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Abstract 

In an international comparative research project, in which 15 countries cooperate, a 

multitrait-multimethod approach is used to get an evaluation of survey measurement 

instruments. In this paper, the procedure that is followed in this project is clarified and 

illustrated with a study of the effects of response scale, order of the response scales and 

position of the questions in the questionnaire, on the quality of the obtained data. 
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1. Introduction 

There is an increasing interest in the quality of measurement instruments for survey 

research. The quality of survey data can be affected by many characteristics of these 

instruments, like the length of the question and the introduction to the question, the 

form of the response scale, the number and labelling of response categories, the 

position and context of a question and the data collection technique. An approach that is 

often used to evaluate measurement instruments is the multitrait-multimethod design. 

This approach was first introduced by Campbell and Fiske (1959), who suggested to 

measure each of a number of traits with a number of different methods, and provided 

guidelines to infer convergent and discriminant validity directly from the multitrait- 

multimethod correlation matrix. 

In recent work, confirmatory factor analysis is used mostly to analyse multitrait- 

multimethod data and to estimate validity, reliability, and method effects. Andrews 

(1984) first used this approach in a large scale study to evaluate many different 

measurement instruments across American and Canadian surveys. Very recently, a 

modified version of the causal model used to analyse multitrait-multimethod matrices 

with confirmatory factor analysis has been developed (Saris and Andrews, 1990). This 

second order factor model is used in an international comparative research project that is 

carried out at the moment. In this international project, 15 countries are collecting 

multitrait-multimethod data, and a meta-analysis will be carried out across all these 

datasets, to get an evaluation of measurement instraments in the line of Andrews' 

study. The study reported in this paper is part of this large scale project, and is an 

illustration of the procedure that will be followed. It examines the effects of the factors: 

response scale, order of the scales and position in the questionnaire, on the quality of 

the obtained data. 

2. The multitrait-multimethod model 

When a multitrait-multimethod (MTMM) design is used to evaluate the quality of 

measurement instruments, a causal model is usually specified for the vector of observed 

variables x as a function of t trait and m method factors, and confirmatory factor 

analysis is performed to analyse the data, for example with the LISREL program 

(Joreskog & Sorbom, 1983). Within the LISREL- framework, the causal model can be 

formulated as follows: 

x = A^ + 8 (1) 
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where: x is a vector of observed variables 

A = (A1 A,n) is a matrix of factor loadings (mt * t+m) 

= is a vector of t trait and m method factors (t+m * 1) 

8 is a vector of residuals (mt * 1) 

It is assumed that both the observed and latent variables are measured in deviations 

from their means and that the residuals are uncorrelated with each other and the factors: 

E(x) = 0; E(^) = 0; E(8) = 0; (2) 

E(88') = diag; E(^8') = 0 

The observed covariance or correlation matrix then is: 

E(xx') = L = AOA' + ©g (3) 

where: ® = E(^') is the covariance matrix of the t + m factors 

0g is the diagonal matrix of residual variances 

Matrix <I> can be partitioned as: 

O = cpt m 

djmm J 
(4) 

where: <bl 1 is a (t x t) symmetric submatrix of O that contains the trait factor 

variances and covariances or correlations 

Omm is a (m x m) symmetric submatrix of <D that contains method factor 

variances and covariances or correlations 

Omt = <Dt m js a (m x t) rectangular submatrix of d> that contains covariances 

or correlations of the m method factors with the t trait factors. 

Each observed variable xj is analyzed in this model as: 

Xj = X'j + km. + g, (5) 

The estimation of this confirmatory factor analysis model can sometimes lead to 

identification or convergence problems. As is discussed in Saris & van Meurs (1990), 

the most acceptable way to solve these problems is to assume zero correlations bet "Ten 

the method factors and zero trait-method correlations (O™™ is a diagonal or ide ity 
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matrix and <l>mt is a null matrix), and to assume that all method effects of a given 

method are equal over different traits (constraining the parameters in each column of 

Am to be equal). These assumptions were also made by Andrews in his original study 

(Andrews, 1984). In the matrix of factor loadings A the validity coefficients and 

method effects can then be found. The submatrix A1 contains zeros except for the 

loadings of observed variables on their respective trait factors. The standardized factor 

loading X1!,, for example, of observed score xj j on trait factor 1, is defined as the 

validity coefficient of that measure: it represents the direct effect of the trait on the 

observed variable. The submatrix Am also contains zeros, except for the loadings of the 

observed variables on their respective method factors. The standardized loading Xmn 

of the observed score X! j on method factor 1 is defined as the method effect coefficient 

of that measure: it represents the effect of that specific method on the observed variable. 

