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FACTOR SCREENING BY SEQUENTIAL BIFURCATION 

Bert Bettonvil 

The purpose of screening is the reduction of a large set of explanatory vari¬ 

ables or factors to the set of important variables, assuming that there are 

only a few important explanatory variables. As a screening method we 

propose a modification of Sequential Bifurcation, a method resembling the 

binary search technique. 

This paper is limited to deterministic linear response surfaces (but the 

method can be extended to random nonlinear response surfaces). Besides a 

description of Sequential Bifurcation, we discuss its efficiency and a large 

scale application. 
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1. INTRODUCTION 

Suppose we are faced with a problem in which a response depends on a great many 

explanatory variables, but we think that only a few of these variables are really important. 

There are several methods to find out which variables are important. The one-factor-at-a- 

time method uses one basic observation with all variables at one level and - in case of N 

variables - N extra observations; in each of these observations N-l variables are at the 

basic level and one variable is at some other level. A more efficient method uses a 

Resolution-Ill design where the number of observations equals N+l, rounded up to the 

next multiple of four; see Box and Hunter (1961a,b). But an observation can be very 

expensive, in which case obtaining N or more observations is prohibitive. 

A number of techniques have been developed to tackle this problem. In this paper 

we propose a modification of Sequential Bifurcation (SB). We restrict ourselves to a 

model that contains only the main effects of the input variables, and to observations 

without random errors. In most applications these assumptions are not realistic, but the 

present model can be viewed as a step towards more realistic models, containing random 

errors and/or interactions. Interactions as well as random errors will be treated in 

forthcoming papers. 

In section 2 of this paper we describe SB and introduce a special notation. In 

section 3 we derive the number of observations needed to find k important variables out 

of N candidate variables. In section 4 we discuss a large scale example. In section 5 we 

draw conclusions and indicate further research. 

2. DESCRIPTION AND NOTATION 

Suppose the outcome y can be expressed as a first-order linear model of N variables 

Xi,X2,...,xN: 

y = y(Xi,x2,...,xN) = /30 + fax, + ... + /3nxn. (1) 
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A crucial assumption is that there is a priori knowledge of the direction of the influence 

of each x, (i = l,...,N), if such an influence is present at all. Consequently, we can recode 

x, such that all variables have non-negative influence. So we assume ft>0 (i=l,...,N). 

We want to find the important variables in an efficient way, where a variable is called 

important iff its regression parameter is large. We quantify "large" as "exceeding 5", 

where 5 is assumed to be some given non-negative number. We shall return to this issue 

later. We do not know which of the /3’s are large, nor do we know the number of large 

0’s, but we expect this number (say) k to be small (k< <N). 

Our SB is a modification of the Jacoby and Harrison (1962) approach. For sake of 

convenience we assume that N=2'"; if not, we can add dummy variables to the model 

(with 0; known to be zero). In a linear model like (1) we may investigate only two levels 

per independent variable, which we can denote as "low" and "high", or "off and "on", 

or "0" and "1". 

Let y(i) (i=0,l.N) denote the observation with Xi = x2 = ... = x, = 1 and xj+1 

= xi+2 = ... = xN = 0. Then (1) gives 

y(i) = 0O + Ej=1 0, (i=0,l,...,N), (2) 

and the sequence (y^J^o,!.n is non-decreasing (because 0;>O). For i<j we have 

yffl-y® = EUi Pt’ 

where we denote the latter sum by 0i+ij; as a consequence 0jj=0j. We begin our search 

for the important variables by observing the two responses with all independent variables 

at their high and low levels, respectively: y^ and y(0j (see eq. 2). The difference between 

their outcomes, 01N, equals the sum of all regression parameters, which are all non¬ 

negative. So if 01n<i5, all parameters are small (i.e., do not exceed 5), and our problem 

is solved, using only two observations. However, if 01N>5, then one or more parameters 

may be large. 

In the latter case we observe y^,,, and compute 0, N/2 = y^nrVm ar|d 0n/2+i.m = 

y(N)-y(N/2). This bifurcation is continued until we reach individual parameters: sequential 

bifurcation. The whole procedure can be described as follows: 
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(1) Observe y(0) and y^; compute iS,.N=y(Nry«»- 

(2) If Pu^8, then all its ^-components are small; 

if /3,j > 5 and i=j, we have found a ft >5; 

if /8iJ>5 and i<j, proceed to step (3). 

(3) Observe ym, where k=(j+i-l)/2 and compute 

/S.^yw-yc-n /3k+ij=y(1)-y(k); 

proceed to steps (4a) and (4b). 

