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LINEAR MODELS AND NOMINAL VARIABLES 
5 

Jan Lammers and Ben Pelzer * 

Abstract 

This article proposes a method for the analysis of nominal variables with linear 

models in which the dependency of a nominal variable upon one or more nominal 

and/or interval variables is expressed. The program being used is RENOVA and is 

available for main frame and pc. The interpretation of results is very easy and 

parallels the normal interpretation of contingency tables. It extents the latter by 

providing p.e. standard errors. It enables also to construct a two-dimensional table 

with frequencies that are controlled for the influence of other variables. Parameters 

are estimated by ordinary least squares and for the calculation of standard errors it 

is possible to take into account the heterogeneity of variances of the error terms. 

Introduction 

There is a long tradition of contingency table analysis in social science research. In 

the fifties and sixties, the analysis amounted to reading tables using simple rules 

of Lazarsfeld’s elaboration technique. Its popularity was based on the easy 

interpretability of the results. In the seventies and eighties, formal analysis with 

loglinear models steadily became more popular. Their attractiveness was due to 

many aspects, such as statistical tests of significance of many kinds of relations¬ 

hips and determination of the goodness of fit of the model. A serious drawback, 

however, was the difficult interpretation of the model parameters. 

Linear models for the analysis of contingency tabels have never gained this kind of 

popularity. Attempts have been made by Andrews and Messenger (1973), Boyle 

(1970) and more recently by Keller, Verbeek and Bethlehem (1985) and Israels 

(1987). Use of these models seems to be even suspicious because of not taking the 

statistical demands seriously. Their unpopularity is however in sharp contrast to 

the popularity of the intuitive inspection of tables using Lazarsfeld’s method, 

whereas the latter corresponds roughly with an analysis based on linear models. 

The address of both authors is: Department of Methodology, Faculty of Social 
Sciences, University of Nijmegen, Postbus 9108, 6500 HK Nijmegen, tel. 080- 
612025/080-612943. 
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In this article we demonstrate and discuss an analysis of tables using linear 

models. The authors have developed a computer program for mainframe and 

personal computer, called RENOVA (Lammers, Pelzer, 1990). It is very similar to 

the ANOTA program of Keller, Verbeek and Bethlehem but contains some impor¬ 

tant extensions1. As a consequence, the characterization these authors give of 

their program ANOTA, can be applied to RENOVA. Compared to logit- and probit- 

analysis it allows for an easier interpretation of the results. However, the price 

payed for that is that proportions can be estimated outside the range of 0-1 and 

the parameters are estimated less efficiently. In other words it drops some 

statistical accuracy to gain ease in use. The article is organised as follows. In the 

following section we give an idea of uses of RENOVA by presenting some results. 

Section 2 deals with the formal aspects of the analysis. Finally, in section 3 we 

discuss the problems that arise in analyses of this type and what to do about 

these. 

1. Uses of RENOVA 

To give an idea of what RENOVA does, we use data from the project ‘Religion in 

Dutch society' (a.o. Felling, 1985). In this survey 2966 randomly selected people are 

asked: is a woman better suited to raise children than a man? The respondent 

could agree (+), disagree (-) or do neither (0). We wish to analyze the dependence of 

the answers to this question upon respondents marital status (M), sex (S) and age 

(A). We regard the dependent variable (Y) as nominal with three categories. The 

independent variables M and S are treated as nominal variables with 4 (unmar¬ 

ried, married, divorced, widow(-er)) and 2 (man, woman) categories respectively 

1 RENOVA and ANOTA differ in the following aspects: 
1. In ANOTA only nominal variables can be entered in the model. In RENOVA it is 

possible to enter nominal and interval variables as dependent or as independent 
variable. 

2. In order to reach column independency of the design matrix ANOTA uses the sample 
probabilities as general reference for all nominal predictors. In RENOVA for every 
predictor one can choose between a general reference (the sample probability), the 
probability of a particular category or the probability of the directly preceding or 
following category. 

3. ANOTA calculates the standard errors of the regression coefficients without taking 
into account differences of variance of the error term (that is heteroscedasticity). In 
RENOVA it is possible to input the suitable data for the calculation of the standar- 
derrors based on heteroscedasticity. 
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and A is considered as an interval variable measured in years. 

