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On the use of normal scores for ordinal and censored variables in PRELIS 

An expository note 

Anne Boomsma 

1. Introduction 

The purpose of this paper is to explain and exemplify the role of normal 

scores in the treatment of ordinal and censored variables in PRELIS. We 

largely follow the approach from the PRELIS manual, elaborate where 

necessary, and make corrections occasionally. We slightly depart from the 

PRELIS notation. Guidelines for further readings are provided. Right now, 

for general treatments of censored and truncated variables the reader is 

referred to Schneider (1986) and to Cohen (1991). 

2. Ordinal variables 

In the PRELIS manual Jbreskog & Sorbom (1988, p. l-5ff.) handle ordinal 

variables as follows. First, for ordinal random variables X, observations 

X = x are assumed to represent responses of subjects to a set of ordered 

categories. Next, for each ordinal variable X, it is assumed that there is 

an underlying continuous variable £, having a standard normal distribution 
2 

with mean p = 0 and variance a -= 1. Thus throughout, for ordinal variables 

f ~ N(0,1). Jbreskog (1991b, p. 1) notices that these underlying variables 

are not the same as latent variables in linear structural equation models. 

In general, the ordinal variable X has k categories. The statement X = i 

means that i is the realization of the random variable X, i.e. the observa¬ 

tion of X belongs to category i, i-1,2.k. Jbreskog & Sorbom (1988) 

stress that the actual values assigned to the categories of ordinal vari¬ 

ables are often arbitrary, or even irrelevant as long as the ordinal infor¬ 

mation is retained. It thus does not matter, as they put it, which values 

are assigned to the categories as long as low scores correspond to low-order 
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categories of X, which are associated with relatively small values of and 

high scores correspond to high-order categories of X associated with larger 

values of £. 

As an example, the relation between the observed ordinal variable X with 

k = 6 categories, and an underlying, latent normal variable £, is visualized 

in Figure 1, where parameters c_^, i—0,l,...,k, are so-called threshold 

values for the latent variable 
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Figure 1. The relationship between a latent normal variable £ and an asso¬ 

ciated, observed ordinal variable X. 

Any observation of the ordinal random variable X may fall in one and just 

one of the six different categories. Once more, the statement X - i primar¬ 

ily means that the observation belongs to category i. The observed variable 

X could take arbitrary values i-1,2.6 on an ordinal scale, but those 

values could, for whatever reason, as well be 10, 12, 16, 20, 40, and 100. 

In general the relationship between X and { is defined as 
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X = i if cil < ^ < ci , i-1,2,...,k , (1) 

with Cq - - «> < < C2 < ... < ^ - ®. Clearly, if the observed 

random variable X has k categories, there are k-1 unknown thresholds for the 

latent variable. It should be understood that equation (1) holds by assump¬ 

tion. It is precisely this type of relationship the researcher should have 

in mind, if he specifies the scale type of variables to be ordinal in 

PRELIS. At any time, he should also stand up for the plausibility of that 

model. In practice, this implies that it has to be reasonable to asssume 

that £ ~ N(0,1). 

In this respect the question may arise whether it is possible to perform a 

statistical test of the hypothesis £ - N(0,1), given a sample of ordinal 

observations , X2, X^, where N is the sample size. The answer is that 

this hypothesis cannot be falsified on the basis of a sample of observed 

category frequencies of X, because the normality assumption of f in the 

ordinal variable case imposes no real restriction on the distribution of the 

ordinal variable X. As will be shown later on, by definition there is never 

any discrepancy between the sample of ordinal data X^, X2, ..., X^ and this 

normality assumption, because it is always possible to estimate the k-1 

unknown threshold values c^, in such a way to assure a perfect correspon¬ 

dence between the sample data and the underlying standard normal variable f. 

However, consider for example the case of two ordinal variables X^ and X2, 

each with its own underlying variable and assuming bivariate normal¬ 

ity with correlation p(X^,X2); i.e. the case of polychoric correlation. It 

is then possible to construct a likelihood ratio test statistic that can be 

used to test the assumption of underlying bivariate normality (for details, 
2 

see Joreskog, 1991b). PRELIS gives the associated x -statistic to test such 

a model of bivariate normality (it also does so in the case of polyserial 

correlation, where one of the pair of variables is declared continuous). 

In conclusion: a univariate normality model cannot, but a bivariate nor¬ 

mality model can be falsified, when dealing with ordinal variables assuming 

underlying normal variables. 

In the ordinal variable case a new continuous (normal score) variable can 

be created, conditional upon an assumed underlying standard normal £. In 

Section 8 an outline is given on how to compute these normal scores. 
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3. Censored continuous variables 

Often researchers are dealing with continuous variables with a limited range 

of observed values. For example, the total score on a test consisting of 20 

dichotomous items lies within the inclusive range from 0 to 20. Now consider 

the case where the discriminating power of the test is too small for a 

specific population of examinees. Within the range 1 to 19, the scale is 

taken to be continuous; the observed scores are rounded to integers, and the 

roundings are supposed to be negligible. If the test is too easy, there will 

be many examinees who respond correctly to all 20 items. If the test is too 

difficult, there will be many subjects having all items wrong. In the first 

case the total score variable is said to be censored above; although many 

examinees have an observed score of 20, it is not likely that the abilities 

measured are the same for all these individuals. In the latter case the test 

is censored below; subjects having a test score of 0 are not supposed to 

have all the same ability. Other examples of censored variables can be found 

in Maddala (1983, Chapters 1 and 6). 