(4a) The new 0 under consideration is 0, k; proceed to step (2). 

(4b) The new 0 under consideration is proceed to step (2). 

FIGURE 1. Jacoby and Harrison (1962)'s Example of Sequential Bifurcation. 
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Example 1. Jacoby and Harrison (1962) give an example with 128=27 variables, in which 

only the ones numbered 68, 113 and 120 have non-zero effects (b=0). Our SB analysis 

starts by observing y(0) and y(m), resulting in 8I I2S>0. The next observation is y(64), which 

gives ^6s.i2»=y(i2s,-y(64)>0 and /3,,m=)Vj-»=0, jo 0,=...=I364=O. Figure 1 represents 

the whole procedure. The positive parameters are underscored; the arrows indicate the 

order of observations and calculated parameters. 

Jacoby and Harrison (1962) propose to take two observations for every group of /3’s to be 

split, that is, one observation with the first half of the variables under consideration "on", 

the other with the second half "on". Their procedure demands many more observations, 

actually almost twice as much: in example 1 we need 16 observations, whereas Jacoby 

and Harrison need 29 observations. The number of observations is further discussed in 

the next section. 

3. NUMBER OF OBSERVATIONS 

We compute the number of observations that is necessary to find k non-zero coefficients 

(5=0) out of N=2m non-negative ones. First we consider worst-case (upper-limit) 

computations. 

Suppose k=0. Trivially, we need only two observations: y(0) and y^. 

Suppose k>0. We can define an integer f (0<(<m) such that 2M<k<2'. If 

m = f, then in the worst case situation we need 1+2' observations to find the important 

variables. If m > f, we first divide the 2m variables into 2' groups of size 2m‘' each. In the 

worst case, the important variables are as dispersed as possible: they are in k different 

groups of size 2m',, and we need l-t^ observations to identify these groups. For each of 

these k groups we need m-f more observations to identify the individual important 

variables. Hence, in the worst case, the number of observations is 

1 + 2' + k(m-f). (3) 

If k is equal to some power of two, then (3) reduces to 
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1 + k + k(2log N - 2log k) = 1 + k(l - 2log(k/N)), (4) 

which can also serve as an approximation to (3) if k is not a power of two. 

Example 2. In example 1 we have 128=27 variables with 3 non-zero effects. So m = 7, 

k=3, and as a consequence 1=2. The maximum number of observations, according to 

(3), is 20; approximation (4) gives 20.2. The actual number of observations is 16 because 

the important factors are somewhat clustered (they all lie in the second half). 

In appendix 1 we describe a number of rival screening techniques and compare them to 

Sequential Bifurcation. This yields table 1: the results are in favour of our method. 

Example 3. Suppose we are dealing with N=1024 variables (m=10). For k=0,l,...,8 the 

worst case number of observations is given in table 1, in which G2 stands for Two-stage 

group-screening, GM for Multi-stage group screening, JH for the Jacoby and Harrison 

(1962) Sequential Bifurcation, and SB for our version of Sequential Bifurcation. 

Table 1. 

Maximum number of observations for given k (number of non-zero variables). 

k 0 

G2 4 

GM 2 

JH 3 

SB 2 

1 2 

68 96 

20 35 

21 39 

12 21 

3 4 

116 136 

49 62 

55 71 

29 37 

5 6 

148 160 

74 85 

85 99 

44 51 

7 8 

172 188 

96 107 

113 127 

58 65 

For G2, JH and SB we compute the number of observations for the worst case, i.e.,, 

there is as little clustering as possible. For G2 we assume that for the first stage we 

guessed the number of non-zero coefficients correctly. For GM we apply the formula 

derived in appendix 1 and round up to the next integer. 
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An alternative for worst-case behaviour is the "expected" number of observations, 

using either a binomial model (where each variable has an a priori probability p of being 

important) or a random permutation of the N factors (where k is fixed). In a given 

physical system, however, the importance of a factor does not depend on a random 

mechanism; it is a property of the system. Moreover, the worst-case calculation can be 

justified by (i) its computational ease, (ii) worst-case results are only slightly higher than 

the expected values over all random permutations (for small k and large N), and (iii) the 

apparent superiority of SB using worst-case computations (see appendix 1). Nevertheless, 

for the sake of completeness, we derive the expected number of observations under the 

binomial model in appendix 2. This yields table 2. 

Table 2. 

