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A comparison of four methods of calculating standard eirors 

of Maximum Likelihood estimates in the analysis of covariance structure 

Conor V. Dolan & Peter C.M. Molenaar 

Abstract 

Four methods of calculating standard errors (s.e.'s) in the analysis of covariance 

structure using normal theory Maximum Likelihood estimation are compared: LISREL 

s.e.'s, s.e.'s derived from the exact Hessian, s.e.'s derived from the finite difference 

approximation to the Hessian using exact gradients, and s.e.’s derived from the update 

of the Hessian obtained during quasi-Newton optimisation. 

Two comparisons are made. The first is based on 30 data sets simulated according 

to an orthogonal common factor model. The second is based on the analysis of a well 

known data set concerning the Stability of Alienation. 

The finite difference and exact s.e.'s are identical to at least four decimals. Little 

difference is observed between the remaining s.e.'s. 
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1 Introduction. 

In covariance structure analysis, a number of fitting functions can be used to 

estimate parameters and their standard errors (JOreskog and Sorbom, 1988). Standard 

errors are indicative of the precision to which a parameter has been estimated and can be 

used to test a parameter's statistical significance. In the present paper, various ways of 

calculating standard errors are compared when estimation is carried out by minimisation 

of the likelihood ratio -21n[L(co)/L(f2)], where L(C2) and L((o) denote the likelihood 

function in, respectively, 12, the set of symmetric positive definite matrices, and to, the 

subset for which the covariance structure model holds. Standard errors of such estimates 

are a function of the number of subjects and the positive definite matrix (i.e. the Hessian) 

of second order partial derivatives of the likelihood ratio with respect to the estimates. 

The Hessian of the likelihood ratio in the analysis of covariance can be obtained by 

a number of methods: calculation of the exact Hessian, calculation of the Information 

matrix, a finite-difference approximation to the Hessian, and calculation of updates of the 

Hessian during quasi-Newton minimisation. 

Generally the calculation of the exact Hessian is avoided as this can be complicated 

and time consuming depending on the complexity of the model under investigation. In the 

LISREL program (JOreskog and SOrbom, 1984) standard errors are based on Fisher's 

Information matrix (JOreskog, 1977, page 270). Due to the popularity of the LISREL 

program this method of calculating standard error is most often used. The approximation 

to the Hessian matrix by means of finite differences of the gradient is simple to implement 

(e.g. Dennis and Schnabel, 1983), but requires repeated evaluation of the gradients of the 

likelihood ratio. Finally, the Hessian matrix can be obtained during optimisation of the 

likelihood ratio by means of the quasi-Newton method. Here the elements of the inverse 

of the Hessian are built up from successive function and gradient evaluations using, for 

instance, the Davidon-Flechter-Powell (DFP) update (Gill, Murray and Wright, 1981; 

Dennis and Schnabel, 1983). 

In this paper the LISREL standard errors (s.e.'s) of ML estimates are compared to 

those derived from the exact Hessian (referred to as exact s.e.'s), the finite difference (fd) 

approximation using analytic gradients (fd s.e.'s) and the DFP Hessian update (DFP 

s.e.'s). The comparison is made using data simulated according to an orthogonal common 

factor model. Ten data sets were simulated for 100, 200 and 400 cases. A second 

comparison is made by analysing a well known data set: the stability of alienation data 

(JOreskog and SOrbom, 1988, page 171, model D). The latter comparison is limited to the 

LISREL, fd and DFP standard errors. 
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2 Methods. 

In this section we will briefly described the methods used to calculate the standard 

errors of the ML estimates in the analysis of covariance structure. A Fortran 77 program 

was written incorporating the following covariance structure model (a LISREL sub¬ 

model): 

y = A t) + e (la) 

T1 = (I-B)-i C (lb) 

where y is a multinormal (p x 1) vector of i.i.d. manifest variables, which are a linear 

combination of common latent variables t) (q x 1) and unique residuals e (p x 1). The 

parameter matrix A (p x q) contains the loadings of the observed on the latent variables. 

The latent variables T| may be interrelated by linear structural equations. The matrix B (q 

x q) and the vector £ (q x 1) contain, respectively, the structural coefficients and the 

residual terms in these linear latent equations. 

