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A note on the calculation of latent trajectories in the quasi Markov simplex model by 

means of the regression method and the discrete Kalman filter. 

Conor V. Dolan & Peter C.M.Molenaar 

Abstract. 

The equivalence of factor scores calculated in the classical common factor model by 

means of the well-known regression method (Lawley and Maxwell, 1971) and the 

discrete Kalman filter has been demonstrated by Priestley and Subba Rao (1975). In the 

present paper we further investigate the relationship between the Kalman filter and the 

regression method in the quasi Markov simplex, a longitudinal structural equation 

model (Jdreskog, 1970). The application of the Kalman filter to longitudinal data with a 

quasi Markov simplex covariance structure yields estimates of the latent trajectories 

which are characterized by a greater error variance than those estimates obtained by 

means of the regression method. This finding is related to the distinction between 

filtering and smoothing in linear dynamic modelling. The regression method, when 

applied in the quasi Markov simplex, is shown to be identical to a certain smoothing 

algorithm known as fixed interval smoothing. 
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1. Introduction. 

The similarities between two general linear models, the Joreskog-Keesling-Wiley 

structural equation model (Jdrekog. 1977) and the linear stochastic state space model 

(Sage and Melsa, 1971; Mourik, 1986), have recently been investigated (McCallum and 

Ashby, 1986; Otter, 1986). In the present paper a single aspect of these models is 

considered, namely the estimation of individual scores on latent variables with fallible 

indicators. Within both these approaches to linear modelling, methods have been 

devised to estimate scores on latent variables. In structural equation modelling these 

methods were originally developed in the context of the classical common factor model. 

Of these methods the regression method and the Bartlett method are well known 

(Lawley and Maxwell, 1971). Various ways of constructing factorscores and their 

characteristics are discussed in McDonald and Burr (1967) and Saris, de Pijper and 

Mulder (1978). Within the state space model, the recursive Kalman filter has, since its 

invention in 1960, been the accepted method for estimating latent scores (Sage and 

Melsa, 1971). 

Regarding the relationship between these methods, Priestley and Subba Rao 

(1975) have shown that the estimates of factor scores in the classical common factor 

model obtained by means of the discrete Kalman filter are equivalent to those obtained 

via the regression method (see also Otter 1986, example 3). 

The objective of the present paper is to further explore the relationship between 

Kalman filtering and the regression method. We will compare the estimates of factor 

scores in the quasi Markov simplex model calculated by means of these two methods. It 

will be shown that the Kalman filter yields factor scores which are characterized by a 

greater error variance than those calculated by means of the regression method. This 

difference between the Kalman filter and the regression method is related to the 

distinction between filtering and smoothing (Brown, 1983). Filtering can be viewed as 

on-line estimation of latent states, i.e. estimation is carried out using incoming data in 

real time. Smoothing involves the estimation of latent scores when the whole time 

series has been recorded. A particular smoothing algorithm called the discrete fixed 

interval smoother (Brown, 1983 chapter 8; Sage and Melsa, 1971 table 8.3-4) will be 

shown to yield estimates of the latent scores which are identical to those obtained by 

means of the regression method. 
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2 The Kalman filter and the regression method. 

In the present section the Kalman filter and the regression method for calculating 

factor scores in the common factor model are described. 

2.1 The common factor model. 

Let y denote an n-dimensional vector of observed variables. In the common 

factor model (Lawley and Maxwell, 1971) the variables in y are a linear function of a 

p-dimensional vector of latent or unobserved multinormal variables r| and an n- 

dimensional vector of multinomial residuals e: 

(1) y = A T) + e. 

The (n x p) matrix A contains factor loadings of the observed variables on the latent 

variables or factors. To ease presentation we assume that Efn] = E[e] = 0. Furthermore 

we specify that the factors, T), and the residuals, e, are uncorrelated. The (n x n) 

covariance matrix of y, E[y y], is denoted by X and, given Eq. 1, equals 

(2) X = E[(A T) + e) (A ti + e)'] = A n A' + 0 

where the (p x p) matrix Q and the (n x n) matrix 0 equal E[r| r|’] and E[e e ] 

respectively. 
We will assume that the parameters in A, 0 and 0 are known. The actual 

estimation of parameters can be carried out by standard statistical programs such as 

LISREL (JOreskog and Sbrbom, 1984). 