The validity coefficient squared is equal to the proportion valid variance, that is: the 

variance in the observed score, explained by the trait factor. The method effect 

coefficient squared is equal to the method specific variance in the observed variable. 

The reliability of a measure is defined in this model as 1 minus the error variance: it 

represents the direct effect that all variables, except the 8, have on xj (Bollen 1989). 

The modified causal model that has been proposed by Saris and Andrews (Saris & 

Andrews, 1991) is different from the standard MTMM model by the fact that a 

distinction is made between true scores and observed scores. The true scores represent 

the stable part of the response variables corrected for random measurement error. This 

model, which will be called the "true score model", is a second-order factor analytic 

model, which can be formulated as follows: 

y = At] + e 

and: 

Tl = n; +C 

where: y is the vector of observed variables 

T| is the vector of true scores: the stable part of the observed variables, 

corrected for random measurement error 

A here is a diagonal matrix with the unstandardized loadings of the 

observed scores on the true scores (mt * mt) 

e is a vector of random measurement errors (mt * 1) 

^ - (^l ^m) is defined as in (1) 

F = (P P") is a matrix with the second-order factor loadings of the true 

scores on the t trait and m method factors (mt * m+t) 

£ is a vector of unique components for the T), the true scores 

(6) 

(7) 
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The following standard assumptions are made: 

E(y) = 0; E(t)) = 0; E(e) = 0; E© = 0; E(0 = 0; (8) 

ECrie') = 0; £(110 = 0; E(^e’) = 0; E(^') = 0; 

E(£e') = 0; ECee1) = diag 

The covariance matrix for the observed variables is: 

E(yy') = X = ATO^FA' + ATA1 + ©E (9) 

where: O is the covariance matrix of the (t + m) second- order factors and is 

defined as in (4) 

VP is the covariance matrix of unique components in the true scores 

(mt * mt) 

©e is a diagonal matrix of the random error variances (mt * mt) 

For this true score model, the same additional assumptions are made as for the standard 

model: <l>rnm is a diagonal, (I>mI is a null matrix and the parameters in each column of 

Am are equal. One extra assumption is necessary to estimate the true score model: the 

unique components of the true scores are assumed to be zero: E(^’) = 0. Without this 

assumption, the model is not identified: as none of the measurement instruments is used 

at more than one point in time, the unique components cannot be distinguished from the 

random errors. The assumption is realistic only if one makes sure that different 

measures that are meant to assess one specific trait, do in fact measure the same 

construct. If, for example, one is interested in the number of response categories as the 

method aspect in a particular MTMM-study, then all questions used to measure the 

same trait in this study should be formulated literally the same and differ only in the 

number of response categories. If this is taken into account when designing a MTMM- 

study, and the questions are carefully formulated, the assumption seems reasonable. 

The true score validity is then defined as the standardized loading of a true score on a 

trait factor, and the true score method effects are defined as the standardized loadings of 

the true scores on the method factors. Thus in the T matrix both the validity coefficients 

and method effects can be found. The reliability coefficient of a measure is given in this 

case by the standardized loading of an observed score on its stable part or "true score", 

and can thus be found in the A matrix. Each observed variable yj is analyzed in the true 

score model as: 

Vj = A'j Pj ^ + Amj P'j + e, (8) 
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Path diagrams of the standard model as it as described above and of the true score 

model are given in figure 1 and figure 2 in appendix A. The standard model and the true 

score model are mathematically equivalent: given the assumption of zero unique 

variance of the true scores, coefficients resulting from one of the parameterizations can 

always be recalculated to obtain the coefficients that would have resulted from the same 

data with the other parameterization. It can be seen that by multiplying the validity and 

reliability coefficients of the true score model, we will get the validity coefficients 

estimated by the standard model, and by multiplying the method effect and reliability 

coefficient of the true score model, we will get the method effect validity and method 

effect coefficients of the standard model. The reliability coefficient of the true score 

model squared is equal to the reliability estimate of the standard model and both 

parameterizations will have exactly the same goodness-of-fit. The crucial difference 

between the two models is the interpretation of the estimates. The standard model 

provides estimates of the direct effects of the latent variables on the observed variables, 

called "indicator validity" and the "attenuated method effect" by Saris and Andrews 

