 9 it becomes clear that higher educated people show more tolerance towards suicide. 

Also people who are not a member of any broadcasting organization at all, or have a membership of 

the more progressive VARA and VPRO, tend to be more tolerant. People having a lower 

educational level and people who favour religious and politically 'right winged' broadcasting 

organizations, NCRV and EO, or the liberally oriented TROS and AVRO appear to be more 

restrictive. 

Table 10. Mean factor scores concerning the second factor for all combinations of the 
variables EDU and BO 

BO 
NON KRO VARA AVRO NCRV VPRO EO TROS 

A -.87 -.52 -2.23 -.48 .31 -.- -.- -1.30 
B -.42 .24 1.17 -.23 1.00 .52 -.- .12 

EDU C .63 .58 1.08 .45 .27 .04 .71 -.38 
D .87 -.20 .14 1.54 2.49 .48 -3.00 -21 
E .71 -.15 1.31 1.90 1.76 .01 -.- -1.04 

Table 10 shows that for some broadcasting organizations, with increasing educational level there 
appears to be a shift from emotional to more rational points of view. The relationship between mean 

factor score and broadcasting organization does not seem to be very clear for the second factor. We 

have to realize however, that difficulties concerning the interpretation might occur, because this 

factor is less important then the first factor and because for several combinations of EDU and BO, 

we observe very small groups of respondents. So we have to be careful not to make our 
interpretation too excessive. 
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10. Summary and discussion 

Throughout the literature we can observe two basically different factor analysis models. Most 

popular is the random score model, in which the factors are considered random variables. The 

structural parameters of the model, loadings and uniquenesses, provide structural infomation of the 

data. Individual differences, translated in factor scores, can only be studied utilizing ad-hoc 

procedures (see e.g. McDonald and Burr, 1967). In fact, factor scores can never be estimated in the 

usual sense, because they are not incorporated as parameters in the random score model. 

Geometrically, this can be understood by realizing that the set of common and unique factors spans 

a higher dimensional space then the observed variables. This results in an indeterminacy of the 
common factors, because the only real way to estimate the factors would be to define a regression 

from the factors on the observed variables. However, whenever which set of basis vectors of the 

observed space will not be sufficient to describe the higher dimensional space that contains the 
factors (cf. Mulaik, 1972). 

An alternative model is the fixed score model, in which the factors are fixed quantities, i.e. 

additional, incidental parameters. These parameters can be used to study individual differences. 
However, assuming the factors to be fixed variables does not solve the indeterminacy of the factor 

scores. In fact, we may increase this problem because we are introducing more and more 

parameters. Indeed, the fixed score model is more complicated from a statistical point of view than 

the random score model and the ML method fails if it is applicated in the usual way. In some way, 
we have to impose restrictions on that parameters of the fixed score models. 

The method proposed in this paper is based on linear restrictions on the factor scores, 
formulating the model as a special case of a general reduced rank regression model. The factors are 

constructed as optimally found linear combinations of the variables contained in a known matrix, 

which could be interpreted as a design matrix. Which variables are to be collected in the columns of 

this matrix must be chosen by the user. One could think of categorical (background) variables, 

coded by dummy variables or just in raw form, observed numerical variables, and so on. 

Geometrically, our restrictions imply that the factors are in (a part of) the space spanned by the 

observed variables. Clearly this is the reason that our factors are measurable, although they are not 

directly observed, to use the terminology of Bentler (1980). In his view, our factors can better be 

called unmeasured, rather than latent variables, as is the correct designation of common factors in 

the random model. Therefore, one might have the opinion that our model is not defing a real factor 

model. However, because our factors are still not directly observed, we think this remains rather 

arbitrarily. During the development of the random model there have been models proposed in which 
the factors were also not real latent variables. For instance, in traditional image (factor) analysis 

(Guttman, 1953), the factors are defined as linear combinations of observed variables. Also the 

MIMIC model, mentioned earlier in this paper, is an example of a factor model with an unmeasured 
factor. 

In our opinion, it is more important to consider the usefulness of our model, rather than its 

philosophical aspects. In many behavioral research sitiations where factor analysis is applicated, the 
interest is in the interrelations among the variables, as well as in the individual differences. Like we 

have illustrated with the examples, to those cases, we think that the method proposed here can have 
a contribution. 

ontvangen 15-10-1992 
geaccepteerd 17- 4-1992 
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