Variables may not only be censored above (sometimes the term ceiling 

effect is used), or below (floor effect), but also be doubly censored. The 

PRELIS program can deal adequately with these type of variables. 

A sample of observations of a continuous censored variable Z. , Z0.ZXT 
r 1 2 N 

is called a censored sample, where N is the sample size. 

Before giving a formal definition, both for singly and doubly censored 

variables, notice the following carefully. First of all, in PRELIS censored 

variables are supposed to be continuous, not ordinal, variables. Secondly, 

in all censored cases an observed random variable Z, which represents a 

latent random variable £, is considered. By assumption £ has a normal 
2 

distribution with unknown mean n and unknown variance a . Thus throughout 
2 

£ ~ N(/i,a ) for censored variables. Given the relationship between Z and £, 

as defined below, this assumption imposes a real constraint to the 

probability distribution of Z - £ on the range of observed values of Z. This 

implies that; within that range, there could very well be a discrepancy 

between the sample data Z^, Z^, •••, and the assumption of normality. 

The normality assumption for continuous censored variables is a strong 

one: it imposes a direct constraint to variable Z. In contrast, the 

normality assumption on £ in the ordinal variable case, as described in the 
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previous section, imposes no real restriction on the univariate distribution 

of the ordinal variable X. 

Three cases of censoring are described now. In each case the observed 

random variable Z, representing a latent, underlying random variable 
2 

f ~ N(/x,a ), is considered. 

a. Censored below. Above a lower threshold value B for £, variable Z is 

observed on an interval scale; above B it is assumed that Z reflects the 

latent variable £ accurately. Below B, the value Z = B is observed. In 

principle, the value of the threshold B is supposed to be known: it equals 

the smallest value of the observed variables Z^, .Z^ in a sample of 

size N (with high probability, unless N is small). Thus a variable Z that is 

censored from below (as determined by the threshold value B) is defined as 

Z = B if £ < B 

Z = £ if £ > B 

(2) 

It follows that for the observations Z «= B, all that is known is that the 

latent variable £ < B, i.e. Pr{Z = B) - Pr{f < B). 

b. Censored above. Below an upper threshold value A for £, variable Z is 

observed on an interval scale; below A it is assumed that Z reflects the 

latent variable £ accurately. Above A, the value Z = A is observed. Again, 

the value of the threshold A is supposed to be known: it equals the largest 

value of the observed variables Z, , Z„, .... Z... Thus a variable Z that is 

censored from above (as determined by the threshold value A) is defined as 

Z - f if £ < A 

Z - A if £ > A 

(3) 
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It follows that for the observations Z - A, all that is known is that the 

latent variable £ > A, i.e. Pr{Z - A) - Pr{£ > A}. 

c. Doubly censored. Between a lower threshold value B and an upper threshold 

value A, variable Z is observed on an interval scale; between B and A it is 

assumed that Z reflects the latent variable £ accurately. Below B the value 

Z = B, above A the value Z = A is observed. The values of the thresholds B 

and A are supposed to be known: they equal the smallest and the largest 

values, respectively, of the observed variables Z^, Z^. Thus a 

variable Z that is doubly censored (as determined by the threshold values B 

and A) is defined as 

Z = B if £ < B , 

Z = £ if B < £ < A , (4) 

Z = A if £ > A . 

4. Truncated variables 

In the literature (e.g. Johnson & Kotz, 1970a; Maddala, 1983) a distinction 

is made between censored and truncated variables. In PRELIS only censored 

variables are dealt with. The LISCOMP program (Muthen, 1988) explicitly 

distinguishes between censored and truncated variables, and handles both. 

The difference between both types of variables can be described as follows 

(cf. Maddala, 1983, Chapters 1 and 6). 

For censored variables no restriction is being laid on the range of the 
2 

population distribution of the latent variable £ ~ N(/*,a ), from which N 

observations are drawn. In practice, a random sample » •••• 

drawn from -«> < f < eo, thus from the entire range of In the censored 

variable case, for some observations it is only known whether or not they 

are above and/or below certain thresholds. 

For truncated variables, also consider the population distribution of the 

latent variable £. However, suppose that before a sample ^. •••, of 

size N is drawn, the distribution of £ is truncated from above at the point 
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say. This means chat no observations are drawn from £ > A. If the 

latent variable £ has a singly truncated normal distribution with upper 

truncation point A, all sample observations come from £ < A. Thus, if there 

is a restricted (or truncated) sampling range on the variable of interest we 

are dealing with a truncated variable. An example would be a sample drawn 

from children with an intelligence quotient smaller than 120, or a sample 

drawn from the male population within an age range between 21 and 40 years. 

In these examples observations outside the indicated range are not included 

in the sample, though the researcher wants to draw conclusions for a broader 

range of £. 

A sample of observed variables Z from a truncated distribution, 

Zl’ Z2.ZN' is called a truncated sample. A formal definition of a 

doubly truncated variable will be given now. 

Let the observed random variable Z represent a latent random variable 

£ - N(/i,<7 ). Variable Z is observed on an interval scale between a lower 

truncation point B and an upper truncation point A of £; between B and A it 

is assumed that Z reflects the latent variable £ accurately. Below B the 

variable Z is not observed at all, above A it is neither observed. In prin¬ 

ciple, the values of the truncation points B and A are known: they equal the 

smallest and the largest values of the observed variable Z, respectively. 