Expected Number of Runs for N = 1024 input variables for 

Watson’s (1961) Two-Stage Group Screening, 

Morris’s (1987) Multiple Grouping, 

and Sequential Bifurcation (SB). 

prior Expected Number of Runs 

probability Watson Morris SB 

.0001 21.9 

.0002 29.8 

.0005 48.8 

.001 64.3 

.002 94.6 

.005 139.0 

.01 198.2 

.02 262.7 

.05 399.5 

.1 521.1 

10.3 3.0 

12.6 4.0 

20.6 6.9 

26.4 11.4 

41.4 19.6 

81.7 40.8 

130.3 70.5 

253.1 120.1 

399.5 234.5 

521.1 374.2 
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4. AN APPLICATION: THE GREENHOUSE MODEL 

We use Sequential Bifurcation to screen 281 explanatory variables in a deterministic 

simulation model of the C02 concentration in the year 2100. The model is developed at 

the Dutch National Institute of Public Health and Environmental Protection RIVM as a 

part of IMAGE: the Integrated Model for the Assessment of the Greenhouse Effect; see 

Rotmans (1990). IMAGE aims at giving quantitative insight into the greenhouse phe¬ 

nomenon. It consists of separate, autonomously functioning modules, which are concat¬ 

enated and integrated with each other. We restrict ourselves to the carbon cycle module, 

which describes the global circulation of C02, Carbondioxide, in the atmosphere, oceans, 

and terrestrial biosphere. 

To this simulation model we apply SB as if we had 512 input variables (512 being 

the smallest power of 2 exceeding 281) with a priori knowledge: 0282 = /3283 = ... = /3512 

=0, so y^g!) = y(282) = ... = y(512). Setting all input variables at their low and high levels 

yields a simulated C02 concentration in the year 2100 of y(0)=987.51 and y^^ 1495.66 

parts per million. After 80 observations we stop with 32 regression parameters exceeding 

5=5, and all remaining (groups of) parameters smaller than 5. 

Remark. We do not chose 5 beforehand. Instead, by considering the group of 

parameters with the largest sum, we can, at any time during the analysis, decide to either 

take this sum as 5 and to stop, or to split this group. The decision to stop with 5=5 is 

more or less arbitrary. 

Figure 2 gives the outcomes y(i); intermediate values come from linear interpola¬ 

tion, e.g., we have no actual observations between y(%)= 1303.77 and y(128)=1307.57, nor 

between y028) and y(192)=1310.86. 

To verify our results, we select eight variables, three of which were found by SB 

as well as by previous (small-scale) analyses of the system, four were found by SB but 

neglected in previous analyses, and one was previously assumed to be important, but was 

not found by SB. We simulate 16 combinations of these 8 factors (resolution IV design; 

see Kleijnen 1987), and compute the regression parameters. The results are given in table 

3, together with the SB results. Table 3 shows that the estimated main effects are quite 

close to the SB estimates. 

The simulation observations are almost perfectly monotone; the only deviation 

from monotonicity is 
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Figure 2. Results of Greenhouse Study. 

regression parameter numbers 
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ya4) - yaw = 0.54. 

Whether we assume that this deviation is caused by wrong coding of some variables 

(deterministic model) or by noise (random model), is irrelevant: the conclusions of our 

investigation, namely which variables are important, hold in either case. 

The outcomes of the SB analysis did not coincide with the expectations of the 

system experts. Especially the shifts from and to temperate forest had received too little 

attention in their prior studies of the system. The results of our analysis gave rise to 

further investigation, which takes place now. 

Table 3. 

The important variables of the RIVM model. 

name effect 

SB Verification 

(Resolution IV) 

meaning 

CHREF(31) 30.16 

CHREF(24) 19.89 

TC2A 11.97 

STIM 8.80 

PRECIP 7.72 

CHAREF(2) 7.42 

MFLOW 5.93 

DIFF <5 

26.14 shift from temperate forest to agricultural land 

17.07 shift from temperate forest to grassland 

14.63 residence time in the (thick) cold mixed layer 

10.32 biotic stimulation factor 

8.85 rate of precipitation of carbon in the oceans 

7.08 fraction of charcoal formed upon burning of 

branches 

6.20 circulating massflow (Gordon flow) 

3.95 effective diffusivity in the oceans 
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5. DISCUSSION 

In this paper a modification of the Jacoby and Harrison (1962) Sequential Bifurcation is 

described, which is easy to perform and turns out to be very efficient. Our method is a 

screening method: it is designed to get rid of the, presumably overwhelming, amount of 

unimportant input variables. 