Let X denote the model covariance matrix of which S is an unbiased estimate. Let 

EIKH equal T" and EIee'] equal 0E, where E[£] = E[e] = 0, E[.] denotes the expectation 

operator, and the superscript t denotes transposition. Then, given Eqs. la and lb, we 

have: 

X = A(I-B)-1 4/ (I-B'r1 A‘ + 0E (2) 

The model covariance matrix X depends upon a k-dimensional vector 0 of parameters 

which are contained in the matrices on the right side of Eq. 2: X=X(0). Estimates of 9 are 

obtained by minimising the likelihood ratio fml(0) = -21n(L(a>)/L(Q)] which is defined as 

(Lawley and Maxwell, 1971; Joreskog, 1977): 

fml (9) = log | X(0) | + tr (SX-1(0)) - log | S | - p (3) 

Under the assumption that the specified model X(0) is true, (N-l) times the minimum 

value of fmi(9), where N is the sample size, is distributed approximately as x1 with 

p(p+l)/2 - k degrees of freedom. 

The first order derivatives of fmi for the full LISREL model are given in Joreskog 

(1977) and are reproduced in the Appendix for the submodel defined by Eqs. la and lb. 

The associated (k x k) matrix of second order partial derivatives is: 

H(0) = 32fml / f)0 30t (4) 
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The relationship between the Hessian of the likelihood ratio given in Eq. 3 and the 

Hessian of the likelihood function, L(<o), is given in Bollen (1989, page 135). The 

covariance matrix, G, of the parameter estimates in 0 is a function of the Hessian 

evaluated at 0, H(0), and the number of subjects, N: 

G = [2/(N-1)]H-1(0) (5) 

Let [G]ij represent the element in the i-th row and j-th column of G. The standard error of 

i-th parameter estimate 0i is defined as: \[G lij. Apart from the standard errors, the 

correlations between the parameters can be obtained by standardising G. 

A Fortran 77 program was written to minimise fml by means of the quasi-Newton 

method using exact first order derivatives and DFP update of the inverse of the Hessian, 

H-He) (see Dennis and Schnabel, 1976; Gill, Murray and Wright, 1981). Apart from the 

parameter estimates this program produces what were referred to above as the DFP 

standard errors. The approximation to the Hessian using forward differences of the 

gradients is carried out within the same Fortran program using algorithm 5.6.1 given in 

Dennis and Schnabel (1983). Let 0 denote the vector of parameter estimates that 

minimises Eq. 3 and let 3fmi/d6 denote the associated vector of gradients. The 

approximation to the Hessian using forward differences of the gradient is calculated as 

follows: 

wj = v1 [3fmi/3(0 + vej) - 3fmi/50] (6) 

where Wj is the i-th column of the (k x k) matrix W, v is the finite-difference interval, and 

the i-th unit vector ej is the finite-difference vector (Gill, Murray, and Wright, 1981). As 

the matrix W will not necessarily be symmetric, the Hessian is calculated as H(0) = 

1/2(W + W‘). 
The exact Hessian for the matrix of factor loadings A in the common factor model is 

given by Lawley and Maxwell (1971, Equation A2.9) and is reproduced in the Appendix. 

A separate Fortran 77 program was written, incorporating the model 1 = AAl, to 

calculate the exact Hessian. 

The LISREL standard errors are obtained from the LISREL VI program (JOreskog 

and SOrbom, 1984). These standard error are based on the asymptotic covariance matrix 

of the parameter estimates: 

[2/(N-l)J E[H(0)]': (7) 
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The matrix E[H(0)], Fisher's Information matrix, yields correct standard errors under 

assumption that the distribution of the elements in the sample covariance matrix, S, is 

asymptotically multinormal with mean E[S] = £(0). The latter implies that Z(0) is the 

true model, i.e., S - X(0) approaches zero as N approaches infinity. 