2.2 The regression method 

The estimation of factor scores requires the calculation of a (p x n) weight matrix 

W such that the linear combinations of the observed variables yield optimal 

approximations of the latent variables 

(3) a = Wy, 

where q denotes the estimate of q. Factor scores can only be approximated as in the 

decomposition of observed variables (see Eq. 1) the unknown elements (n+p, i.e. 

common latent variables and unique residuals) oumumber the observations (n in total) 
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(see McDonald and Mulaik (1979) for a discussion of this indeterminacy and its 

implications). The approximated factor scores tend to the true factor scores as the error 

variances approach zero (W tends to A) or when, given a fixed number of common 

factors, the number of indicators is increased (i.e. n/(n+p) approaches unity). 

Optimality can be defined in a number of ways (see McDonald and Burr, 1967; Saris, 

de Pijper and Mulder, 1978). The regression method yields factor scores which are 

optimal in the sense that they are characterized by minimum mean squared error. 

Lawley and Maxwell (1971, page 109 Eq. 8.6) derive the weight matrix of the 

regression method: 

(4) W = O A (A Q A' + 0)_1 =£2 A 

The error covariance matrix equals (Lawley and Maxwell 1971, page 109, Eq. 8.9): 

(5) E[(Q-T|)Cn.-ll)'] = 0(1 +A’0-> AO)-1 

where I is the (p x p) identity matrix. The regression method minimizes the trace of the 

matrix given in Eq. 5 thus yielding factor scores which meet the minimum mean 

squared error criterion. It is well known, however, that factorscores estimated in this 

fashion are conditionally biased: Eta Ifi ] *tl (see Lawley and Maxwell, 1971, page 

109, Eq. 8.10). 

2.3 The discrete Kalman filter 

The discrete Kalman filter constitutes a recursive method of calculating latent state 

vectors in a multivariate random dynamic model (Sage and Melsa, 1971). The random 

process takes place in discrete time and is modeled as follows (Brown, 1983): 

(6) ri(t+l) = Bt+i>t T|(t) + £(t) t=l,2... 

The q-dimensional vector q(t) is the state vector at time t. The (q x q) transition matrix 

Bt+i_t relates the state vector q(t+l) to the preceding state vector ri(t). The q- 

dimensional vector £(t) is a white (i.e. uncorrelated) noise Gaussian sequence with 

known covariance structure denoted by 'T(t) and E|^(t)| equal to zero. 

The process in Eq. 6 is not observed directly, but is inferred from noisy 

observations (measurements) of the process: 

(7) y(t) = A(t) r)(t) + e(t) 
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The m-dimensional vector y(t) contains the observations or measurements at time t. 

These observations are a linear function of the state vector T|(t) and a m-dimensional 

measurement error vector e(t). The vector e(t) is a white noise Gaussian sequence with 

known covariance structure 0(t) and E[e(t)] equalling zero. A(t) (m x q) contains the 

coefficients connecting the observed vector y(t) and the latent state vector T|(t). As e(t) 

and £(t) have been defined as white noise sequences, we have E[e(ti)e(tj)'] and 

E[£(ti)C(tj) ] equal zero when tj^tj. The Kalman filter is a recursive algorithm for 

estimating individual scores on the latent successive states T|(t). It has the following 

form: 

(8) n(t+l 11+1) = H(t+l 11) - Kt+i [A(t+l)n(t+l It)- y(t+l)] 

where H.(t+111) represents the a priori estimate of T|(t+1) which is based on information 

up to (but not including) t+1. This estimate equals Bt+i^t). The a posteriori estimate 

U.(t+1 11+1) denotes the Kalman filter estimate of the state vector ri(t+l) given the 

available information up to and including t+1. This estimate will also be written as 

simply H.(t+1). It can be seen in Eq. 8 that the estimate of Il(t+1) is based on the 

preceding estimate Q(t) and a noisy observation y(t+l). The (q x m) matrix Kt+i which 

is referred to as the Kalman gain is constructed in such a way so as to minimize the 

error variance of the estimate U(t+1). This matrix is given by: 

(9) Kt+1 = V(t+1 11) A'(t+l)[A(t+l) V(t+11 t)A'(t+l) + 0(t+l) ]-l 

Here the (q x q) matrix V(t+1 11) represents the error covariance matrix of the apriori 

estimate n(t+l 11). This matrix equals: 

(10) V(t+111) = E[(a(t+111) - ri(t+l)} {n(t+l 11) - TKt+1))1] 

