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MODELLING MANIPULATED DISCRETE PROCESSES: 

ESTIMATING PREVALENCE IN THE CASE OF NON-RESPONSE 

D. Lugtenburg and P.G.H. Mulder 

SUMMARY 

Missing data may cause a problem in the estimation of the prevalence of a certain disease in 
a population by means of a survey. This chapter presents a model-based approach for dealing 
with missing data. The model involves several strategies, each resulting in a different estimate 
of this prevalence. The strategies will be compared by means of likelihood ratio testing 
procedures within the parametric setting. Of course, properly testing goodness of fit is not 
possible solely through a likelihood ratio test as long as missing data are not replaced with 
resampled information. The parametric model is shown to be applicable also for situations in 
which there is observational error. 
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1 INTRODUCTION 

In some situations observations collected are not correct or complete. One reason may be that, 
before outcomes of the relevant process can be observed, a second process has eliminated part 
of these outcomes or changed part of them. This second process "manipulates" the outcomes 
of the first process. Probably, the manipulating processes encountered in practice most often 
are 'Vanishing" and "recategorizing". The latter is a process where only part of the outcomes 
of the first process are observed correctly. If the former process is active, part of the outcomes 
of the first process become missing. 

The nature of 'Vanishing" processes as they may occur in practice varies widely. For 
instance, in surveys where questionnaires are sent to persons of specific populations, it is only 
rarely that all questionnaires are returned or are completely useful for analysis. There is a 
certain percentage of non-response. The mechanisms that underly the existence of such missing 
data may affect the appropriate analysis, see e.g. Rubin (1976). An excellent introduction to 
this subject has been written by Little and Rubin (1987). 

Three general approaches are suitable to deal with the 'Vanishing" problem. First, extra 
information about the "missing group" can be gathered by resampling. Second, the missing data 
can be "filled-in" or "imputed" and corresponding analyses performed. Finally, a specific 
structure of missingness can be assumed and conclusions can be derived from that assumption. 
For estimating prevalence all three general approaches have been proposed in the literature. 
In estimating the size of the western Arctic stock of bow head whales, Zeh et al. (1986) use the 
assumption that missingness is only related to visibility and obtain estimates by resampling. If 
several sampling procedures are available (the one that is the most expensive being the most 
precise) a correction formula can be derived. An example is the procedure of counting radio- 
labelled animals, which is not interfered with by visibility problems (Steinhorst and Samuel, 
1989). The second and third of these general approaches are sometimes used simultaneously, 
as in the example of this paper. By supposing that all missing data show the outcome of interest 
(e.g. have the disease or have high blood pressure) an upper limit of the prevalence is 
obtained. The model postulated in this paper makes it possible to evaluate such imputation 
procedures. Dinse (1986) discusses similar but nonparametric estimators. 

The following example will be discussed. A chemical industry needed an estimate of the 
percentage employees with hypertension. In a survey all employees were invited to have a 
medical examination. Some employees, however, decided not to attend. These refusers 
presumably did not form a random subgroup of the total population. A non-random process 
may have caused some employees to attend and others not to attend the examination. 
Assumptions concerning the non-randomness of this underlying missing-data-generating process 
are needed in order to properly estimate the prevalence of hypertension. Several simple sets 
of assumptions will be discussed, as well as likelihood ratio tests for discriminating between 
these sets. 

Besides the problem of missing data, there is also the problem of misclassification. An 
observer may make mistakes in allocating an observed outcome to the correct category. Many 
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authors have written about this phenomenon. The first and the last of the three general 

approaches referred to earlier are proposed in the literature to deal with it. Obviously, 

resampling by means of repeated measurements can improve the estimates considerably, as 

discussed by Clayton (1985). Also, models have been proposed which a priori allow for 

misclassification. Copas (1988), for example, discusses binary regression models. 

