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Comments on "A note on the calculation of latent trajectories in the quasi Markov simplex 

model by means of the regression method and the discrete Kalman filter" by C.V. Dolan & 

P.C.M. Molenaar. 

J. Molenaar 

and 

J.H.L. Oud 

1. Introduction. 

In the following we refer to Dolan and Molenaar’s paper mentioned above by DM. In DM a 

comparison is made between two methods to estimate latent trajectories: the discrete Kalman 

filter and the regression estimator. This comparison is interesting because it brings together 

people from the field of control theory on the one hand and people mainly acquainted with 

factor analytic and regression techniques on the other. However, the presentation in DM has 

some confusing aspects culminating in the statement that the regression estimator is superior 

compared to the Kalman filter. This statement is remarkable, since the Kalman filter is designed 

to be optimal in control theory and so, according to DM, the regression method should be 

something more optimal than optimal. To clarify the most important issues we shall focus 

below on two points. In §2 we point out the characteristics of estimation theory in a dynamical 

system. In §3 we show the consequences of specific choices for the initiahsation of the Kalman 

filter. Our conclusions are summarized in §4. In Appendix A it is pointed out under which 

conditions the Kalman filter reduces to the regression resp. Bartlett estimator. 

For ease of comparison, our comments will follow, as far as possible, the notation used in DM, 

although this is not commonly accepted in the literamre. We shall notationally distinguish the 

estimator from the estimate by underlining the estimator. 

For readers not familiar with the terminology used in the social sciences we explain two 

frequently used terms: an estimator is called ‘cross-sectional’, if it is based on data gathered at 
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a single point in time, whereas it is called ‘longitudinal’, if it makes use of data, gathered at 

distinct, successive points in time. Part of the confusion in DM stems from the fact that the 

regression estimator is originally designed as a cross-sectional estimator (just as the Bartlett 

estimator; see [3] but that it is applied longitudinally in DM. How the regression method 

relates to the Kalman filter and to the Kalman smoother, when the former is applied longitudin¬ 

ally, will be addressed below. 

2. Dynamical versus statical estimation in the longitudinal case. 

By a dynamical system we understand a system which evolves in time. We assume that the 

system is characterized by a vector r|(t). In control theory r|(t) is called ‘state’, whereas in 

factor analysis the terms ‘factors’ or ‘latent variables’ are used. The vector r|(t) is in general 

not directly measurable, but it has to be estimated from measurements on related properties of 

the system. We assume that data y(t) is acquired on successive, discrete times t„ i=l,2,... . It is 

the great merit of Kalman [2] to have shown that under some assumptions the estimation of 

tiCti) from data {y(ti).yCtj)} can be performed by a recursive algorithm. It is therefore 

necessary that the states riCti,,) and r|(0 at consecutive times are linearly related (eq. (6) in 

DM). Also, a linear relationship between 11(0 and the data y(t,) at all times t, has to be 

assumed (eq.(7) in DM). Furthermore, the matrices B(tM,ti) A(tJ, TfO and 0(0, as defined in 

DM, have to be known in advance. In practice, the determination of these matrices, i.e. the 

modelling and estimation of the system, is a separate problem. It might be solved, for example, 

by means of the LISREL program as mentioned in DM. If data become available continuously 

in time instead of at discrete times, the so-called Kalman-Bucy filter could be applied. The 

mathematical derivation of the Kalman-Bucy filter is considerably more complex than that of 

the discrete time Kalman filter [11], 

The algorithm by Kalman yields the estimator Hftltj) for the state 11(1,) in terms of the data 

(y(ti),—,y(tj)). The cases ( > (, t, = ( and t, < ( arc referred to as prediction, filtering and 

smoothing, respectively. The recursive formulae for filtering and (fixed interval) smoothing are 

given in DM. The estimator Hftltj) is designed to be unbiased and to have minimum variance. 

Whether it really has these properties depends on the initialisation of the recursive scheme. Wc 

shall deal with this point further in §3. 