3. Comparison 1 

The first comparison of the various ways of deriving standard errors is made in the 

orthogonal common factor model using simulated data. The orthogonal common factor 

model can be fit using the model X = A A1 by specifying unique factors (whose variances 

are usually estimated in 0E) as components of T|. In the present simulation there are 2 

common factors and eight indicators. The matrix A equals: 

1 0 
2 .7 
1 .9 
2 .7 
1 .9 
2 .7 
1 .9 
2 .7 

1 0 
0 1 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

0 0 
0 0 
1 0 
0 1 
0 0 
0 0 
0 0 
0 0 

0 0 
0 0 
0 0 
0 0 
1 0 
0 1 
0 0 
0 0 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
1 0 
0 1 

where the values appearing in the matrix are the true parameters values. The model 

covariance matrix X implied by A was used to simulate 30 data sets: 10 data sets for 

N=100,200 and 400 cases. The program GENRAW, which is supplied with the PRELIS 

program (JOreskog and SOrbom, 1986), was used to simulate the data. Each data set was 

analysed using our own programs and the LISREL VI program. The parameter estimates 

were identical to at least four decimals. Each matrix contains 36 non-redundant elements 

which are modelled using 23 parameters, so each analysis yielded a x2 goodness-of-fit 

statistic with 13 degrees of freedom (d.f.). Whenever the probability level associated with 

the x2(13) statistic was observed to be less than 0.05, the simulated data set was replaced. 

This occurred twice. 

Having calculating the parameter estimates and standard errors for the data sets, the 

latter were averaged for each sample size. Figure 1 contains bar charts of the averaged 

s.e.'s. In these chans the fd and exact s.e.'s are not shown separately because they were 

found to be identical to at least four decimal points. 

The bar chans reveal very small differences between the exact s.e.'s and those 

obtained from the LISREL program. The latter are found to be consistently smaller, but 

the absolute difference is small. The largest differences between the mean exact and the 

mean LISREL s.e.'s equal: .3183 vs. .2994 (N=100), .1752 vs. .1544 (N=200) and 
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N=100 10 replications B fd/exact M LISREL □ dfp update 

E 

parameter 

10 — 200 10 replications ^ fd/exact HI LISREL Q dfp update 

parameter 

N = 400 10 replications □ fd/exact ||| LISREL CU dfp update 

parameter 
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.1798 vs. .1727 (N=400). The s.e.’s obtained from the DFP updates also come very 

close to the exact ones. 

Correlations of parameters estimates can be obtained by standardising the 

covariance matrix G. These correlations are a multiplicative function of the elements in G, 

hence errors inherent in approximations of the Hessian may thus become augmented. To 

illustrate, the average correlation between the estimates of the common factor loadings 

[Ali] and [Ahi were found to equal .2463 (exact & fd), .2708 (LISREL), and .2194 

(DFP update) in the N= 100 samples. This magnitude of difference is typical of what was 

found in the simulation. 

As mentioned above, the derivation of the LISREL s.e.'s is based on the 

assumption that S -1(0) tends to zero asymptotically. It was pointed out by Joreskog 

(1978, page 448) that this may not be a realistic assumption in the analysis of real data. 

Hence, it is of some interest to evaluate the standard errors for a model which contains a 

misspecification. To this end the 10 data sets comprising N=400 cases were analysed 

using a single common factor model. The removal of the second common factor resulted 

in a gain of 7 d.f. so that there are now 20 d.f. associated with the y2 goodness-of-fit 

statistic. In the analyses the X2(20) was found to range between 60 and 115. Given the 

associated probability levels (never exceeding 0.001), the hypothesis of a single common 

factor model would be rejected consistently. Again the standard errors were averaged over 

the 10 replications and are shown in Figure 2. Clearly a violation of the assumption that 

asymptotically S - £(0) is zero does not affect the estimates of the standard error based on 

the Information matrix. 
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Misspecification 
N=400 10 replications H exact/fd 

parameter 

Figure 2: Bar chart of the mean standard error given a misspecified model: a single 

common factor instead of two common factors. Standard errors are averaged over 10 

replications (N=400). 

4. Comparison 2. 

A second comparison is made by analyzing a well known data set concerning the 

stability of alienation. The stability of alienation study was originally reported by 

Wheaton, Muthtin, Alwin and Summers (1977) and features as an illustrative LISREL 

analysis in JOreskog (1977) and JOreskog and SOrbom (1988). This analysis is carried 

out using the LISREL sub-model defined by Eqs. la and lb. The exact standard errors of 

the parameter estimates are not included in the present comparison. 