=Bt+uV(t) B't+u + 4'(t) 

V(t) is the error covariance matrix containing the variances of the a posteriori estimate 

H.(t) at time t. This matrix, whose trace is minimized to obtain the minimum variance 

estimates, is calculated at each occasion as: 

V(t) =E[{n(t)-Ti(t)){a(t)-q(t)n 

= V(t 11-1) - K, A(t) V(t 11-1) 

(11) 
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Within the context of state space modelling, two problems other than filtering can 

be formulated regarding the estimation of the state vector T|(ti+a I ti). When a equals 

zero, as we have seen above, the problem is one of filtering: given the present 

observation vector and the estimate of the preceding state vector, the question is how to 

derive an optimal estimate of the present latent state. Filtering is usually earned out in 

real time. When a greater than zero the problem is one of prediction of the state at some 

future point in time. Obviously prediction may be carried out in real time or after the 

data has been acquired. Finally when a is less than zero the problem is one of 

smoothing. The objective here is to find an optimal estimate of a latent state at some 

point in the past. The smoothed estimate is based on information both preceding and 

following the occasion of interest. Smoothing is generally carried out after the data have 

been recorded (i.e. off-line). 

When the Kalman filter is applied to a single measurement occasion, it can easily 

be shown to yield estimates of the latent variables which are identical to those derived 

from the regression method. This equivalence has been demonstrated by Priestley and 

Subba Rao (1975) and more recently by Otter (1986, example 3). 

3 The quasi Markov simplex model. 

The quasi Markov simplex model is a univariate longitudinal model containing a 

latent first order autoregression (Guttman, 1954; JOreskog, 1970). The measurement 

model is: 

(12) y(t) = ri(t) + e(t) 

The variables e(t) and T|(t) follow independent normal distributions with E[q(t)] and 

E[e(t)] equal to zero. Let t, which denotes the measurement occasion, take on values 

from 1,2,..., T. The latent variable T|(t) at each occasion is modeled as follows: 

(13) ti(t+l) = pt+i,tTl(t)+C(t) 

The latent variable at each occasion is decomposed into a component which is 

attributable to the immediately preceding occasion and a residual term. The latter is 

normally distributed with E[£(t)] equal to zero. Furthermore £(t) and T|(t-1) are 

uncorrelated. The quasi Markov simplex is obviously a special case of the state-space 

model given above. 
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Let i\ = t|(2).. t|(T)], C = [;(!) C(2)...C(T)], e = [e(l) e(2)...e(T)], y' = 

[y(l) y(2)...y(T)]. The covariance matrix (T x T) of the observed variables is modeled 

as follows: 

(14) Z = E[t|T)'] + 0 

where 0 (T x T) equals E[e e’ ] and 

(15) E[T|Ti'] = (I-B)-i ¥ (I-B')-l 

Here the diagonal matrix T (T x T) equals E[^'J, I is the (T x T) identity matrix and B 

(T x T) contains the autoregressive coefficients pt+l,t (t=l,T-l) on the lower first 

subdiagonal. The matrix of factorloadings, A, is not shown as it equals a (T x T) 

identity matrix. 

4. Estimation of latent trajectories in the quasi Markov simplex model. 

4,1 Estimation bv means of the regression method. 

The regression method can be used in the quasi Markov simplex model to 

estimate the latent trajectories by simply applying Eq. 4: 

(16) W = E[T|T|'] (E[r|r|,]+ 0)-> = E[titi'] Z-i 

We will restrict the quasi Markov simplex model to two occasions to ease the 

presentation. Let toy denote the i-th, j-th (i=l,2; j=l,2) element of E[qq j (Eq.16) and 

a'J the corresponding element in I1. The regression method estimates of the factor 

scores (subject subscript are discarded) q(l) and r|(2) are then derived using Eq.17: 

(17-a) Qr(l)= [coi,! a'-i + co]i2 o2’1] y(l)+ [tOi,i aL2+0)1,2o2’2] y(2) 

(17-b) ar(2) = [0)2,1 a1'1 + 0)2,2 a2'1] y(l) + [0)2,1 a''2+ 0)2,2 a2’2] y(2) 

where ar(l) denotes the regression method estimates of the factorscore 'n(l)- 

It will be noticed that in applying the regression method in the quasi Markov 

simplex, we have in effect formulated the quasi Markov simplex model as an oblique 

common factor model. This is possible because the parameters of the model are 

assumed to be known so that the covariance matrix of the factors, E[r)r|'], can be 

calculated. 
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4.2 Estimation bv means of the Kalman filter. 