It is important to realize that the Kalman filter has originally been derived to cope with the 

problem of estimating the state of a dynamical system in real time: as soon as new data y(tw) 

becomes available, the current estimate nftlt,) can be updated (via formulae (8)-(ll) in DM), 

resulting in the new estimate Ti(ti+1lt1+1). Because of its recursiveness, the procedure is efficient 

both in time and storage. As counterpart of dynamical estimation, or filtering at consecutive 

times, we like to introduce the term statical estimation for the case that all data have been 

recorded before the estimation starts. If the underlying system model has a recursive character, 

as is e.g. embodied in eq.(6) in DM, and the estimation is statical, application of the Kalman 
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fixed interval smoother ll(t1IT) comes into consideration with T the latest time point. Because 

the Kalman smoother rt(t,IT) is based on more information, viz. {y(t1),...,y(T)}, than the Kalman 

filter nWti). which merely exploits the data {y(t1)>...,y(ti}}, it is quite clear that the smoothed 

estimate is more reliable than the filtered one, except for t, = T. This manifests itself in the 

variances: the diagonal elements of the filter covariance matrix VCt,) in (11) of DM are always 

larger than or equal to those of the smoothed covariance matrix VCflT) in (21) of DM. 

In statical estimation other estimators are, of course, also applicable, e.g. the regression or the 

Bartlett estimators, though these originally cross-sectionally designed methods do not take into 

account any recursive character of the underlying model. In DM it is argued that for statical 

estimation the Kalman smoother and the regression estimator yield the same results. It should 

be noted that this central theme in DM is proven for T=2 and with respect to a special model, 

the Markov simplex model (see appendices in DM). It is illustrated for T=10 with this special 

model by means of a simulation study. However, because both estimators are designed to have 

minimum variance, it is trivially true for the general case as well under certain initialisation 

conditions for the Kalman smoother. These conditions will be pointed out in §3. This does 

certainly not mean that both methods are equally valuable in practice. Because the Kalman 

smoother makes use of the recursiveness of the model, the matrices involved have the sizes q x 

q, q x m and m x m with q and m the dimensions of Tl and y respectively. These dimensions 

are independent of the length T of the time series. Application of the regression estimator 

requires matrices, which are at least a factor of T larger, so that this method quickly becomes 

intractable for increasing T. This aspect has also been stated in DM. However, also for short 

time series the Kalman smoother probably deserves preference because of its greater efficiency. 

Also the calculation of the smoother covariance matrix VftlT) can be performed easily on the 

basis of small sized matrices. In fact, there is little in favor of using the regression method 

instead of the Kalman smoother in case of statical estimation. Moreover, in the social sciences 

and in control theory estimation is often dynamical. The Kalman filter has many potentialities 

as a device for monitoring the development of individuals and it is currently used in that way 

in education [5], For that purpose, it clearly makes no sense to wait with the data processing 

until the end of development is reached. On the contrary, the monitoring is usually meant to 

make timely intervention possible. 

3. Initialisation of the Kalman filter 

Because the Kalman filter is recursive, one has to start it at some (virtual) time, say t„ < t,. In 

§ 3.3 of [9] several possibilities are listed. The initialisation of the Kalman filter and the 

consequences for its optimality are seldom dealt with systematically in the literature. This is not 

surprising, because it may be shown, see e.g. (1], that under certain conditions the influence of 

the initialisation damps out if time elapses. This aspect has been demonstrated in [12] via a 

simple example. By plotting the diagonal elements of V(ti) it is directly established from visual 
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inspection when the influence of initialisation gets lost. So, apart from a transient regime, the 

filter results are independent of the initialisation. This implies that in the long run the filter 

(and also the predictor and smoother) is unbiased and has minimum variance. 