Table 1 Bivariate regression effects of each predictor on Y (Is a woman 

better suited to raise children than a man?). 

Y 

+ 

o 

In parentheses the standard errors. 

An asterisk indicates that the deviation from the reference is significant at the 5% level. 

Gen. 

% 

44.67 

17.67 

37.66 

Marital status 

unm mar div wid 

13.92* 3.78* 4.55 21.64* 
(1.57) (.62) (4.24) (4.95) 

1.38* -.19 -5.17* .23 
(1.22) (.48) (3.30) (3.85) 

12.54* -3.60* .62 -21.87* 

(1.53) (.61) (4.14) (4.83) 

Sex 

man woman 

ref 

ref 

ref 

-19.07* 

(1.80) 

3.09* 

(1.40) 

15.98* 
(1.76) 

Age 

1.10* 

(.06) 

-.13* 
(.05) 

-.97* 
(.06) 

Table 1 gives the bivariate raw regression effects of each predictor on Y. In the 

second column the sample percentages of the responses are given; 44.67% of the 

sample agrees, 17.67% is indifferent and 37.66% disagrees with the statement. 

Columns 3 up to 6 contain the deviations from these percentages within categories 

of the marital status. For example the percentage of unmarried persons who agree 

with the statement is 13.92% lower than the general percentage, that is 30.75%. 

The deviations for the other response categories of Y are 1.38% and 12.54%. Their 

sum is zero. The categories of sex (columns 7 and 8) are not compared with the 

general percentage. For this variable the category man is taken as reference group. 

Among women the percentage of agreement is 19.07% lower than the percentage 

among men and this difference is significant. The regression effect of age in the 

last column parallels the usual meaning; it indicates the increase or decrease of 

the percentage of the response category for an increase of one year of age. All these 

effects are significant. 

The interpretation of the results for the nominal predictors so far is very similar to 

the usual way of reading a contingency table. The similarity of the two methods is 

seen in the fact that the table of observed frequencies can be derived from the 

parameters of marital status or sex with Y. The regression effects reflect nothing 

more than the over- or underrepresentations of a category of the nominal variable 
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with reference to the sample or to a reference category. The extra information 

contained in table 1 is the standard errors. 

In table 2 the regression effects are controlled for the other independent variables. 

Column 2 contains again the general percentages in the sample. From these, the 

percentages in the categories of marital status deviate. The deviation for example 

for unmarried persons is now only 2.62% lower than the general percentage of 

44.67%. This deviation is controlled for the other variables and is not statistically 

significant. 

Table 2 Multiple regression effects of each predictor on Y (Is a woman 
better suited to raise children than a man?). 

Gen. 

% 

44.67 

17.67 

37.66 

Marital status 

mar div wid 

-2.62 

(1.71) 

-.03 

(1.41) 

2.65 
(1.53) 

.69 -1.66 7.95 
(.62) (4.03) (4.89) 

.21 -4.41 1.80 

(.51) (3.32) (4.03) 

-.90 6.07 -9.76* 
(.62) (3.99) (4.84) 

Sex 

man woman 

ref 

ref 

ref 

-20.13* 
(1.72) 

3.14* 

(1.41) 

16.99* 
(1.70) 

Age 

1.04* 

(.07) 

-.13* 
(.06) 

-.91* 
(.07) 

In parentheses the standard errors. 
An asterisk indicates that the deviation from the reference is significant at the 5% level. 

The other effects can be interpreted in a similar way. Controlling for the other 

predictor variables, the difference between men and women turns out to be even 

greater than in table 1. The effects of age do not change very much. It is also clear 

from table 2 that sex and age are more important in explaining the answers for 

the different levels of Y than marital status. This can roughly be derived from the 

strengths of the effects in table 2. But for establishing the relative importance of 

nominal and interval variables table 2 is less suitable because it contains the 

unstandardized regression effects. The proportion variance of Y a predictor is 

directly responsible for, is a better measure for this. Table 3 gives the percentages 

of variance explained by each predictor after elimination of the effects of the other 

predictors. 