The application of the recursive Kalman filter to the longitudinal data arising from 

the quasi Markov simplex entails carrying out a forward sweep through the time series 

in a manner specified in Eq. 8 and 9. During the recursion the available information at 

each occasion is limited to the fallible measurement at that occasion and the estimate of 

the previous state vector so that one is filtering in the sense defined above. 

Considering again two occasions, let yt denote the i-th diagonal element of the 

diagonal matrix £[££'] = VF, let p (P=P2,t) be the autoregressive coefficient in the 

regression of 11(2) on r|(l) and Oithe i-th diagonal element of 0. The Kalman filter then 

yields the following estimates: 

(18-a) a‘‘(l) = [Vi(Vl + 0i)_1]y(l) 

(18-b) uk(2) = Pak(D - (P2[yi - vt(vi + eo-'vi] + yz) {(l^tyi - yi 

(vi + ei^'vi] + yz) + 02}_1 (P a^i) - y(2)) 

where aK') denotes the Kalman filter estimate of the factor score qO). 

It is apparent that arO) and aHl) can not be equivalent; the former is based on 

both y(l) and y(2) whereas the latter is based on y(l). In view of the fact that ar(l) is 

based on more information, its error variance is expected to be smaller than that of 

ak(l). This is shown to be the case in the appendix 1.1. 

Less obvious is the fact that the estimates of iir(2) and nk(2) are identical. This is 

however quite reasonable as at the end of the time series the estimate of nr(2) can only 

be based on the preceding factor score and the final fallible measure. The regression 

method estimate of the last occasion is therefore based on the same information as is 

used in the Kalman filter. Also, as mentioned, both methods yield estimates which are 

characterized by minimum variance. The equality of Ur(2) and Hk(2) is shown in the 

appendix 1.2. 

4.3 Estimation bv means of the discrete fixed interval smoother. 

The fixed interval smoother (FIS) is used when "the time interval of the 

measurements (i.e.the data span) is fixed, and we seek optimal estimates at some, or 

perhaps all, interior points. This is the typical problem encountered when processing 

noisy measurement data off-line" (Brown, 1983, page 275). 

The FIS consists of a backward recursion from the last to the first measurement 

occasion. During the backward sweep information is utilized which was obtained 
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during the Kalman filtering, viz. the apriori and aposteriori estimates and their 

respective error covariance matrices. The utilization of this information yields estimates 

of the states which have a smaller error variance than those obtained from the Kalman 

filter. 

As above H.(t+l|t) denotes the apriori estimate (i.e. Bt+i.tOXt)) of the state at 

occasion t+1 given ]i(t) and V(t+l|t), its error covariance matrix. The a posteriori 

Kalman filter estimate is Q(t+1) or n(t+l |t+l) and its covariance error matrix equals 

V(t+1). To begin the backward sweep we start with the exit estimates from the Kalman 

filter which are denoted a.(T | T) and V(T | T). The recursive equations for the 

backward sweep are: 

(19) n(t IT)=n(t 11) + At [(n(t +11T) - n(t +n t)] 

where the index now runs t=T-l, T-2,...,l and ii(t | T) is the smoothed estimate of the 

state at occasion t. Note that the exit estimate from the Kalman filter cannot be 

smoothed as there is no measurement following the final occasion in the time series. 

The matrix At is referred to as the smoothing gain and is consttucted to minimize 

the mean squared error of the estimate of x(t | T). The matrix is calculated as: 

(20) At = V(t)B't+i,,V(t +1| t)'1 

The error covariance matrix of the smoothed estimated equals: 

(21) V(t | T) = V(t 11) + A(t)[V(t+l | T) - V(t+1 11)] A(t)’ 

The regression method and the FIS use the same estimation criterion (minimum 

variance) and the same amount of information. The latter can be seen in Eqs.19 and 16. 

In Eq. 16 the regression matrix calculated in the quasi Markov simplex, E[t|ti'] Z-1, is 

strongly tridiagonal with the third etc. subdiagonals swiftly falling away (see Gunman 

1954, page 294). In Eq. 19 the smoothed estimate at occasion t, H(t | T), is based on 

the Kalman estimate ii(t 11) containing information concerning the state at occasion t-1 

and the smoothed estimate at t+1, u(t+l|T), containing information concerning the state 

at t+1. Both methods use information originating from the occasions before and after 

the occasion of interest. That these methods yield identical estimates for T=2 occasions 

is demonstrated in Appendix 1.3. 