(1991) and the explained variance of the observed variables, which is also called the 

homogeniety reliability (Andrews 1984, Bollen 1989). These estimates are useful if one 

is interested in the (causal) relationships between certain concepts, corrected for random 

and systematic measurement error. The parameters of the true score model are more 

useful for the evaluation of measurement instruments however, because the validity 

coefficients and method effects as estimated by the true score model are simpler 

statistical quantities. The indicator validity and attenuated method effect are not 

independent of random measurement error. Saris and Andrews (1991) described what 

consequences this has for the interpretation of the validity estimates: When the true 

score validity is 1, we know that the true score of a measure correlates perfectly with 

the trait factor and can only differ from this latent factor by a scale transformation. This 

means that the observed variable and the trait factor are the same except for random 

measurement error and a possible linear scale transformation. When the true score 

validity is less than 1, we know exactly what the relationship between the observed 

variable and the latent trait factor is after correction for random measurement error. On 

the other hand, the indicator validity estimated by the standard model can never be 1, 

because there is always random measurement error. When this indicator validity is less 

than 1 it's unclear wether this is caused by invalidity or by unreliability (random 

measurement error). This shows that the true score validity is a better quantitive 

estimate if one is interested in specific effects on the validity of the observed variable, 

independent of random measurement error. The same argument holds for the 

interpretation of the method effect estimates. As the main purpose of the international 
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measurement project is to estimate and compare the specific effects of characteristics of 

survey instruments on validity, method effects and reliability, the true score model is 

more useful for this project and for the present study. For other purposes, it will 

always be possible to derive the standard model parameters from the estimated due 
score parameters. 

3. The meta-analysis 

In the next three years data will be collected in 15 countries, using the MTMM-design. 

The analyses of these datasets with the due score parameterization will result in a large 

number of quality estimates. The next step in the project is to carry out an analysis with 

these estimates as dependent variables, to explain their variation by the characteristics of 

the different survey questions. We call this a "meta-analysis" because it involves the 

analysis of quality estimates obtained from the prior causal modeling analysis. For this 

meta-analysis, a database has to be constructed in which one "case" consists of (codes 

for) all the relevant characteristics of a specific question that was used in a survey in 

one of the participating countries; and the estimated validity, method, and reliability 

coefficients of that question. Several kinds of analysis techniques can be used to 

analyse this database and find the effects of characteristics like response scale, position 

in the questionnaire or length of the questions, on the quality coefficients. Given the 

nature of these characteristics however, an analysis technique has to be used that can 

handle nominal-scale predictors, nonlinear relationships, correlations among predictors 

and interactive effects. Suitable techniques are therefore Multiple Classification 

Analysis (Andrews et al.,1973) and dummy variable multiple regression. 

For the meta-analysis of the international measurement project the Multiple 

Classification technique, which is more convenient than the dummy variable regression 

approach and provides useful tables with the magnitudes of the effects of each category 

within a factor, was chosen. In the rest of this paper we will clear the whole procedure 

by an illustrative analysis of a small database, constructed from the results of three 

MTMM-studies. 

4. An illustration: the effects of response scale, order and 
position 

4.1 The data 

In 1988, three MTMM-studies were carried out in the Netherlands. The three datasets 

were collected from the tele-interview panel of the NIPO (a dutch Gallup organisation). 