Thus a variable Z that is doubly truncated is defined as 

Z is not observed if £ < B , 

z“£ if B < £ < A 

Z is not observed if £ > A 

(5) 

where the lower and upper truncation points of the truncated normal dis¬ 

tribution are B and A, respectively. If B is replaced by -» in (5), the 

distribution is singly truncated from above. If A is replaced by » the 

distribution is singly truncated from below. Recall that Z is assumed to be 

a continuous variable. Therefore the equality signs in (5) are of no crucial 
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importance (cf. Muthen, 1988, p. 2-6); didactically, definition (5) has our 

preference. 

According to Maddala (1983, p. 5) in the econometric literature it is 

customary to use the terra truncated normal distribution to describe both the 

censored and the truncated variable case; it is uncommon to employ the term 

censored distribution. This is justifiable, because in the analysis of 

models for both types of variables properties of the truncated normal 

distribution play a role. The (standard) normal distribution and its 

truncated counterpart are defined explicitly in the following sections. 

From Johnson & Kotz (1970a, Section 6.4) it may be learned that probabil¬ 

ity calculations and maximum likelihood estimation methods for censored 

normal data are strongly based on order statistics. 

5. The standard normal distribution 

The standard normal cumulative distribution function (cdf) of a random 

variable Z is defined, for -« < z < «>, as 

$(z) Pr{Z < z} <Mt) dt - (2*) 
■1/2 ,-t2/2 dt (6) 

where <f>(z) , the standard normal probability density function (pdf) of a ran¬ 

dom variable Z, is thus defined as 

«Kz) 
d$(z) 
dz (2*) 

•1/2 72 
- eo < z < «° (7) 

Notice that in general for a normal random variable with mean n and variance 
2 

a , the distribution function $(z) is replaced by ^[(z - /i)/a], and the 

density function <f>(z) by a <£[(z - /i)/a] . 

The lower a-quantile of the standard normal distribution, z^, is implicit¬ 

ly defined as 
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f(za) - Pr{Z < za) - (a^)"172 f “ e't2/2 dt - a 
-oo 

(8) 

The inverse standard normal distribution function $ ^ is the inverse func¬ 

tion of (6). It follows that 

$ ^(a) - z (9) 

Because the standard normal density function is symmetric around z - 0, it 

holds that za “ "zl-a‘ Gi.ven a value of a the corresponding quantile 

(percentage point) z^ of the standard normal distribution function can be 

computed, and reversely given a value of zq the corresponding tail area a 

can be calculated. 

6. Truncated standard normal distributions 

A random variable Z has a doubly truncated standard normal distribution, 

with lower truncation point B and upper truncation point A, if its proba¬ 

bility density function is defined as 

= 0(z)/[«I»(A) - $(B)] , B < z < A (10) 

f(z)-0 , z<B and z > A 

where and $(z) are defined by (7) and (6), respectively. Notice that 

the constant [<I>(A) - $(B)] in the denominator of (10) is necessary to define 

a proper probability density function: the integral of the numerator <^(z) 

over the range B < z < A equals [3>(A) - $(B) ] . As can readily be seen from 
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the cumulative distribution function of the doubly truncated standard normal 

distribution, 

F(z|B < Z < A) - Pr{Z < z|B < Z < A) 

[4.(A) - 4>(B)f1 [ «(t) dt 
JB 

(ID 

- [$(z) - $(B)]/[$(A) - «(B)] , B < z < A 

the integral of (10) over the whole range B < z < A equals one, as required. 

Notice that (10) and (11) are defined for any value of B and A on the real 

line. If B is replaced by the standard normal distribution of Z is singly 

truncated from above; if A is replaced by «> it is singly truncated from be¬ 

low. The probabilities <f>(B) and 1 - $(A) are called the degrees of trunca¬ 

tion from below and above, respectively (Johnson & Kotz, 1970a, p. 81). 

7. The expected value of truncated normal variables 

Usually, the term normal scores refers to the expected values of the order 

statistics in a sample of size N from a standard normal distribution (cf. 

Kendall & Stuart, 1973, p. 504). Tables of those scores (for N=2,...,50) can 

be found in Owen (1962, p. 151ff.), for example. 

In the present context the normal scores are by definition the expected 

values of normal truncated variables within a specific range B < Z < A. 

Therefore, those expectations shall now be defined explicitly for doubly, 

and singly truncated variables, respectively. Before doing so for the 

truncated standard normal random variable Z in (10), first notice that the 

first order derivative of the standard normal density function, as defined 

by (7), can be expressed as 

d^(z) 
dz t (z) (12) 
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It then follows with (12) that the integral 

(2*) 
■1/2 

f t e"6 /2 dt - t ^(t) dt 
Jr Jr 

<*(t) 
-1 B 

4>m - ^(A) 

(13) 

a. Doubly truncated. Using (13) the expectation of the doubly truncated 

standard normal variable Z in (10), is by definition 

JI ,-i E(Z|B < Z < A) - t ^(t) [$(A) - 0(B)] dt 
1 B 

, -1 
[0(A) - 0(B)] " t 0(t) dt 

JB 
r 
J R 

(1A) 

[$(B) - 0(A)]/[0(A) - 0(B)] 

0(0 

BO A 

Figure 2. A latent, doubly truncated standard normal variable O and its 

associated, observed continuous variable Z. 
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In Figure 2 a picture is given of a latent, doubly truncated standard normal 

variable £ ~ N(0,1). The values <£(B) and <£(A) are the values of the standard 

normal density function at the lower and upper truncation points, respect¬ 

ively. The values of the standard normal distribution function $(B) and $(A) 

quantify the proportional area under the density curve below the lower and 

upper truncation point, respectively. 