In this paper, a framework is presented that may facilitate the modelling of both the 

recategorizing and the vanishing process. As has been remarked before, we will assume that 

the outcomes of the first process are manipulated by a second process. Therefore, only certain 

combinations of outcomes of both processes can be observed. First, the underlying principles 

will be discussed, illustrated step by step by showing the implications of modelling a vanishing 

process. This generally applicable model is presented in section 2 for binomial successive 

processes. The distribution of the actually observed outcome variate will be demonstrated to 

be multinomial. The model will be specified and the procedure to obtain maximum likelihood 

estimators (MLE) for the model parameters will be described. For the algorithm we use the 

composite link approach as introduced by Thompson and Baker (1981). The several different 

imputation procedures to estimate prevalence will be discussed within the general framework. 

In section 3, the above-mentioned example (prevalence of hypertension) is dealt with in more 

detail. The analysis is elaborated as far as necessary to serve illustrative purposes. Section 4 

describes the recategorizing process within the general framework, and a discussion is presented 
in section 5. 

2 THE MODEL 

2.1 Introduction of the model 

Consider two successive binomial processes with the second process manipulating the outcomes 

of the first process. The first process has two possible outcomes, z, and z2. The probability that 

the first process actually has outcome z, is denoted q,. The second process has two possible 

outcomes, z2, and z^, where the probability that outcome z2l actually occurs may depend on the 

outcome of the first process. As a consequence, another two probabilities are introduced: q2 

is the probability that outcome z21 occurs when z, is the outcome of the first process, q3 being 

the corresponding probability when z2 is the outcome of the first process. The resulting process 
is illustrated in Figure 1. 

There are four response categories r (z, ,z2l), (z, ,z2), (z2 ,z2t) and (z2 ,zu) with r being 1 to 4, 
respectively. The response category r (r=l,..,4) is observed yr times. The four response categories are 
complete (there are no other responses possible) and mutually exclusive. For each response category 
r the corresponding category probability, p„ is assumed constant with p, = q,.q2, p2 = q,. (1-qJ, p, = (1- 

qMi and/\ = (l-qd-fl-qj. Consequently, the response variate, which describes the frequency with 
which this category will actually be observed, has a multinomial distribution, see e.g. Johnson and Kotz 
(1969). 
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Figure i 

outcome 

outcome 

count 

Schematic description of two successive processes. 

If the second process is a missing-data-generating process in which z2I means "not 
missing" and means "missing", it is easy to see that in fact one cannot observe all category 
counts separately. The counts that can be observed are (y,), (y3) and the sum of y2 and y,\ 
O;+>'<)• In matrix notation: = Cy, with y=('y, ,y2 ,y2 ,yJT and 

C = 

1000 

0010 

0101 

In short, only combined category counts are observed. Somehow, one has to deal with 
this limited information when estimating the dependence of the probabilities ^ on a vector of 
explanatory variables. This will be discussed in subsection 2.4. In the next subsection, 2.2, the 
dependence model for the probabilities q2 is specified. 

2.2 Postulation of the model 

For design point i (i=l,..., s) the process probabilities (/=1,2,3) are assumed to depend on 
p explanatory variables assembled in a vector x- 

j=l,2,3; i=l,...,s. 

For every qt, a logistic model is postulated as follows: 

logit(q)=p,Tx. j =1,2,3; i=l,..., s 

with f)j a vector of p coefficients specific for each probability qr The first element of the vector 
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x, equals 1 in order to provide intercepts Some of the other coefficients in /?, may be zero, 

meaning that the corresponding explanatory variable in x, is not incorporated in the J* process. 

2.3 Several strategies for estimating prevalence 

Suppose that persons having the disease of interest, e.g. hypertension, fall in category z,. Again, 

the second process is a missing-data-generating process where z2, means "not-missing" and 

means "missing". Then an estimator for the prevalence (percentage observations falling in 

category z,) is defined as follows. When the estimated category counts for the category counts 

y*. are denoted % then the prevalence estimator is: 

prevalence=-—-. 

tn, 
f-i 

The conditions that define independence of both processes are straightforward. Both 

processes are independent if and only if Pr(z2J|zI)=Pr(z2,|z2) for all design points i, which is 

tantamount to qa=qa, or fi1rxl=p3Tx[, for all i (this means fi2=fiJ). This independence condition 

results in a "simple-guess-estimator" for the prevalence. 