A tele-interview panel is a representative panel of respondents that is provided with 
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home computers. The respondents can use these computers as they want, and in return 

they have to answer computerised interviews regularly. For dataset 1, respondents 

were asked to give their opinion about 3 changes in the board of the Dutch labour union 

that had taken place at that time: 

- The chairman Kok switched from labour union chairmanship to national politics 

- The chairman Pont, who succeeded Kok, switched from labour union chairmanship 

to the department of home affairs 

- The new chairman, that succeeded Pont, became Stekelenburg 

For dataset 2 and dataset 3, respondents were asked how interesting they judged the 

television broadcastings of 3 Olympic wintergames in Calgary. For dataset 2, these 

games were: 

- Skating 

- Skiing 

- Figure skating 

For dataset 3, these games were: 

- Skiing 

- Ice hockey 

- Ramp jumping 

For every dataset, the topics were presented 3 times to the same respondents: each time 

the same question was asked: "What do you think of this event, is it very good or very 

bad?" (dataset 1) or "how interesting did you consider this television broadcast?" 

(datasets 2 and 3). In each presentation however, a different response scale was used. 

Once the respondents had to answer on a category scale consisting of 7 labelled 

categories; once they had to indicate their opinion by giving a number between 1 and 

1000; and once they had to draw a line by moving the cursor on their screen from 1 up 

to maximally 38 positions, relative to the magnitude of their answer. As an illustration, 

the measurement model used for dataset 2 is given in figure 1. 



figure 1 
measurement model for dataset 2: television broadcasts of Olympic winter games 
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How interesting did 
you consider the broad¬ 
casting of the Olympic: 

In each of the three studies, respondents were randomly assigned to 1 of 4 possible 

conditions. These conditions differed in the order in which the different methods were 

presented: some respondents had to answer on the category scale first, and then on the 

other two scales, while for others the first scale they had to use was the number 

production scale or the line drawing scale. In addition, the conditions differed in the 

position of the questions within the total questionnaire: for some respondents, the 

described topics were the first topics in the questionnaire, for other respondents, the 

topics were presented at the end of the questionnaire. The four conditions, and the 

number of subjects per condition in each dataset are presented schematically in table 1. 

The total questionnaire consisted of questions about several topics, and lasted about 20 

minutes. 

table I 
_experimental conditions and number of subjects per condition_ 
Condition First topic Which N N N 

>n method dataset 1 dataset 2 dataset 3 
_questionnaire?_fust?_ 

1 yes catg. 
yes numb. 

2 yes line 

438 199 230 
398 

221 265 

3 no catg. 
4 no numb. 
4 no line 

416 205 234 
403 

226 251 
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4.2 The MTMM-analyses 

For each of the three datasets, we had a 3 (traits) x 3 (methods) MTMM design (see 

figure 1), for 4 groups: in conditions 1, 2, 3 and 4. A MTMM-true score analysis was 

carried out for each of the groups in every dataset, to estimate all the validity 

coefficients, method effects, and reliability coefficients. These analyses were done with 

the LISREL 7 program. To clear the nature of the quality estimates that resulted from 

the MTMM-analyses, a table with these estimates obtained from one of the datasets is 

presented here (table 2). The results obtained for the other two datasets had exactly the 

same structure and comparable chi squares. 

table 2 
quality estimates, derived for dataset 2 with the true score model, for each condition 
condition 1_validity_ method effects__reliability 

methods 

1 Skating 
2 Siding 
3 Figure skating 

y2 = 48.74 df = 21 

numb, line 

.95 

.95 

.95 

.98 

.98 

.98 

.99 

.99 

.99 

cat numb, line 

.32 .21 .12 

.32 .21 .12 

.32 .21 .12 

numb, line 

.93 .96 .98 

.93 .94 .97 

.92 .96 .98 

condition 2 validity method effects reliability 
methods 

1 Skating 
2 Skiing 
3 Figure skating 

= 37.38, df = 21 

numb, line 

.94 .98 .98 

.94 .98 .98 

.94 .98 .98 

cat. numb, line 

.33 .18 .22 

.33 .19 .22 

.33 .18 .21 

numb, line 

.88 .98 .95 

.88 .95 .94 

.89 .98 .98 

condition 3 validity method effects reliability 
methods 

1 Skating 
2 Skiing 
3 Figure skating 

y2= 19.84, df = 21 

numb, line 

.97 .97 1.00 

.97 .97 1.00 

.97 .97 1.00 

cat. numb, line 

.23 

.25 

.25 

.24 .02 

.24 .02 

.24 .02 

cat. numb, line 

.93 .97 .91 

.85 .97 .91 

.86 1.00 .94 

condition 4 validity method effects reliability 
methods numb, line numb, line numb, line 