The normal score E{f|B < f < A} can be interpreted as a weighted average 

of £ within the range between B and A, where (apart from a constant) the 

weight function is the probability density function . 

b. Truncated from below. If the standard normal variable Z is truncated from 

below, then B < Z; thus in (14) A - «>. The expectation of the standard 

normal variable Z truncated from below is 

B 

(15) 

= [4>W - <*(«)]/[*(«>) - *(B)] - <£(B)/[ 1 - S(B)] 

It follows that <£(B) > B[1 - $(B)]. Also, notice that in general the expec¬ 

tation of the standard normal variable truncated from below, as defined in 

(15), is the reciprocal of R(x) =- [1 - $(x)]/^(x), known as Mill's ratio 

(cf. Johnson & Kotz, 1970b, p. 278). 

c. Truncated from above. If the standard normal variable Z is truncated from 

above, then Z < A; thus in (14) B - -co. The expectation of the standard 

normal variable Z truncated from above is 

E{Z|Z < A} t ^(t) [4>(A) - $(-«.)]'1 dt 

(16) 

- [^(-“) - ^(A) ]/[$(A) - 4>(-o>)] - - ^(A)/$(A) 
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It follows that $(A) > -A$(A). 

2 
d. The general case of truncated Z — N(/i,a ) 

If the truncated variable Z has a normal distribution with a mean p * 0 
2 

and/or a variance o * l, in equations (14) through (16) Z, B, and A have to 

be substituted by (Z - n)/o, (B - n)/o, and (A - n)/o, respectively. 
2 

In general for Z ~ N(^,cr ), it then follows that 

E{ Z | B < Z < A} 
0( (B - n)/a) - 0( (A - /x)/g} 

M ^ ${(A - - ${(B - /i)/a} 
(17) 

E{Z|B < Z} 
0{ (B - /i)/a} 

M ^ 1 - 4( (B - n)/o) 
a (18) 

and 

E{ Z | Z < A) - /i 
^((A - /i)/g) 

$((A - 
(19) 

These expressions for the expectation of Z can also be derived directly, 

using the probability density function of the doubly truncated normal random 

variable Z, which is defined as 

g(z) - a 1(i((z - ^)/a)/[$((A - m)/M - $( (B - ^)/c’)] , B < z < A ; 

g(z)-0 , z<B and z > A 

(20) 

This is left as an exercise to the interested reader. 

In PRELIS the normal scores are of central importance in how to deal with 

ordinal variables and continuous censored variables. First the ordinal 

variable case, next the continuous censored variable case will be treated, 

each followed by an example using the PRELIS program. 
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8. Normal scores for ordinal variables 

Let N be the total number of observations of an ordinal variable X, and let 

n^ < N be the number of observations in category j of that variable, 

j=l,2,...,k. The cumulative proportion of observations in category 1 through 

category i is denoted as 

P. 
i 

i 

X n /N 
j-1 J 

i-0,1,2.k . (21) 

Obviously, Pq = 0 and P^. = 1. In order to compute normal scores, the unknown 

threshold values c^, i—1,2,...,k-l, in equation (1) have to be estimated 

first. This is done by taking the assumption into account that the under¬ 

lying variable f has a standard normal distribution. The thresholds c. are 
i 

estimated from the marginal, discrete distribution of the observed ordinal 

variable as 

^(P ) - 4.‘1( l n /N) 
j-1 J 

i=0,1,2,...,k (22) 

where the inverse standard normal distribution function is defined by 

(9). Under the assumption of standard normality of f the estimated 

thresholds are thus determined by the proportions of observations in the k 

categories of the ordinal variable. Obviously, the thresholds c^ and c^ do 

not have to be estimated from the sample of observations, because by 

definition Cq — and ck ~ co- (These values coincide with those given by 

(22) for i = 0, and i - k, respectively.) From (22) it follows that 

i 

$(ai) = Pi ” E ni/N ’ i-0,1,2.k . (23) 
j-1 J 

The probability that a standard normal variable takes on a value smaller 

than or equal the estimated threshold c^ is the cumulative proportion of 

observations in categories 1 through i. 
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Recall that by definition (1) an observation X belongs to category i (i.e. 

X « i) if f < c_ The normal score corresponding to an observation 

X -= i is now defined as the expected value of £ in the very same interval 

f < c„ It thus follows from (14) that 

zi “ < £ < c^} 

= [0(ci ;L) - ^(c.n/Wc.) - ‘I‘(ci_1)] , i-1,2.k 

(24) 

By using normal scores for ordinal variables all observations within a 

specific category are replaced by the expected value of an underlying 

variable f within a normal, estimated area. Thus, each observation X - i is 

replaced by the same normal score z^. 

Given (23), the denominator in (24) can be estimated as 

^(c.) *(ci_l) P. 
i pi-i 

i i-1 
“ 1 X ni - X n ]/N - n /N 

j-1 J j-1 J 

(25) 

i-1,2.k 

The normal score z. can thus be estimated as 
i 

zi - EdlCj^ < ? < 

- N/n^ , i-1,2.k 

(26) 

9. Normal scores for ordinal variables: An example 

An example of how to calculate normal scores with ordinal variables is taken 

from Joreskog & Sorbom (1988). The data, reproduced from page 1-20 of the 

PRELIS manual, are listed in Table 1. Missing data have the value -9. 
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Table 1. Twelve observations on four variables: DATA.EX9. 