A generalization is the following: 

togiKq^-logitiqa)^ 

for all i. If i)r=0 this simplifies to the above case qa=qa. If <)r - <*j, then qt2 -► 1, meaning in the 

example introduced above that all missings are counted as normotensives. This leads to a 

"lower-boundary estimator" of the prevalence. 

If i)r -> -oo, then qa -* 1, meaning that all missings are counted as hypertensives. This 

results in an "upper-boundary estimator" of the prevalence. 

It will be obvious that these last two situations are extreme situations and unlikely to be 

real. However, "how" unlikely are they? Interval estimation for the prevalence can be evaluated 

by means of a likelihood ratio testing procedure as follows. First, consider the following three 

situations: i|r = -°o (upper bound), ijr = 0 (simple guess) and ijr = oo (lower bound). For every 

situation the corresponding deviance is calculated. Secondly, the deviance corresponding to the 

MLE of i)r is calculated. This leads to an "optimal-guess estimator" for the prevalence. For each 

fixed i)r the likelihood ratio test statistic is calculated as the difference: deviance(+r«d) minus 

deviance^opdm.i)- When this statistic is supposed to have a chi-squared distribution with 1 degree 

of freedom (DF for short) on the assumption that i(rM is the true i|r, then all values of ijr with 

a deviance less than 3.84 (chi-squared value, 1 DF and a=0.05) away from the deviance 

corresponding to ilrop„lmi, correspond to values that are in the 95 per cent confidence interval of 
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the prevalence, because of the monotonic relationship between i)r and the prevalence. 

2.4 Fitting the model 

If the second process is a missing-data-generating process and qa—<la or equivalently p2=p3, 
MLEs for the model parameters /?, and can be calculated by applying standard binomial 
algorithms. Two separate binomial models can be fitted. The first for calculating MLEs for the 
model parameters of the first process: yu positive responders out of a total of 
observations at design point i. For the second process this is: y^+y^ as positive responders out 
of a total of n, observations at design point i. By adding the corresponding binomial log- 
likelihoods it can be shown that the total log-likelihood is the appropriate multinomial log- 
likelihood. The more extreme models with either qa=\ or ^0= 1, too, can be fitted with standard 
binomial algorithms. 

In all other situations, no standard binomial algorithms can be used. As a general 
method to maximize the multinomial log-likelihood, a Poisson reparametrization will be 
introduced. 

A sufficient condition for the outcomes y„ (/•=!,..,4) at design point i to behave like a 
multinomial distribution for given p„ and n.—y^+y^+y^+y,, is a Poisson distribution for they*, 
stratified on design point i. Birch (1963) showed that both likelihoods are proportional to each 
other and so lead to identical MLEs in a log-linear model specification. Palmgren (1981) 
showed that the inverses of the Fisher information matrices are identical so that the asymptotic 
covariance matrices of the estimates also coincide. 

We now specify the following dependency model for the expected responses E(yir) with 
a model parameter n, representing the stratification on design point i, so that there is a one-to- 
one relationship between the linear logit(^) predictors (with coefficient vectors Bj and the 
linear log(p*) predictors: 

EWt !>= «, Pi i= expft^+yfxj+PjXj) 

EWi t)= ni Pt 2= exp^+yfaq) 

E<Ji j)= it, p, 3= exjKpj+PjX,) 

EXXi^= ni pi4= exp(p^ 

Pixi=Yr*i+ln( 
expIP^x, ) + l 

expfPjX, ) + l 
) 

with: 
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resulting for i|r in: 

* = • 

As i)r has to be constant across i, t|r is the difference of the intercepts of process 2 and process 
3: <(r = B21 - A,,, the other coefficients in B2 being equal to those in B3. 

The above reparametrization to a Poisson regression model provides a way of handling 
the problem in question, namely that the y„ at design point i are not observed directly, but that 
only certain combinations over r of the y„ are observed: y,(obs) - C y, with y,(obs) being an 
observed column vector of dimension k<4 andy, a column vector of elementsy„ (r=l,...,4); the 
(fc*4)-matrix C being the composite link matrix which is the same for all design points i. A 
typical C-matrix has zeroes and ones as elements. Composite Poisson models are described by 
Thompson and Baker (1981), who introduced the composite link model as a generalization of 
the generalized linear model (McCullagh and Nelder, 1983). The algorithm described by 
Thompson and Baker has also been applied to the example of this paper. For the vanishing 
process the C-matrix already was presented in subsection 2.1. The Poisson reparametrization 
provides a generally applicable algorithm without any further conditions. 