1 Skating 
2 Skiing 
3 Figure skating 

.96 

.96 

.97 

y2 - 40.80, df = 21 

mean 
standard deviation 

.97 .98 

.97 .98 

.97 .98 

.27 

.28 

.26 

.97 
.02 

.23 .20 

.25 .21 

.23 .20 

.88 

.84 

.92 

.22 

.09 

.96 .94 

.92 .91 

.98 .94 

.93 
.41 
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We can infer some effects by just looking at this table: the method effects are all rather 

small, but the highest method effects are found for the category scale, which also 

generally has the lowest validity. The reliability coefficients show more variation 

between the traits than the validity and method effect coefficients. However, if we 

want to compare the quality estimates between the conditions, methods, and traits at the 

same time, it becomes rather complicated to infer anything from this table. Besides that, 

we can not easily compare the magnitudes of the differences. Therefore, a small scale 

meta-analysis was carried out, to test wether the variance in the obtained quality 

estimates could be explained by the different traits, by the methods used, or by the 

different conditions. 

4.3 The Multiple Classification Analysis 

The coefficients and characteristics of the questions from all three datasets were put 

together into one database. In table 3, the coefficients from dataset 2 are presented again 

as an illustration of the structure of such a database: the same coefficients can be found 

in table 2, but now they are accompanied by codes to identify for which item and in 

which condition they were obtained. 

val. 

.95 

.98 

.99 

.95 

.98 

.99 

.95 

.98 

.99 

.94 

.98 

.98 

etc. 

*0= no 
1= yes 

table 3 
_structure of the data for meta-analysis_ 
coefficients characterisucs/factois 

meth-_ref_first topic_outer method trait Haracet 

.32 .93 1* 

.21 .96 1 

.12 .98 1 

.32 .93 1 

.21 .94 1 

.12 .97 1 

.32 .92 1 

.21 .96 1 

.12 .98 1 

.33 .88 1 

.18 .98 1 

.22 .95 1 

11 12 
12 12 
13 12 
11 2 2 
12 2 2 
13 2 2 
11 3 2 
12 3 2 
13 3 2 
2 1 12 
2 2 12 
2 3 12 

Next, Multiple Classification Analyses could be carried out in which the factors were: 

trait, method, order of presentation and position in the questionnaire (first topic or not) 

and the dependent variables were the validity coefficients or the reliability coefficients. 

For the actual analyses, the LISREL estimates of these coefficients were multiplicated 

by 100. No tests were done on the method effect coefficients because in the true score 
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model, the method variance is the complement of the valid variance, so the method 

effects do not provide any new information, once the validity is known. Multiple 

Classification Analysis is available in SPSS, as an option of the analysis of variance 

procedure (ANOVA). It provides the usual analysis of variance tables and in addition 

tables of category means for each factor, expressed as deviations from the grand mean. 

In table 4 and table 5 the analysis of variance results are presented. 

table 4 
ANOVA on validity coefficients 

Source of variation SS df MS F 

FIRST* 
ORDER 
TRAIT SUBJECT 
METHOD 

explained 
residual 
total 

.59 1 
29.17 2 

.38 1 
134.06 2 

207.03 6 
103.64 101 
310.67 107 

.59 .58 
14.59 14.22 

.38 .37 
67.03 65.32 

34.51 33.63 
1.03 
2.90 

Signif. 

>.05 
.00 

>.05 
.00 

.00 

♦"First" in this and following tables stands for: First topic in questionnaire or not, "Order" stands for: 
order of presentaton of the methods (a method could be presented as the first, second or third method in 
the questionnaire). "Trait subject" indicates wether the subject of the traits was the labour union or the 
Olympic games. 

table 5 
ANOVA on reliability coefficients 

Source of variation SS df MS F Signif. 