In the last column of table 3 we see that an extreme answer is generally explained 

more than an indifferent answer. If we examine the explanatory power of each 
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predictor separately, the same conclusion can be drawn. Age is the most important 

predictor, followed by sex. Marital status hardly matters at all. 

Table 3 Percentage variance of Y, explained by each predictor directly 
and the percentage of totally explained variance. 

Y Mar. Sta- Sex Age Total 
tus 

+ 
0 

.17 4.08* 8.83* 13.80* 

.07 .17* .25* .47* 

.30* 3.06* 7.07* 11.13* 

* significant at 5% level 

Table 3 gives information about each level of Y. It could be desirable to know to 

what extent Y as a whole is influenced by each predictor. For nominal predictors, 

this can be done by reconstructing the observed table using the uncontrolled 

effects. This is done in tables 4 and 6. Tables 5 and 7 contains the reconstructed 

tables based on the controlled effects. 

Table 4 and 5 Observed and controlled percentages of answers +, 0 
and - in categories of marital status. 

Y 
Observed table 
Marital status 

unm mar div wid 

Controlled table 
Marital status 

unm mar div wid 

+ 
0 

30.7 48.5 49.2 66.3 
19.0 17.5 12.5 17.9 

50.2 34.1 38.3 15.8 

42.0 45.4 43.0 52.6 

17.6 17.9 13.2 19.5 
40.3 36.8 43.7 27.9 

total (735)(2008)(128) (95) (735)(2008)(128) (95) 

chi-square 101.34 chi-square 9.50 

degrees of freedom 6 degrees of freedom 6 
Cramers V .1307 Cramers V .0408 

From the tables 4 through 7 it is clear again that the association between marital 

status and Y is quite sensitive to controlling for the other independent variables, 

whereas the relation between sex and Y is not. In the former case Cramers’ V falls 

down from .1307 to .0408 and in the latter case this measure remains approxima¬ 

tely constant at values of .1963 and .2075. The disappearance of the association 

between marital status and Y could be due to the fact that age and sex antecede 



10 

Table 6 and 7 Observed and controlled percentages of answers +, 0 
and ■ in categories of sex. 

Y 

Observed table 
Sex 

man woman 

Controlled table 
Sex 

man woman 

+ 

0 

54.8 35.7 

16.0 19.1 
29.2 45.2 

55.3 35.2 

16.0 19.1 
28.7 45.7 

total (1397) (1569) (1397) (1569) 

chi-square 114.26 chi-square 127.40 
degrees of freedom 2 degrees of freedom 2 
Cramers V .1963 Cramers V .2075 

both marital status and Y. We could therefore proceed in taking marital status as 

the dependent variable and analyzing the effects of sex and age on this variable. In 

fact this would be what is done in a usual path analysis. For the treatment of 

interval as well as nominal variables in a path analysis we refer to Israels (1987). 

It suffices to say here that such an analysis can be done with RENOVA. 

2. The RENOVA model 

RENOVA is the abbreviation of REgression analysis with NOminal VAriables. The 

underlying model is a linear regression model in which interval and nominal 

variables can be entered as independent and as dependent variable. When the 

dependent variable Y is of nominal level, the model is a multivariate linear model. 

Y is conceived as a set of dummy variables with one dummy variable Yj for each 

category. Yj is 1, if the respondent belongs to category j and zero if he or she does 

not. If the dependent variable is at the interval level, the model reduces to a 

univariate model for Y. 

On the predictor side of the model, interval and nominal variables may be used. 

Nominal predictors are dummified in the same way as Y. To continue with the 

example of the previous section with a nominal dependent variable Y, two nominal 

variables (marital status with dummies Ml, M2, M3 and M4 and sex with 

dummies SI and S2) and one interval variable (age), the linear model for Y, is as 
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Yji = bjo + b^Ml, * bJ2M2i * bJ3M3i + bJ4M4t 

+ bJ6Sli+bj6S2i+bj7Ai+eJi 
(1) 

or in matrix form: 

Vj ~ Xbj + Bj (2) 

where yij is a vector of scores on Yj( X is a (n*p) matrix with scores of n individuals 

on p predictors (the dummies and interval variables), bj the vector with p parame¬ 

ters and ej the vector with error terms. It is usually assumed that each error term 

is normally distributed with an expectation of zero and a variance that is the same 

for all error terms (assumptions of normality and homoscedasticity). In the case of 

a nominal dependent variable, model (1) is a probability model. For the expectation 

°f Yjj, EiYjj), is the probability Pj, of belonging to category j of Y for individual i and 

is equal to the structural part of the model because the expectation of the error 

term is zero. 