In DM, as often in social sciences, the emphasis is on short time series, which are still in the 

transient regime. Let us therefore examine this aspect more carefully. As dealt with below, the 

Kalman filter has its optimality properties of unbiasedness and minimum variance at one time if 

it had these properties already at some time earlier in its history. So, formally, one should have 

at one’s disposal at the (virtual) time ^ an estimate obtained from an estimator with the 

optimality properties. Let us denote this estimate and its associated covariance matrix by r)0 and 

V0 We also have to know the transition matrix Bft.O in (6) of DM and the noise covariance 

matrix Tftt,,). If started with initial estimates iKtJto) = ti0 and V(to) = V0 the filter would remain 

unbiased and keep minimum variance for all t,, i= 1,2.This holds for filtering as well as for 

prediction and smoothing. As for the minimum variance property this is inherent to the 

derivation of the filter, see e.g. [1,2,4]. As for the unbiasedness this can be shown as follows. 

Let us introduce the estimation error e(ti) by 

e(0 = nWti) - flO) 

From (6)-(8) in DM one may deduce the recursive relation 

eft.,) = ft - Kft.1)Aft.I))Bft.1,Oeft) + (I - Kft.JAft.,) Cft) + Kft.,) eft.,) 

If we take the conditional mean of both sides, given the initial state rift), we find that 

E(eft„) I rift,) = 0 iff E(eft) I rift,) = 0. 

This implies that, conditionally on Tift), ilftjt,.,) is unbiased if and only if fiftltj is unbiased. 

So, if nftft) is unbiased, this also holds for all flftltft i = 1,2,... . 

In practice, however, one has at time 4 little or no information about the system. Then, two 

strategies come into consideration: 

a. One takes more or less reliable guesses for the prediction estimates 11(1,14) and V(t,l4) 

and starts the filter by applying (8) and (11) in DM. The consequence is that in the 

transient regime the filter will in general neither be unbiased nor have minimum 

variance. 

b. One chooses 11(414) arbitrarily and for V(t,l4) a diagonal matrix with very big diagonal 

elements. The filter interprets this choice as if information is transferred from 4 to t„ but 
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this information is completely unreliable and therefore ignored. As pointed out in 

Appendix A, and also in [6,8], the Kalman filter estimator 21(1,Itj) reduces in this case to 

the cross-sectional Bartlett estimator at time t, which is unbiased, i.e. E(e(t,)lTi(t,)) = 0 

and also ECeCOItlOo)) = 0. Because the filtered estimator at t, is thus unbiased, all 

filtered, predicted and smoothed estimators at the following times are also unbiased. 

In DM approach a. is approximately followed. From the Appendix in DM it may be deduced 

that one sets rather arbitrarily riOA) = 0 and V(tilto) = EfnOJri'Ct,)]. In Appendix A it is 

pointed out that for this specific choice the Kalman estimator nCtilt,) reduces to the cross- 

sectional regression estimator at time t,. This estimator is biased, E(e(t,)lr|(t,)) * 0 and 

E(e(t,)lTi(to)) * 0, although it has less variance than the (minimum variance unbiased) Bartlett 

estimator. For t, > t, it leads to Kalman filter estimators 21(1,11,), which are biased. The 

corresponding variances, i.e. the diagonal elements of Vit,), are in general and especially in the 

transient regime smaller than for the initialisation approach b. It is, however, by no means clear 

that this is an advantage in view of the clear bias. Altogether, there does not seem much to 

recommend the regression estimator when one is interested in estimating particular subjects’ 

latent values or trajectory. In our view method b. using the Bartlett estimator, is the preferred 

way of initialisation of the Kalman filter in most practical situations. It is a cautious procedure, 

because it allows the estimator to have some more variance for getting minimum variance 

unbiasedness in return. 