3 AN APPLICATION: THE PREVALENCE OF HYPERTENSION 

A survey was conducted on 6287 employees of Shell Pemis, ranging in age from 20 to 59 years, 
to find the total percentage of employees with hypertension. This was defined as a diastolic 
blood pressure of at least 95 mm Hg or a systolic blood pressure of at least 160 mm Hg. The 
target population was the total working population on January 1, 1982 at the site. The 
employees were invited to undergo a physical examination that year. Of about 25 per cent of 
the employees, however, no blood pressure values were recorded. This is partly due to the fact 
that a number of employees refused to attend, but also because of some computer storage 
problems. The latter is known because the observed blood pressure values of some employees, 
who were known to have attended the examination, could not be retrieved at the time of 
analysis in 1989. 

In the general context of this paper the first process is considered to be the process that 
determines whether a person has high blood pressure. The second process determines whether 
the blood pressure values could be retrieved for the analysis in 1989. A very relevant 
explanatory variable for the first process is age, which was grouped into four classes: 20-29, 30- 
39, 40-49 and 50-59 years. One explanatory variable for the second process is the number of 
times a person reported sick during 1982. The underlying reasoning is simple. If an employee 
was sick, he did not get an invitation to attend the examination. Two classes were used, namely 
"reporting sick less than four times" and "reporting sick at least four times". No other 
explanatory variables were used. This is also an obvious determinant for process 1, especially 
for correctly estimating the prevalence. A summary of frequencies in the resulting 8 age¬ 
sickness classes is presented in Table I. 
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TABLE I 

Observed percentages of definite hypertension in a survey of an industrial population for different age 
and sickness-absence categories 

Age (years) Reporting sick at Number of Percentages data Within the data 
least four times employees that are unknown that are known, 

the percentage 
persons with 
definite 
hypertension 

20-29 no 

20 - 29 yes 

30 - 39 no 

30 - 39 yes 

40 - 49 no 

40 - 49 yes 

50 - 59 no 

50 - 59 yes 

1197 24.6 8.4 

245 33.1 12.2 

1318 27.5 9.6 

203 36.0 13.8 

1267 21.7 14.3 

171 35.7 20.0 

1642 24.5 20.7 

244 32.0 23.5 

In this example the first binomial process was defined as the process that determines 

whether a person has high blood pressure with the probability parameter only varying across 

age groups. The outcomes z, and z2 mean "hypertensive" and "normotensive", respectively. The 

second binomial process is a missing-data-generating process with zu and zu meaning "not 

missing" and "missing", respectively. 

As the second process may be considered to randomly delete blood pressure records 

within a given age-sickness category, the percentage unknowns should be the same for 

employees that have outcome zt and for employees that have outcome z2, implying qa=<ia for 

all classes i. This also implies that i^, introduced in section 2.3, equals zero. This "simple-guess 

approach" is evaluated first. In this situation, it turns out for the first process that, besides a 

linear trend of the logit of the response probability on age category, the number of sickness 

absences (<4 or >3) in 1982, too, has explanatory power. The second process is assumed to 

be related only to the number of sickness absences. After fitting this model for the total 

process, a deviance of 16.22 with 11 DF was found, which indeed suggests a reasonable fit. 

Since independence applies, this deviance can easily be divided into two. For the first process 

this leads to a deviance of 3.52 with 5 DF and for the second process to a deviance of 12.70 

with 6 DF, which latter result is not satisfactory. Various other alternatives for i|r instead of the 

simple- guess approach (t|r = 0) are to be evaluated. The results are presented in Table II. 