CASENR VAR1 VAR2 VAR3 VAR4 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

1 3 -0.7 -0.4 
2 4 2.3 1.6 
3 3 1.2 1.7 
1 -9 -0.4 -0.3 
3 2 -1.2 -0.7 
2 1-9 1.2 
2 1 0.8 0.3 
3 3 1.6 1.5 
1 2 -0.9 -9 
1 4 -0.8 -0.8 
1 1 0.7 0.8 
2 2 1.1 1.3 

Suppose normal scores are needed for variable 2 of these sample data. The 

ordinal variable 2 has k « 4 categories; its number of non-missing observa¬ 

tions equals N - 11. The marginal frequencies of observations in each cate¬ 

gory and cumulative proportions are given in Table 2. 

Table 2. Estimated thresholds c. and normal scores z.. 
1 1 

marginal 

category i frequency n^ 

cumulative 

proportion 

upper normal 

threshold c. score z. 
1 1 

1 
2 
3 
4 

3 
3 
3 
2 

3/11 
6/11 
9/11 

11/11 

- 0.273 
- 0.545 
- 0.818 
- 1.000 

-0.605 
0.114 
0.908 

oo 

-1.218 
-0.235 
0.485 
1.452 

k - 4 N - 11 

Given the cumulative proportions , first the thresholds c^, , and c^ are 

estimated using (22). Recall that Cq — -«> and c^ — », by definition. 

Given the estimated thresholds c^, the normal scores can be estimated 

using (26). These estimates, presented in Table 2, are obtained as follows: 
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z1 - [^(Sq) - ^(£1)](ll/3) - [^(-») - ^(-0.605)](ll/3) 

- [0 - 0.332](ll/3) - -1.218; 

z2 - [0(ai) - ^(c^)1(11/3) - [^(-0.605) - ^(0.114)](11/3) 

- [0.332 - 0.3961(11/3) - -0.235; 

z3 
[^(S2) - <t>(Cy) ] (11/3) - [*(0.114) - *(0.908)1(11/3) 

[0.396 - 0.2641(11/3) - 0.485; 

[*(S3) - *(£4)](ll/2) - [*(0.908 - *(OT)](11/2) 

[0.264 - 0](11/2) - 1.452 . 

From this example it can be seen that the weighted mean of the normal scores 

equals 0. This always holds, as can be derived with (26). Thus for ordinal 

variables the weighted average of the normal scores equals 

k 

- 1 "jZj/N - 0 (27) 

The weighted estimated variance of the normal scores of variable 2 in the 

example equals 0.954 (these quantities are found in regular PRELIS output, 

as will be seen in Section 10). Because each observation in category i is 

replaced by the estimated normal score z^, this weighted variance, 

a2 

ab I n^AN-l) (28) 

is interpreted by Joreskog & Sorbom (1988, p. 1-22) as the between-category 

variance of the latent variable (Recall that the categories of the latent 

variable are determined by the threshold estimates c^.) By assumption the 



36 

total variance a of £ equals 1. Therefore, the within-category variance of 
a2 *2 a2 f is estimated as a = 1 - a, . In our example a = 1 - 0.954 - 0.046. 
w b r w 

In the PRELIS manual Joreskog & Sorbom (1988, p. 1-7) suggest that "if 

required, the normal scores can be scaled so that the weighted variance is 

1". This can be done, for example, after a PRELIS analysis, simply by di¬ 

viding each of the estimated normal scores by defined through (28). 

10. Checking the example of normal scores for ordinal variables with PRELIS 

The results from the previous example could be checked by using the PRELIS 

program (here 386-PRELIS, version 1.20). The data from Table 1 were stored 

on file DATA.EX9. First, for comparative reasons, all variables are treated 

as continuous variables (Case a). Next, both variables 1 and 2 are consider¬ 

ed to be of ordinal type (Case b). 

From the output of Case b it can be seen what the estimated normal scores 

are that replace the original ordinal scores of variables 1 and 2. Effects 

on the estimated covariance matrix S can be observed clearly; for conveni¬ 

ence of comparison the corresponding correlation matrix R is also shown. 

(The product-moment correlations were obtained by the output instruction 

OU MA=KM.) Notice carefully that the pairwise deletion option was used. 

Therefore, the estimated correlation coefficients and covariances are based 

on n„ pairwise non-missing data, whereas the estimated variances and stan¬ 

dard deviations are based on n^ non-missing data! (See the effective sample 

sizes in the output from Case a, and Joreskog & Sorbom (1988, p. 1-22).) 