To further check the equivalence of the Kalman fixed interval smoother and the 

regression method at T > 2, we carried out a small simulation study. This will now be 

reported briefly. 
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5. Simulation. 

A data set comprising 10 occasions was simulated for 100 "subjects" according to 

the quasi Markov simplex model using the IMSL routine FTGEN (IMSL, 1978). The 

autoregressive coefficient was chosen to equal .75 throughout the time series. The 

variance of the latent variables were chosen to equal 100. The error variances equalled 

50 throughout so that the theoretical reliabilities of the tests equalled .66. Maximum 

likelihood estimates of the parameters were obtained from the LISREL VI program 

(JOreskog and Sorbom, 1984). The error variances and the autoregressive coefficients 

were constrained to be equal through out the series in agreement with the simulation. 

Although LISREL VI does provide the regression method weight matrix it does 

not provide standard errors of the estimated factor scores. These were calculated using 

a separate Fortran program. The Kalman filter estimates of the factor scores and then- 

standard errors were obtained using the FTKALM, i.e. the IMSL implementation of the 

Kalman filter (IMSL, 1978). The apriori and aposteriori estimates and their respective 

covariance matrices were saved during Kalman filtering and used to perform the fixed 

interval smoothing. The smoothing algorithm was implemented in the same Fortran 

program as the FTKALM routine. 

Table 1 contains the true and estimated parameters and the overall goodness-of-fit 

of the model. 

Table 1 

True parameter values and maximum likelihood estimates. 

Overall goodness of fit X2(43) = 38.26 (p=.67). N=100. 

parameter var(^l) 

true 100 

estimated 94.6 

parameter var(£7) 

tme 43.7 

estimated 46.6 

var(£2) var(£3) var(£4) 

43.7 43.7 43.7 

30.9 14.2 31.7 

var(£8) var(£9) var(£l0) 

43.7 43.7 43.7 

35.1 22.1 29.1 

var(£5) 

43.7 

18.2 

P 
.75 

.83 

var(£6) 

43.7 

32.6 

0 

50 

60.8 

Table 2 gives the correlation coefficients between the true and recovered factor scores 

derived from the Kalman filter, the regression method and the FIS. The associated 

standard errors are also repotted in table 2. 
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Table 2 

Comparison of longitudinal factor scores calculated using regression method and the 

Kalman filter. 

R.kalman, r.regr, and r.fis denote the correlation between the true factor scores and the 

factor scores calculated using the kalman filter, the regression method and the fixed 

interval smoother respectively. 

S.e. stands for standard error and is calculated as the square root of the theoretical error 

variance 

occasion r kalman 

tl 

t2 

t3 

t4 

t5 

t6 

t7 

t8 

t9 

tlO 

.820 

.842 

.838 

.887 

.841 

.846 

.905 

.882 

.851 

.870 

rregr. 

.863 

.865 

.843 

.890 

.863 

.866 

.918 

.903 

.874 

.870 

r.fis s.e.kalman 

.863 6.087 

.865 5.428 

.843 4.716 

.890 5.163 

.863 4.797 

.866 5.207 

.918 5.622 

.903 5.436 

.874 5.018 

.870 5.148 

s.e.regr s.e.fis 

5.132 5.132 

4.579 4.579 

4.241 4.241 

4.473 4.473 

4.339 4.339 

4.703 4.703 

4.909 4.909 

4.716 4.716 

4.586 4.586 

5.148 5.148 

The results are in agreement with the above mentioned: the regression method 

yields reliable estimates of greater reliability, judging by the tme-recovered correlations 

and the standard errors, at all occasions except the last. Here, as expected, the Kalman 

filter and the regression method are identical. The FIS was observed to yield estimates 

and standard errors which are identical to those obtained from the regression method. 

It is striking that the difference between Kalman filter and the regression method 

(FIS) as expressed by the correlations between the true and recovered estimates are 

fairly slight even though the level of measurement noise is quite considerable (the actual 

reliabilities of the observed variable at the successive occasions are: .62 .56 .60 .61 .54 

.57 .63 .66 .60 .63). 