FIRST 
ORDER 
TRAIT SUBJECT 
METHOD 

.59 1 
208.90 2 
67.78 1 
80.06 2 

.59 .08 
104.45 14.44 
67.78 9.37 
40.03 5.53 

>.05 
.00 
.00 
.00 

explained 
residual 
total 

462.46 6 77.08 
730.73 101 7.24 

1193.19 107 11.15 

10.65 .00 

When interpreting the ANOVA tables, it should be taken into account that the 

homogeneity of variance assumption is not met and that there are some complications in 

the data, like dependance between the LISREL quality estimates and correlations 

between predictors. The significance tests may therefore not be justified, but the tables 

still give a global indication of the effects: if we look at the sum of squares of each 

factor relative to the total sum of square, we see that order and method seem to have 

most effect on the validity coefficients; and order, method and trait subject on the 

reliability coefficients. In the Multiple Classification table (table 6) the effects are shown 

more specified. This table also clears the effect of the correlations between tors 
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by showing the effects of each predictor on the quality estimates, both before and after 

adjusting for the effects of all other predictors. 

table 6 
multiple classification analyses: effects of factor levels on quahty estimates 

factors 
and levels 

N 
number of 
estimates 

Validity 
Unadjusted Adjusted 
Dev’n Eta^ Dev'n Beta^ 

Reliability 
Unadjusted Adjusted 
Dev'n Eta^ Dev'n Beta^ 

FIRST 
no 
yes 

ORDER 
first 
second 
third 

54 
54 

36 
36 
36 

-.07 
.07 

-1.00 
1.00 
.00 

.00 

.23 

-.07 
.07 

-.75 
.53 
.22 

.00 

.10 

-.07 
.07 

-1.92 
2.23 
-.32 

.00 

.26 

-.07 
.07 

-1.58 
1.93 
-.35 

.00 

.19 

TRAIT SUBJECT 
Labour Union 36 
Olympic games 72 

.08 .08 
-.04 -.04 

.00 .00 

1.12 1.12 
-.56 -.56 

.06 .06 

METHOD 
Category 
Numbers 
Lines 

R2 ADJUSTED 
(Joint explanatory 
power of the factors) 

36 
36 
36 

-1.67 
.22 

1.44 
.56 

-1.45 
.06 

1.39 
.48 

1.85 
.93 
.93 

.67 

1.27 
.72 
.55 

.39 

table 7 
_mean validity and reliability coefficients _ 
___Validity_Reliability 

Mean 
Standard deviation 

97.11* 94.63* 
1.70 _3.34 

In the Multiple Classification table, the effects are expressed as deviations from the 

grand mean. These deviations show the category effects for each factor, that is: how 

much the validity or reliability would go up or down from the mean (presented in table 

7) if a measure had that specific characteristic. The unadjusted categories are presented 

as well as the category effects adjusted for the effects of all other factors. This means. 

Note that the estimates of validity and reliability are based on the LISREL parameters 
x 100. These estimates range between 84 and 100. 
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for example, that the total mean validity of 97.11 is lowered by 1.45 when a category 

scale is used, is increased with .06 when a number estimation scale is used, and is 

increased with 1.39 when a line drawing scale is used, holding everything else 

constant. So the mean vahdity coefficients for the three different methods are (when the 

effects of the other factors are taken into account). 

table 8 
_example: the effects of method_ 

mean validity coefficient 

95.66 
97.17 

_98.50___ 

METHOD 
category 
numbers 
lines 

The differences between the unadjusted and adjusted deviations are an indication of the 

amount of intercorrelation the analysis adjusted for. The squared betas that are also 

given in table 6 indicate the adjusted importance of a factor in accounting for the 

variance in the validity and reliability coefficients, that is: when all other factors are held 

constant. The (unsquared) betas are equivalent to standardized partial regressions 

coefficients in the sense used in multiple regression. The eta squared that can be found 

in the column "Unadjusted", indicates the proportion of variance explained by a factor 

when considered alone. The etas are equivalent to correlation ratios. As can be inferred 

from these measures, the validity is influenced mostly by the factor method, both when 

considered alone and in combination with all other factors. The factor "order of 

presentation" also has a moderate effect on validity: the mean validity is lowest when a 

method is the first one presented and is highest when it is the second, everything else 

being constant. The factors first and trait have almost no effects on the validity. For the 

reliability, some effects of the factor order of presentation were found: the mean 

reliability of 94.63 is 1.58 lower when a method is the presented first and 1.93 higher 

when a method is presented as second. 