In model (1) the dummies of marital status are a perfect linear combination of 

each other and so are the dummies of sex. Thus the model cannot be estimated. 

There are several ways to solve this problem. Most commonly one dummy of each 

nominal predictor is eliminated with the consequence that the category of which 

the dummy is eliminated, becomes the reference category for that variable. In this 

example it seems a good choice for sex. Whichever dummy is eliminated, the 

parameter will indicate the difference of predicted Y^ between both sexes. We take 

the first dummy and remove the first vector of matrix X for sex and the correspon¬ 

ding parameter of bj in (2). For marital status, the use of a reference category is 

less desirable. This variable has four categories, none of which is a logical choice 

for reference category. In such cases, it is preferable to use not a particular 

category but the sample as a reference. This is realized by imposing the following 

restriction on the parameters. In equation form for a variable with K categories 

(from k to K) the restriction is: 



12 

K K 

(3) 

The restriction specifies that the weighted sum of the parameters equals zero. The 

weights are the proportions p of individuals in the categories of the predictor. 

Because the relative frequencies are the best estimates of these proportions, the 

frequencies of the categories can be taken as weights as well. If the number of 

nominal variables of which the parameters are restricted in this manner, is r, the 

restrictions can be added to model (1) as follows: 

S X / \ 

(4) 

In (4) 0 is a (rxl) null vector and R is a (rxp) matrix with, on each row, the 

proportions (or frequencies) of the categories in the suitable places and zeros 

elsewhere. In the previous example with restrictions only on the parameters of 

marital status, R is the following matrix: 

K = ( 0 /mi 0 0 ) 

The first zero pertains to the intercept, the second and third zero to the parame¬ 

ters of sex and age. After imposing this restriction on the parameters of marital 

status and after elimination of one dummy of sex, model (2) is estimable. We have, 

however, modified the model a little further to let the estimate of the intercept be 

equal to the sample mean. This can be realized by subtracting the means of sex 

and age from the original scores. For the OLS-estimate of the intercept in this 

example, this would be: 

bj0 = Yj- (bjtMl + 6,,M2 + f,j3MZ + 6j4M4) - bj6S2 - hj7A (5) 

The term in parentheses is zero because the mean of a dummy is the proportion of 

individuals in the corresponding category and because of the restriction on the 

parameters of marital status. The other terms, except the mean of Yp are zero 
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because the means of the normalized dummy and interval variable are zero. So the 

intercept is the mean of Y,. In order to compute the parameters of the model we 

can premultiply the equation on both sides with the transpose of the designmatrix. 

yj_ 
vO, 

= (*■1^)1- 
R 

bjAX\K) (6) 

Assuming that the error terms are uncorrelated with the X-variables, it follows 

that 

6J=(X‘X + R‘Ry'x!yJ (7) 

Vector Sj contains the OLS estimators of bj of which the restricted parameters 

satisfy restriction (3). The results for the example were given in Table 2 above. For 

the calculation of the standard errors of bj we will replace (XX + A'f?) ' by the 

letter K for simplicity’s sake. We then obtain 

Bj = KXy/j = KX{Xbj + ey.) 
(8) 

= KXXbj + KXe, 

Because vector bj in the first term on the right side contains the population 

parameters, the variance of hj does not depend on the first term. In the second 

term is stochastic, so the variance-covariance matrix of bj can be written as 

cov(bj) = cov[kXBj) = KX cov(ej) XK = KX E{eJe‘]) XK (9) 

Matrix E[eje^ is of the order n*n with the variances of e^ in the diagonal and the 

covariances in the ofT-diagonal positions. Because of random sampling it is 

reasonable to assume that the covariances are zero. If we assume moreover, as is 
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usually done in OLS, that the variances are equal (homoscedastic), cov (bj) can 

further be simplified to: 

cov(bj) = o2KX,XK (10) 

The symbol o2 denotes the variance of e^. This quantity is unknown, but is usually 

estimated by: 

(ID 
n -p -1 

where n gives the sample size and p the number of independent vectors of the 

design matrix X. However the assumption of homoscedasticity is not always met. 