77 

TABLE II 

Summary of several strategies towards the randomness of the underlying missing-data-generating process 

Strategy name 

simple guess 

lower bound 

upper bound 

optimal guess 

Second process Estimated prevalence 
_of hypertension 

qe=q« 14.3 

qa=\ 10.6 

<?u=l 36.5 

i|r estimated (0.91) 12.2 

Deviance 

16.22 

15.73 

81.44 

14.97 

DF 

11 

11 

11 

10 

It seems that in this example the simple guess, the lower bound and the optimal guess 

are nearly equivalent strategies. However, the upper bound strategy with = - oo is highly 

unlikely (p< <0.001). The optimal guess estimate for the prevalence is 12.2 per cent. In Figure 

2 the deviance (as a function of the estimated prevalence) of the different strategies is 

interpolated; it can be seen that the 95 per cent tolerance region for the prevalence is from 

10.6 to about 16 per cent, including both the lower bound estimate and the simple guess 
estimate. 

deviance 

Figure 2 Deviance as a function of estimated prevalence of hypertension. 
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4 MODELLING A RECATEGORIZATION PROCESS 

If the second process is a recategorizing process, then this process, too, can be described in 
terms of the general framework presented in this paper. This will be shown in this section. 

If the second process is a recategorizing mechanism, in which z2I means "correctly 
reproduced" and in which z^ means "falsely reproduced", it is easy to see that in fact one can 
only observe the following combined counts: (y, +y<) and (y^+yj). 

When the Poisson reparametrization is used, the composite link matrix C is: 

C = 
1001 

0110 

If the second process recategorizes the outcomes of the first process, direct estimation 
by binomial algorithms is possible if q2=l-q3 (or /3,=-/3,). In this case only the parameters (32 can 
be estimated. However, for a recategorizing process this condition is very unrealistic. Moreover, 
one is interested in /3, rather than /32. 

S DISCUSSION 

This paper presents a comprehensive approach to tackling the situation where two processes 
are observed and interest lies in only one, because the other process is a "manipulating" 
process. Additional information in the form of explanatory variables may be incorporated into 
the approach, provided that this information is available for all units. An algorithm is 
presented, applying the composite link approach. It is shown that sometimes it is also possible 
to apply standard binomial algorithms to calculate the MLEs. Of course, the EM algorithm 
(Dempster, Laird and Rubin, 1977) can be used as well. 

By means of an example the problem of testing various strategies of "correcting" for 
missing data is presented. The choice is based on a likelihood ratio testing procedure by 
incorporating in a generalized model several strategies, of which the "simple-guess" strategy 
relates to the model-based direct-adjustment procedure of Rosenbaum (1987). Closely related, 
too, is the method of Conn, Lui and McGee (1989). These authors deal with the problem of 
estimating the incidence of home injury deaths in a situation where the place of occurrence is 
often unspecified. They use a logistic regression to estimate the probability of having a home 
injury and use this function in a one-time imputation phase for estimating the incidence of 
home injury deaths. 

One should be aware that the appropriateness of the model can never be proved by 
goodness-of-fit testing. It can only be proved by resampling within the missing-data subgroup. 
However, the assumption, stated in the example, that the missing-data-generating process does 
not depend on age seems to be supported by the data from Table II. For this specific 
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generalization of the model, a likelihood ratio test was performed. The observed small age 
effects were not statistically significant. If the model specification had given a bad fit, also a 
super-binomial model could have been postulated and fitted with the computer program GLIM. 
For the present example, this did not seem necessary. In the example, the fitted value for was 
0.91. This means that there is a slight tendency towards an overrepresentation of normotensives 
within the missing-data group, so that the optimal-guess estimate for the prevalence goes 
toward the lower boundary. Additional data were available for only 51 per cent of the missing 
cohort. In this group, attending the periodic health examination in one of the following three 
years, the prevalence of hypertension turned out to be 11.1 per cent. Although this subsample, 
too, is no random subsample of the missing data cohort, this finding supports the parametric 
findings. 

If the first process has more than two possible realizations, e.g., in misclassification 
problems of ordinal responses, the algorithm may be tedious to build, but the approach is 
essentially not different from the approach described in this paper. For the McCullagh (1980) 
models the composite link matrix C may become a band matrix because misclassification for 
ordinal data will most probably consist of a shift of one category away from the true category. 
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