Some extra Multiple Classification Analyses were carried out to test wether any first- 

order interaction effects accounted for a substantial part of the variance. This was done 

by combining two variables into one new variable, like is shown in table 8, and 

running a separate analysis for each combination variable. The effects of a combination 

variable include both the main effects and interaction effects of the original variables. 

The explanatory power of the combination variable can then be compared with that of 

the additive multiple classification results. It turned out that introducing a method x 

order factor increased the explained variance in the rehability coefficients somewhat: the 

effects of this factor are presented in table 9. No substantial interaction effects were 

found for the validity coefficients. 
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table 9 
multiple classification analyses: effects of method x order on reliability estimates 

N 
factor number of 
levels estimates 

Reliability 
Unadjusted Adjusted* 
Dev'n Eta^ Dev'n Beta^ 

METHOD*ORDER 

Category 
first 18 
second 6 
third 12 

Numbers 
first 6 
second 12 
third 18 

Lines 
first 12 
second 18 
third 6 

-2.02 -2.02 
3.70 3.06 

-4.38 -4.06 

-2.63 -3.28 
1.70 2.03 
1.59 1.59 

-1.38 -1.06 
2.09 2.09 
2.04 1.39 

.53 .49 

R2 ADJUSTED 
(Joint explanatory 
power of the factors) 

.54 

* The other factors in this analysis, for which the effects of method x order are adjusted, were again TRAIT 
SUBJECT and FIRST. The effects of these factors remained the same as in table 5 and are therefore not shown 
here. 

From this table it can be concluded that, although the reliability of a measure is 

generally lower when it is the first method presented, this effect is not as strong for the 

line drawing scale as it is for the other two scales. The category scale also decreases 

reliability when presented as third method. 

4.4 The effects of response scale, order and position 

The results of this study suggest that a line drawing scale might be the most valid 

method to measure opinions about political events or television broadcasts. This 

conclusion is in agreement with findings from some other studies that have been done 

in the context of the same international measurement project (Ohlsson and Roe,1990). 

The 7 points verbal category scale turned out to be inferior to both the number 

production scale and line drawing scale in the present study: it produced considerably 

lower validity estimates and its reliability was more dependent upon the order of 

presentation than the reliability of the other scales. The fact that some other factors 

included in this study did not affect the validity or reliability coefficients is of interest as 

well: apparently the quality of these data is not influenced much by trait content or by 

the position of the topics in the questionaire. 
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5. Applications 

The above conclusions are based on a small number of datasets and an analysis with 

only four factors. How general the effects of line drawing scales, category scales, 

topics and position really are, will be explored in the international measurement project 

of which this study is a part, together with the effects of many more characteristics. In 

the final large scale database there will be much more variation in quality estimates then 

in the illustrative study described here, because this study consisted of three quite 

similar datasets collected within one country. The effects of the factors in the meta¬ 

analysis will therefore probably be more pronounced then in the present study. With the 

information provided by the final meta-analysis, it will be possible to determine the 

expected level of validity for a specific survey question on the basis of its 

characteristics, and to decide for example, to improve this validity by using another 

response scale or by putting the item somewhere else in the questionnaire. It will also 

be possible, as Andrews (1984) has shown, to correct observed correlations between 

variables on the basis of the information about the measurement quality, to derive the 

true relationship between the variables of interest. It can be shown, using path 

analysis, that: 

p(yi y2) = ^t * p(Si t>i) * V2 + ^mt * >-m2 (9) 

where: pCyj y2) is the observed correlation between two measures that each tap a 

different trait. 
p(^! ^2) is the true correlation between the traits tapped by yj and y2. 

A.1! is the validity coefficient of measure 1 

X.l2 is the validity coefficient of measure 2 

X.m1 is the method effect of measure 1 

A.m2 is the method effect of measure 2 

This formula can be transformed to provide predictions of the true relationship: 

p(^i S2) = [p(yt y2) - ^mi * *-m2] / [ ^t * kl2 1 (10> 

This equation shows that it is necessary to have estimates of validity and method effects 

if one is interested in correlations between concepts. The approach that is followed in 

the international measurement project will provide such estimates for a large number of 

different types of survey measures. In addition, it will give information about the 

comparability of survey results between countries. 
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Appendix A 

Pathdiagrams of the models 



figure 1 

the standard model 
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figure 2 

true score model 
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