6 Discussion. 

It is remarkable that the regression method and the FIS, identical procedures for 

the estimation of values on latent variables, were independently developed. The 

difference between these method is notational and is due, perhaps, to differences in the 

length of time series commonly encountered in the social sciences and in random signal 

processing. The regression method when applied in the quasi Markov simplex model 
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represents a type of batch processing where the whole time series is modeled 

simultaneously in a single matrix expression. This approach is practically possible only 

when the time series is fairly short. The FIS and the Kalman filter are well suited to 

(very) long time series in view of their recursive nature. 

The superiority of the regression method (or FIS) compared to the Kalman filter 

can be related to the fact that in a quasi Markov simplex there are two sources of 

random input at each occasion, viz. the innovation variance (system noise) and the error 

variance of the observations (measurement noise). The estimation of an intermediate 

state in the Kalman filter thus requires the decomposition of a fallible observation into 

two unknown components, namely the measurement error term and the innovation 

term. The regression method utilizes information both preceding and following the 

intermediate point in the form of estimates which include the innovation terms. Thus the 

regression method can better distinguish between the random input originating in the 

system and that originating in the fallible measurement process. It seems safe to state in 

almost all social science research there will be little justification to use the Kalman filter 

as data processing is usually done after the data has been acquired. Also the regression 

method matrix, or regression factorscores themselves can be obtained from most 

standard computer programs. 

We have restricted the comparison of the Kalman filter and the regression method 

to the quasi Markov simplex model. It is noted, however, that the findings regarding 

the performance of these methods hold for simations where there are multiple indicators 

of a univariate of multivariate latent process. Also they generalize to other classes of 

models such as moving average and autoregressive-moving average processes. 

As a final remark, it is noted that both the regression method and the Kalman 

filter yield minimum error variance, but biased estimates of the factor scores (Lawley 

and Maxwell, 1971; Otter 1986). Also these estimates do not faithfully reflect the 

covariance structure of the latent variables (e.g. orthogonality). McDonald and Burr 

(1967) give an overview of methods to construct factor scores according to various 

criteria (see also Saris, de Pijper & Mulder (1978)). 
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Appendix 1. 

Without loss of generality, we will consider the quasi Markov simplex model for two 

occasions: 

y(l)=t1(l) + e(l) y(2) = ri(2) + e(2) 

T1(1) = C(1) ri(2) = pT1(l)+?(2) 

Let E[y(i)], E[e(i)] and E[^(i)] = 0 (i=l,2). Let E[y y ] equal X with elements ct.j 

(i=l,2; j=l,2) and X1 with elements ct’J. Analogously, let E[£Q = 'P a diagonal matrix 

with elements tgi as the i-th diagonal element and E[T|T|'] = Q with elements (fly. Finally 

let E[ee ] = © , a diagonal matrix with 0; as the i-th diagonal element. The matrices £2 

and 0 are assumed to be positive definite. To ease presentation, we will assume that X 

has been standardized. So (see Eq. 15 and 16): 

X = «Tn <*21 

O21 O22 

0)11+01 ®21 

0)21 0)22+02 

Vi+0i 

P¥i 

PVi 

P2¥i+V2+02 

where O)n+0i= 0)22+02 = 1 in view of the standardization. 

(O)22+02)/|E| (-ff>2l)/|X| 

(-n>2i)/12i| (ffln+0i)/12i| 

|X|-i (-0)2i)|X|- 

(-0)21)|X|-1 |X|-1 

where |X| denotes the determinant of X which equals [1- 0)2i2]. 

Appendix 1.1 

The error variance of the estimate, Hk(l), calculated with the Kalman filter is 

greater than the estimate, nr(l), calculated by means of the regression method. 

Application of the Kalman filter is as follows: 

t=0 

U(0)=0 Initial state at t=0 

V(0) = yi Error variance of a posteriori estimate of T|(0) 

t=l 

V(l|0) = Vi Error variance of aprioi estimate of T)(l) 
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K(l) = yjO/i + 0]) = yi Kalman Gain at t=l 

Uk(l) = +0i)'1yi = Vi yi The Kalman filter estimate at t=l 

V(111) = \)/i - \)ti2 = Vi0i The error variance ofu^l): E[(r|(l) -n'W)2] 

The error covariance matrix associated with the regression method (Eq. 5) can be 

rewritten as QE1©. Then: 

E[0n(l) -Qr(l))2] = (con a11 + o)2i o21) 0i =(ton [1- wti2]'1 - a)2i2[l- o^i2]1)©! = 