Some consequences of this will be discussed below. 

Once the model is estimated, the proportion of explained variance can be calcula¬ 

ted as an indication of how much the predicted scores deviate from the observed 

scores. This statistic is of value for the whole model, but can also be useful for a 

part of the model. Especially the proportion of variance explained by a particular 

variable can be interesting. This proportion is calculated with the estimated model 

after having set to zero the effects of all other variables. With the predicted scores, 

thus calculated, the proportion of explained variance that is directly attributed to a 

particular predictor is obtained2. 

3. Discussion 

2 For an interval variable it can be shown that the resulting proportion equals the 
squared standardized regression coefficient. For a nominal variable an analogue of this 
squared standardized coefficient exists (Eisinga, Scheepers, Snippenburg, 1991). To get 
this coefficient, first a compound variable is constructed using as weights the unstandar¬ 
dized regression effects of the dummy variables of the nominal variable. In the second 
step the dummies of the nominal variable are replaced by the compound variable and 
the standardized regression coefficient of the compound is calculated. For this coefficient 
it is also true that the square can be interpreted as the proportion of variance which the 
nominal predictor is directly responsible for. 
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There are especially three assumptions, usually made in regression analysis, which 

are problematic if the dependent variable is categorical: linearity, normality and 

homoscedasticity. To start with the last two, it can easily be proven that both 

assumptions are violated in the case of a categorical dependent variable. Violation 

of the assumption of normality is the least problematic. It is often mentioned in 

statistical literature that results of tests of significance of the b parameters are 

fairly robust against violation of this assumption. 

The presence of heteroscedasticity is more serious. Pretending that it does not 

exist, could lead to standard errors of parameters which are quite different from 

those calculated on the basis of heteroscedasticity. Findings can therefore wrongly 

be said to be statistically significant. One can expect, however, that if the probabi¬ 

lities of belonging to a particular category of Y, vary between .20 and .80, the 

damage caused by heteroscedasticity is minor. Apart from that, it is also possible 

to estimate the standard errors taking into account the unequal variances of e^’s. 

In the variance-covariance matrix of Sj (see (9)) estimates of the variances can be 

placed on the diagonal of matrix It can easily be shown that the variance 

of e^ is Pjid-Pjj). So, having an estimate of is sufficient. This estimate can be 

obtained with the estimated model. The computer program RENOVA is suited to 

calculate the standard errors in this way. Thus, RENOVA gives the OLS estimator 

of the model parameters and can produce its standard error taking into account 

heteroscedasticity3. 

The assumption of linearity is perhaps most often discussed (Aldrich and Nelson, 

1984). The disadvantage of the linear model is that it often occurs that probabili¬ 

ties are predicted outside the range 0-1. Competitors of the linear model are logit 

and probit models. They never give such disputable results. Predictions outside the 

The OLS estimators in the case of a categorical variable Y are unbiased and consistent, 
but not efficient. That is, firstly the mean of all estimates obtained with samples of the 
same size is the population parameter (unbiased), secondly increasing the size of the 
sample, the variance of the estimator will become smaller (consistent), but thirdly the 

tlle estimator is> given the sample size, not as small as possible (Gujurati, 
1983). The WLS^ estimator possesses this last property, but has the disadvantage that 
the estimated p/s do not necessarily sum up to 1 over all categories of the dependent 
variable. 
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0-1 range can be brought about by sampling inaccuracy. They can also arise as a 

consequence of misspecification and in that case they say something about the 

quality of the model. Cases with a predicted probability outside the 0-1 range can 

be sought. One may consider to eliminate them or other cases that are responsible 

for those deviances, from analysis. After having eliminated the 9 out of 2966 cases 

which are responsible for such undesired predicted probabilities in the aforehand 

example, the estimated parameters hardly changed. However, the purpose of 

analysis is often to map the differential influence of a set of independent variables 

on a dependent variable and not to predict probabilities. We believe therefore that 

for the purpose of acquiring insight into the relative importance of variables, a 

linear model is a useful and easy tool. 
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