Our model (1) is very restrictive; the method presented can be used for models 

without random errors, but also for models with parameters which are very large, 

compared to the noise. Augmentation of the model with random errors, as well as with 

interactions, is feasible; details will be given in future papers. 
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APPENDIX 1. COMPARISON OF SB WITH OTHER SCREENING TECHNIQUES 

We describe some alternative screening techniques, and compare them with our version of 

SB, theoretically as well as by means of an example. We shall discuss Two-Stage 

Group-Screening, Multi-Stage Group-Screening, and Jacoby and Harrison (1962)’s 

original version of Sequential Bifurcation. 

(a) Two-Stage Group-Screening (Watson (1961), Mauro (1984), Mauro and Bums 

(1984)). The N variables are divided into G groups of size g=N/G each (if N is not a 

multiple of G, the group sizes are taken as "evenly" as possible). As a first step, the G 

groups are studied by using a Plackett and Burman (or PB) design, see Kleijnen (1987, p. 

302). The variables within each group are treated as a whole, i.e. they are varied 

simultaneously. In the second stage the variables in the groups that in the first stage turn 

out to be important (if any), are submitted to a next PB design. 

If k variables are important and these variables are all in different groups (worst 

case), then the total number of observations is approximately G-t-kg=G+kN/G. The 

optimal G is about v^kN), resulting in v'(kN) observations, as is easily verified. For 

small k and large N our procedure, which is of the order k 2log N, is superior. 

(b) Multi-Stage Group-Screening. Both Patel (1962) and Li (1962) generalize 

two-stage group-screening to its multi-stage analogue. We shall briefly describe Patel’s 

version; Li’s approach differs only in detail. 

In the first stage, the group of N variables is divided into g, groups of N/g, 

variables each, and analyzed in gi + 1 experiments (as in two-stage group-screening the 

variables within one group are varied simultaneously). Suppose the first stage turns out to 

give k, important groups. In the second stage, each of these groups is divided into g2 

groups of N/(g,g2) variables and analyzed by using g2 experiments. So, in the second 

stage a total number of k,g2 experiments are performed, resulting in (say) k2 important 

groups. This is continued until we reach groups of size 1. 

Patel neglects the difficulties arising from the fact that all divisions should result in 

integer numbers, so his results tend to be optimistic. He assumes that every variable has 

an a priori probability p of being important, and finds that in c stages approximately 

l+cNpM,c experiments are needed. This boiles down to an optimal c (straightforward 

differentiation) of -In p, so the optimal number of experiments is 1-Npe In p. The worst 

case number of observations in SB can be approximated by l+Np-Np2log p (see (4), with 
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k replaced by Np). It is easily verified that 1-Npe In p < 1 +Np-Np2log p iff p > 

exp(l/(l/ln 2 - e)) = .4566. As we assume p=k/N small, and as we compare Patel’s 

expectation with our worst case, the preceding inequality proves the superiority of our 

version of SB. 

(d) Jacoby and Harrison (1962)’s Sequential Bifurcation . The original version of 

SB starts by considering /3itN/2, computed as y(N/2)-y(0), and /3N/2+i,N, computed as the 

observation with x1 = ...=xN/2=0 and xN/2+1 = ... =xN = 1 minus ym. A /3y (i<j) that is 

found to be positive, gives rise to two observations: one with xi=...=x(i+j.I)/2=l, and one 

with x(i+j+1)/2=...=Xj=l, and both with all other independent variables equal to 0. 

Subtraction of y(0) gives /3i(i+j.1);2 and |8(i+j+I)/2j. This is repeated until the individual 

variables are reached. The number of observations in the worst case can be computed 

analogously to the derivation of (3), and is equal to 2'+I-l+2k(m-f) if k out of 2m 

parameters are positive and 2'1<k<.2f (for k=0, f = 1). The number of observations is 

about twice as much as our modification of SB needs. 

APPENDIX 2. EXPECTED NUMBER OF OBSERVATIONS 

Suppose each variable has an a priori probability p of being important (binomial model). 

Then, if 5=0, any group of n variables contains at least one important variable with 

probability l-(l-p)n. The expected number of groups of size 2mj containing at least one 

important variable is 

and this is also the expected number of observations that split groups of size 2“'J into 

groups of 2mj'1 (j=0,l,...,m-l). So the expected total number of observations is 

2 + E;.o2Tl-0-PD . 

Because 2J — 2m-l, the expected total number of observations can be rewritten as 
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1 + 2" E;,„2'(i-pf 

Morris (1987, table VI) compares his Multiple Grouping technique to Watson’s (1961) 

Two-Stage Group-Screening with respect to the expected number of runs, for some values 

of p and N=1024 variables. We add Sequential Bifurcation to this comparison; the 

results, given in table 3, are self-explanatory. 
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