[ 1 - CO212]1 (coi jG] -a)2i20i) The error variance of rir(l):E[(q(l)-Tir(l))2] 

So in order to demonstrate that the error variance of nr(l) is less than that of uk(l), we 

should have: [1- o^i2]1 (O)n0i - O)2i20i) < Vi0i 

Multiplying both sides by [1- o>2i2]: (O)n0i - O)2i20i) < [1- Q)2i2] Vi0i 

Expressing the Wy as functions of p and v|/; gives: yi0i - P2\|ri2 0i < \|/i0i - (32\|/i3 0i 

So that: P2\pi20i > P2\|/i30i 

This implies: tgi < 1 which is tme in view of the standardization of E: 1 = v|q + 0). 

Appendix 1.2 

The estimates of the final latent variable in a quasi Markov simplex model by 

means of the regression method and the Kalman filter are identical. As we have two 

occasions, we show that Ur(2) = nk(2). In appendix 1.1 the Kalman filter results are 

given for t=0,l. We now continue with t=2: 

t=2 

V(211) = Vi Error variance of aprioi estimate of T](2) 

K(2) = [P2\gi(l - Vi) + Vzl IP2Vi(1 - Vi) + V2+ 62] ’ Kalman Gain at t=2 

Ilk(2) = Pvi yi - K(2)[P\|ti yi - y2] = 

Pvi yi - IP2 (¥1 - Vi2) + ¥2] IP2 (¥1 - ¥i2) + ¥2 + 02]'1 (P¥i yi -yzl = 

“zi yi - [®22 - W212] [1 - CO212]1 [CO21 yi - y2l The Kalman filter estimate 

V(212) = [1 - K(2)]V(211) The error variance of nk(2) 

The regression method estimate equals: 

nr(2) = [0)21 a11 + 0)22 <T21] yi + [0)21 <512+ 0)22 o22] yz = 

[0)21 [1- 0)2]2f'y 1 - 0)220)21 [1- 0)212]'1yil - [0)212 [1- 0)212]''y2 - 0)22 [1- 0)212]'1y2l = 

[l- W212]'1 [0)21 yi - 0)220)21 yi - o)2i2 y2 + 0)22 yz] 
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nr(2) = uk<2) thus implies: 

[l-c^J-'Itoaiyi -(022W2iyi -®2i2y2 +®22y2] = 

(O21 yi - (o>22 - o>2i2] [i - o^i2]-1 [o>2i yi - yzl 

Multiplying both sides by [1- O212] gives: 

0)21 y 1 - 0)220)21 y 1 - o)2i2 y2 + 0)22 y2 = 0)21 yi[i - «>2i2] - [0)22 - o>2i2] [0)21 yi - y2l 

The term to the right of the equality sign equals: 

0)21 yi - 0)213yi - 0)220)21 yi + 0)22y2 + 0)213yi - 0)212y2 = 

0>21 yi - 0)220)21 yi - 0)212 y2 + 0)22 y2 

So nk(2)= nr(2). 

Appendix 1.3. 

The estimate of T|(l) obtained from the regression method, Ur(l), and the estimate of 

il(l) obtained from the FIS are identical. The latter estimate will be denoted by !lf(l). 

A(l) = V(l) fi V(211)"1 Smoothing gain at t=l 

nf(l) = nk(l) + A(l) La^a) - PnKl)] = Smoothed estimate of ri(l) 

Vi y(l)+ A(l) [py, y(l) - K(2) [py, y(l)- y(2>] - pV, y(l)] = 

V, y(l) - A(l)K(2)[pVi y(l)- y(2)] = 

O)ny(l)- [(0)21 - P O)ll2)(0)22 - 0)212 + 02)"1][O)2iy(l)- y(2)] = 

O)ny(l) - P o)n(l+ 0)22)(1 - o^i^'HP O)ny(l) - y(2)) = 

(1- ufci2)-1 [(o)n- o)2i2) y(l)+ (0)21 - o)no>2i) y(2)] = 

o)n(l- o^i2)-^!!) - o^Al- o^i2)'1 y(l)+ (o)2i(l- o)2i2)_1y(2)- o)no)2i(l- oi2i2)"1y(2) = 

0)1,1 o1,1 y(l)+ 0)1,2 ct2-1y(l) + 0)i,i a1.2y(2)+ 0)1,2 o2-2y(2) 

which equals Tir(l) (see Eq. 17-a). 
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