Case a: Continuous variables VAR1-VAR4 

INPUT 
Case a. Normal scores in PRELIS 

Continuous variables VAR1-VAR4 
DA NI-5 NOBS-12 MISSING--9 TREATMENT-PAIRWISE 
RAW_DATA_FROM FILE - DATA.EX9 
LABELS 
CASENR VAR1 VAR2 VAR3 VAR4 
CONTINUOUS VAR1-VAR4 
SD CASENR 
OUTPUT MA=CM 
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OUTPUT 
DISTRIBUTION OF MISSING VALUES 
TOTAL SAMPLE SIZE - 12 
NUMBER OF MISSING VALUES 0 1 

NUMBER OF CASES 9 3 

EFFECTIVE SAMPLE SIZES 
UNIVARIATE (IN DIAGONAL) AND PAIRWISE BIVARIATE (OFF DIAGONAL) 
TOTAL SAMPLE SIZE - 12 

VAR1 VAR2 VAR3 VAR4 

VAR1 12 
VAR2 11 
VAR3 11 
VAR4 11 

11 
10 11 
10 10 11 

PERCENTAGE OF MISSING VALUES 
UNIVARIATE (IN DIAGONAL) AND PAIRWISE BIVARIATE (OFF DIAGONAL) 
TOTAL SAMPLE SIZE - 12 

VAR1 VAR2 VAR3 VAR4 

VAR1 
VAR2 
VAR3 
VAR4 

0.00 
8.33 
8.33 
8.33 

8.33 
16.67 
16.67 

8.33 
16.67 8.33 

UNIVARIATE SUMMARY STATISTICS FOR CONTINUOUS VARIABLES 
VARIABLE MEAN ST. DEV. SKEWNESS KURTOSIS MINIMUM FREQ. 

VAR1 1.833 
VAR2 2.364 
VAR3 0.336 
VAR4 0.564 

0.835 0.354 
1.120 0.155 
1.180 0.173 
0.972 -0.271 

-0.994 1.000 
-0.771 1.000 
-0.894 -1.200 
-1.213 -0.800 

MAXIMUM FREQ. 

5 3.000 3 
3 4.000 2 
1 2.300 1 
1 1.700 1 

ESTIMATED COVARIANCE (LOWER TRIANGULAR) 
AND CORRELATION MATRIX (UPPER TRIANGULAR) 

VAR1 VAR2 VAR3 VAR4 

VAR1 
VAR2 
VAR3 
VAR4 

0.697 
0.036 
0.437 
0.376 

0.039 
1.255 
0.172 
0.056 

0.424 0.466 
0.131 -0.048 
1.393 0.946 
1.103 0.945 

Case b: VAR1-VAR2 ordinal, VAR3-VAR4 continuous 

INPUT 
Case b. Normal scores in PRELIS 

VAR1-VAR2 ordinal, VAR3-VAR4 continuous 
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DA NI-5 NOBS-12 MISSING--9 TREATMENT-PAIRWISE 

RAW_DATA_FROM FILE - DATA. EX9 
LABELS 

CASENR VAR1 VAR2 VARS VARA 

ORDINAL VAR1-VAR2 

CONTINUOUS VARS-VARA 

SD CASENR 

OUTPUT MA-CM 

OUTPUT 
CONVERSION OF ORIGINAL VALUES TO CATEGORIES 

CATEGORY 

VARIABLE I 2 3 A 

VAR1 1.00 2.00 3.00 

VAR2 1.00 2.00 3.00 A. 00 

UNIVARIATE 

VARIABLE 

FREQUENCY DISTRIBUTIONS FOR ORDINAL VARIABLES 

CATEGORY 

1 2 3 A 

VAR1 5 A 3 

VAR2 3 3 3 2 

NORMAL SCORES FOR ORDINAL VARIABLES 
CATEGORY 

VARIABLE 1 2 3 A 

VAR1 -0.936 0.217 1.271 
VAR2 -1.218 -0.235 0.485 1.452 

UNIVARIATE 

VARIABLE 
SUMMARY STATISTICS FOR CONTINUOUS VARIABLES 

MEAN ST. DEV. SKEWNESS KURTOSIS MINIMUM FREQ. MAXIMUM FREQ. 

VAR3 0.336 
VAR4 0.564 

1.180 0.173 

0.972 -0.271 

-0.894 -1.200 

-1.213 -0.800 
1 2.300 1 

1 1.700 1 

ESTIMATED COVARIANCE (LOWER TRIANGULAR) 

AND CORRELATION MATRIX (UPPER TRIANGULAR) 

VAR1 VAR2 VAR3 VARA 

VAR1 

VAR2 

VAR 3 

VARA 

0.856 0.02A 

0.022 0.95A 

0.499 0.123 

0.426 -0.064 

0.437 0.477 

0.108 -0.064 

1.393 0.946 

1.103 0.945 
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XI. Normal scores for censored continuous variables 

For variables that are censored below a threshold B the PRELIS program uses 

the normal score associated with the interval -”° < £ < B, which means that 

the expected value of the censored variable in this interval is calculated. 

From (17) or (19) it follows that this normal score 7.„ can be estimated as 
D 

0(-m) . 0{(B - £)/$) 
z - p + - a 

$((B - p)/5) - 4.(-») 
a (29) 

<J((B - p)/S) 
- p - - a 

$((B - £)/S) 

For variables that are censored above a threshold A the PRELIS program uses 

the normal score associated with the interval A < f < ». From (17) or (18) 

it follows that this normal score z. can be estimated as 
A 

$( (A - p)/S) - ^(“o) 
z =■ p + - a 

$(«) - ■If (A - p)/5) 
(30) 

(A - p)/a) 
- p + - a 

1 - $( (A - p)/3) 

In the PRELIS manual (Jbreskog & Sorbom, 1988, p. 1-7) it is stated that 
2 

the mean /i and the variance a in (29) and (30) are estimated using maximum 

likelihood (ML) estimators. In fact, however, according to Joreskog (1991a), 
2 

M and a are not estimated by ML. Rather, the last sentence on p. 3-16 of 

the manual ("After the maximum or minimum value of the censored variables 

has been replaced by its corresponding normal score, these variables are 

treated as continuous variables".) tells how it is actually done. 
2 

Maximum likelihood estimators for n and o have to be based on the assump¬ 

tion that the observed variable is a censored normal variable. Calculation 

of such estimates is not an easy job to do. For more details, see for 

example Johnson & Kotz (1970a, p. 77ff.), Cohen (1950), and Gupta (1952). 
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It should be noticed by comparison of (29) that the equation for in the 

PRELIS manual, i.e. the last equation on page 1-7, is wrong. However, we 

have no reason to believe that the actual calculations in PRELIS are 

incorrect. 