4. Conclusions 

We summarize our conclusions: 

i. For dynamical estimation the recursive Kalman filter is preferable to the longitudinal 

application of the regression estimator. The implementation of the Kalman filter is simple 

and the matrices involved are independent of the length of the time series. Also, the 

covariance matrix estimates can easily be calculated in terms of the same matrices before 

any measurement is done. 

ii. For statical estimation the initialisation of the Kalman filter in DM is chosen such that 

the (longitudinally applied) regression estimator based on the data {y(t,).y(T)), 

becomes equivalent to the Kalman smoothed estimator llWT), so that in Table 2 the 

equivalence of columns 2 and 3 and of colums 5 and 6 is trivial. For the same reasons 

as given under i„ the Kalman smoother is always to be preferred to the regression 

estimator. 

iii. Comparison of colums 1 and 2 and colums 4 and 5 in Table 2 in DM is not fair, 
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because colums 1 and 4 are based on less information than used for colums 2,3,5 and 6 

(except for t = 10). It gives the false impression that the regression estimator as 

developed in factor analysis would be more optimal than the Kalman filter. 

iv. For short time series the results of the Kalman filter (and also of the predictor and 

smoother) are quite sensitive to the way the filter is initialized. In most practical 

applications method b in the preceding section, using the Bartlett estimator, is the 

preferred procedure to start the filter. 
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Appendix A. 

Here, we point out under which conditions the Kalman filter reduces to the regression resp. 

Bartlett estimator. The latter estimator is also known as the generalized least squares estimator. 

The insights presented here are in particular important for the discussion concerning the 

initialisation of the Kalman filter. 

Applying eq. (8) in DM at t,, = 0, the Kalman filter estimator ri(lll) with t,=l can be written 

as 

(A.l) 11(111) = [I - K(l)A(l)]ri(llO) + K(l)y(l) 

with I the q x q unity matrix. The corresponding covariance matrix V(l) follows from (11) in 

DM: 

(A.2) V(l) = [I - K(1)A(1)]V(1I0) 

The gain matrix K is given, according to (9) in DM, by 

(A.3) K(l) = V(1I0)A'(1)[A(1)V(1I0)A'(1) + 0(l)]-> 

For our purpose it is convenient to rewrite these expressions using the matrix equalities 7.B.1- 

6 presented in Appendix 7B of [1], We assume the matrices V(1I0) and 0(1) to be positive 

definite. Then, we may write 

(A .4) K(l) = [V’aiO) + A'(l)e1(l)A(l)]1A'(l)01(l) 

(A.5) I - K(1)A(1) = [I + V(llO)A'(l)01(l)A(l)]-‘ 

= [V’aiO) + A'(1)0-,(1)A(1)]-1V1(1IO) 

Substitution of these relations into (A.l) and (A.2) yields: 

(A.6) nail) = [I + V(1IO)A,(1)0'1(1)A(1)]'1T|(1IO) + 

[V'dIO) + A'(l)01(l)A(l)]-1A,(l)0-'(l)y(l) 

(A.7) V(l) = [V'dIO) + A,(1)0-,(1)A(1)]-' 

Let us now consider two special cases: 
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(i) We take ti(IIO) arbitrarily and V(1I0) of the form V(1I0) = XI with X a constant. Taking 

X bigger and bigger implies that the predictor uClIO) is considered to be more and more 

unreliable. In the limit X—) °° we then have: 

(A.8) HUH) = [A'(l)0'1(l)A(l)]'1A'(l)&‘(l)y(l) 

(A.9) V(l) = [A'die'CDAd)]1 

If we compare these expressions with §8.4 in [3] we conclude that in this limit the 

Kalman filter estimator at t = 1 reduces to the cross-sectional Bartlett estimator at t = 1. 

(ii) We take nd 10) = 0 and V(1I0) = 0(1) = E(ri(l)r|'(l)). the covariance matrix of the 

factors at t = 1. This matrix is positive definite and assumed to be known. In practice, 

this latter point usually leads to extra assumptions, as discussed in §3. In this case we 

arrive at 

(a.io) nan) = [o-'(i) + A'(i)e'i(i)A(i)]iA'(i)ei(i)y(i) 

(A. 11) V(l) = [0-‘(l) + A'dmDAd)]-1 

We find in this case the well-known regression estimator as presented in eq.(3)-(5) in 

DM and §8.3 of [3], 