12. Censored continuous variables in PRELIS: An example 

In order to illustrate the material from the previous section, the effects 

of treating continuous variables as censored variables were studied for the 

example used earlier in Section 9. Variables 1 and 2 are treated as censored 

continuous variables, variables 3 and 4 as ordinary, uncensored continuous 

variables. In Case c through Case e, variables 1 and 2 are censored from 

below, from above, and doubly censored, respectively. 

From the output as collected from PRELIS, notice the estimates of the 

normal scores, which are printed in boldface here as minimum and/or maximum 

values under the univariate summary statistics. It is slightly confusing 

that the headings MINIMUM and MAXIMUM are used, where actually estimates of 

expected values are presented. 

Unfortunately, the PRELIS program does not give separate estimates for the 
2 

mean /i and the variance a of the underlying, latent variable f of censored 

variables. (These estimates can be obtained with the forthcoming PRELIS 2 

program; see Joreskog & Sorbom, 1991, p. 7). Since the latter estimates 

differ whether a variable is singly or doubly censored, clearly this affects 

the normal score estimates (see (29) and (30)), even if we are dealing with 

the same sample of observations ..., Z^. 

Case c: Continuous variables; VAR1-VAR2 censored from below 

INPUT 
Case c. Normal scores in PRELIS 

Continuous variables; VAR1-VAR2 censored from below 
DA NI=5 NOBS-12 MISSING—9 TREATMENT-PAIRWISE 
RAW_DATA_FROM FILE - DATA.EX9 
LABELS 
CASENR VAR1 VAR2 VAR3 VAR4 
CONTINUOUS VAR1-VAR4 
CB VAR1-VAR2 
SD CASENR 
OUTPUT MA-CM 
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OUTPUT 

UNIVARIATE SUMMARY STATISTICS FOR CONTINUOUS VARIABLES 

VARIABLE MEAN ST. DEV. SKEWNESS KURTOSIS MINIMUM FREQ. MAXIMUM FREQ. 

VAR1 1.494 

VAR2 2.140 
VAR 3 0.336 

VAR4 0.564 

1.221 -0 
1.567 -0 
1.180 0 

0.972 -0 

026 -1.329 

487 -1.052 
173 -0.894 

271 -1.213 

0.185 5 

0.181 3 

-1.200 1 
-0.800 1 

3.000 3 

4.000 2 
2.300 1 

1.700 1 

ESTIMATED COVARIANCE (LOWER TRIANGULAR) 

AND CORRELATION MATRIX (UPPER TRIANGULAR) 

VAR1 VAR2 VAR3 VAR4 

VAR1 

VAR 2 

VAR3 

VAR4 

1.490 0.151 

0.274 2.455 

0.745 0.258 

0.617 0.092 

0.498 0.527 

0.152 0.061 

1.393 0.946 

1.103 0.945 

Case d: Continuous variables; VAR1-VAR2 censored from above 

INPUT 

Case d. Normal scores in PRELIS 

Continuous variables; VAR1-VAR2 censored from above 
DA Nl-5 NOBS-12 MISSING--9 TREATMENT-PAIRWISE 

RAW_DATA_FROM FILE - DATA. EX9 
LABELS 

CASENR VAR1 VAR2 VAR3 VAR4 

CONTINUOUS VAR1-VAR4 

CA VAR1-VAR2 

SD CASENR 

OUTPUT MA-CM 

OUTPUT 

UNIVARIATE SUMMARY STATISTICS FOR CONTINUOUS VARIABLES 

VARIABLE MEAN ST. DEV. SKEWNESS KURTOSIS MINIMUM FREQ. MAXIMUM FREQ. 

VAR1 1.974 

VAR2 2.484 

VAR3 0.336 

VAR4 0.564 

1.058 0 

1.406 0 

1.180 0 

0.972 -0 

682 -0.699 

335 -0.706 

173 -0.894 

271 -1.213 

1.000 5 

1.000 3 

-1.200 1 
-0.800 1 

3.562 3 

4.660 2 

2.300 1 

1.700 1 

ESTIMATED COVARIANCE (LOWER TRIANGULAR) 

AND CORRELATION MATRIX (UPPER TRIANGULAR) 

VAR1 VAR2 VAR3 VAR4 

VAR1 

VAR2 

VAR3 
VAR4 

1.119 0.102 

0.143 1.978 

0.470 0.320 

0.422 0.049 

0.359 0.409 
0.205 0.036 

1.393 0.946 

1.103 0.945 
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Case e: Continuous variables; VAR 1 VAR? doubly censored 

INPUT 
Case e. Normal scores in PRELIS 

Continuous variables; VAR1-VAR2 doubly censored 
DA NI-5 NOBS—12 MISSING—9 TREATMENT-PAIRWISE 
RAW_DATA_FROM FILE - DATA.EX9 
LABELS 
CASENR VAR1 VAR2 VAR3 VAR4 
CONTINUOUS VAR1-VAR4 
CE VAR1-VAR2 
SD CASENR 
OUTPUT MA-CM 

OUTPUT 
UNIVARIATE SUMMARY STATISTICS FOR CONTINUOUS VARIABLES 
VARIABLE MEAN ST. DEV. SKEWNESS KURTOSIS MINIMUM FREQ. MAXIMUM FREQ. 

VAR1 1.573 
VAR2 2.245 
VARS 0.336 
VAR4 0.564 

1.777 0 
1.954 -0 
1.180 0 
0.972 -0 

278 -1.062 
141 -0.848 
173 -0.894 
271 -1.213 

-0.228 5 
-0.075 3 
-1.200 1 
-0.800 1 

4.007 3 
4.963 2 
2.300 1 
1.700 1 

ESTIMATED COVARIANCE (LOWER TRIANGULAR) 
AND CORRELATION MATRIX (UPPER TRIANGULAR) 

VAR1 VAR2 VAR3 VAR4 

VAR1 3.157 
VAR2 0.427 
VAR3 0.961 
VAR4 0.821 

0.130 0.438 
3.819 0.157 
0.335 1.393 
0.067 1.103 

0.478 
0.035 
0.946 
0.945 

13. Effects of scale type of variables on correlation estimates 

Above, for all censored variables it was assumed that the threshold values B 

and A are known. In the PRELIS program these values are determined by the 

smallest and largest values in a sample of size N. It should be realized 

that if a constant b would be added to all observed scores of a variable, 

all normal scores, and thus the estimated mean of that variable, would 

increase by that same constant b; estimates of the standard deviation, the 

skewness, the kurtosis, and the correlations of the continuous variables are 

invariant under such an additive operation. In practice, it thus would not 

matter for the latter statistics if, for example, two items were added to a 

test that would not discriminate between the examinees; items that would be 
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answered either correctly, or wrongly, by each subject in the sample. 

By comparing the univariate statistics from Case a with those from Cases c 

through e, it can be observed that considering variables as being censored 

may strongly affect the estimates of skewness and kurtosis, statistics so 

crucial in checking normality assumptions. 

From the previous results from Cases a through e, each based on different 

types of variables, the effects of the scale (or measurement) assumptions on 

estimates of correlations are summarized. Clearly, it could make a 

difference for subsequent analyses based on these correlations, or 

covariances, which scale type the researcher is ready to assume for the 

variables under study. 

Table 3. Estimated correlations p.^ - p(VARi.VARj) under different assump¬ 

tions on the type of variables for both VAR1 and VAR2; VAR3 and VARA are 

continuous variables. 

Case Type of variable 
12 13 23 24 

a. continuous | 0.039 
b. ordinal j 0.024 
c. censored below j 0.151 
d. censored above j 0.102 
e. doubly censored | 0.130 

0.424 0.466 0.131 -0.048 
0.437 0.477 0.108 -0.064 
0.498 0.527 0.152 0.061 
0.359 0.409 0.205 0.036 
0.438 0.478 0.157 0.035 

14. Discussion 

In this paper an expository overview was given of the use of normal scores 

in the PRELIS program, for ordered and continuous censored variables, 

respectively. Now, suppose a researcher wants to estimate proper correlation 

coefficients with PRELIS. If the variables are continuous censored 

variables, there is no alternative but to use normal score estimates. If, 

however, the variables are of ordinal scale type and declared ordinal, using 

normal scores is just one of several approaches in obtaining proper 

estimates of correlations with PRELIS. Three options are available then. 

a. The KM option: normal scores are determined from the marginal frequenc¬ 

ies, and product-moment correlation coefficients are subsequently based on 
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these normal scores (P^g)• 

b. The PM option: polychoric correlations (Ppc) are estimated (or poly¬ 

serial correlations if one of the pair of variables is declared continuous). 

c. The OM option: ordinal scores are replaced by optimal scores, which are 

determined for each pair of variables separately; i.e. for each pair of 

variables canonical correlations (Pq<j) are estimated. 

Joreskog & Sorbom (1988, p. l-9ff.) did several Monte Carlo studies to 

compare the behaviour of various correlation estimates in the ordinal 

variable case. They concluded (o.c., p. 1-10) that among six correlation 

measures the polychoric correlation is "generally the best estimator" (in 

terms of bias, mean squared error, consistency, and robustness against non¬ 

normality) . The robustness of the polychoric correlation coefficient against 

departures from bivariate normality was studied in further detail by Quiroga 

(1992). 

In conclusion: given the advantageous behaviour of the polychoric 

correlation estimate it does not seem not to be recommended to use normal 

scores (the KM option) when ordinal variables are declared ordinal. 

Finally, a potentially useful extension of polychoric correlation should 

be mentioned. Quiroga (1992) developed a new general underlying bivariate 

distribution for the observed ordinal variables, one that includes the bi¬ 

variate normal. It is a mixture of the standard bivariate normal distribu¬ 

tion and two independent univariate skew-normal distributions. (See Azzalini 

(1985) for a detailed description of the skew-normal distribution.) The 

correlation coefficient associated with this more general distribution was 

called the extended polychoric correlation. Parameters involved are 

estimated using maximum likelihood procedures. Here too, the hypothesized 

probability model can be tested by a likelihood ratio test. It can be 

expected that the extended polychoric correlation will be an option of the 

PRELIS program within the near future. 
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