The stability of alienation data consist of 6 variables: two indicators (yi and yfi of 

social economic status (SES), two indicators (yy and ya) of alienation (A67) obtained in 

1967 and the same indicators (ys and yg) of alienation (A71) obtained in 1971. These 

variables were measured in a sample of 932 subjects. The sample covariance matrix is 

given in JOreskog and SOrbom (1988, page 169). The following model is tested 

(discarding the subject subscript): 

measurement model: 

structural equation model: 

yi = XiSES + ei y2 = ^-2SES + £2 

y3 = X.3A67 + 63 ya = mA67 + ea 

ys = X5A71 + £5 yg = XgA71 + eg 

A67 = Pi SES + ^Ag7 

A71 = P2 SES + P3 A67 + £a71 
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Table 1: Results of the covariance structure analysis 

stability of alienation (X2(4)=4.73). 

Parameter estimates and standard errors (s.e.). 

parameter estimate LISREL fd 

s.e. s.e. 

DFP 

s.e. 

Xi 0.9787 

X.2 0.9221 

X3 0.5220 

Pi -.5750 

P2 -.2268 

p3 0.6070 

var CA67 4.8466 

var ^\7i 4.0875 

var SES 6.8048 

varei 4.7357 

var e2 2.5662 

var e3 4.4040 

var e4 3.0731 

var es 2.8052 

var 66 2.6489 

cov[eie3] 1.6247 

cov[e264] 0.3391 

0.0616 

0.0595 

0.0422 

0.0564 

0.0524 

0.0511 

0.4681 

0.4048 

0.6500 

0.4538 

0.4037 

0.5158 

0.4349 

0.5078 

0.1816 

0.3140 

0.2614 

0.0620 

0.0598 

0.0426 

0.0580 

0.0531 

0.0513 

0.4630 

0.4044 

0.6537 

0.4570 

0.4068 

0.5179 

0.4369 

0.5125 

0.1825 

0.3159 

0.2632 

0.0612 

0.0593 

0.0421 

0.0594 

0.0541 

0.0519 

0.4608 

0.4003 

0.6431 

0.4557 

0.4044 

0.5120 

0.4373 

0.4996 

0.1785 

0.3091 

0.2570 

The factor loadings Xi, X3 and X5 were fixed to equal unity and the latent variances of 

SES, A67, and A71 were estimated. Furthermore the covariances among the error terms 

ei and £3 (cov[£i£3]) and £2 and £4 (cov[E2£4]) were estimated. Overall goodness of fit 

was x^(4) = 4.73, p=,32. Table 1 contains the parameter estimates and the standard 

errors. The standard errors are also displayed in bar charts in Figure 3. The results in the 

present analysis again reveal very minor differences in the three methods of calculating 

standard errors. 
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standard errors 

parameter 

Figure 3: Bar chart of the standard errors obtained from the analysis of stability of 

alienation. Parameters estimates and standard errors given in Table 1. 

6. Conclusion 

In the present paper we have compared various ways of calculating standard errors 

in the analysis of covariance structure using normal theory ML estimation. It has been 

shown using simulated data that the fd approximation using exact gradients gives a good 

approximation to the exact Hessian. Furthermore the standard errors based on the DFP 

update of the Hessian and those provided by the LISREL program were very close to the 

fd standard errors. In each analysis using our own programs the starting values were set 

to equal 1.0 and all estimates were obtained within 30 to 40 iteration (LISREL VI 

generally converged much more rapidly). Thus it does not require an excessive number of 

iterations to obtain a good approximation of the Hessian using DFP updates. However 

some caution should be taken in generalizing the results regarding the DFP standard 

errors to other analyses and to other optimisation routines. The accuracy of these standard 

errors depends on the distance of the starting values to the minimum of the likelihood 

ratio. In the LISREL program, for instance, a modified DFP algorithm is used in which 

updates calculated during optimisation yield an approximation to the Hessian. 

Nonetheless LISREL standard errors are based on the Information matrix. It is likely that 

the generally good automatic starting values generated by LISREL, combined with a very 

efficient optimisation routine, render the required number of iterations so small that a 

reliable approximation to the Hessian matrix cannot be guaranteed. This and the fact that 

different updating algorithms may yield different standard errors (see Gill, Murray and 

Wright, 1981, page 120) probably prompted Lawley and Maxwell (1971, page 92) to 
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maintain that it is theoretically better to recalculate the Information matrix at the minimum 

of the likelihood ratio, rather than rely on the the Hessian provided by the DFP algorithm. 

Although derived under the assumption that the true model is being tested, the 

LISREL standard errors have been found to be excellent given a fairly gross model 

misspecification. This finding is corroborated by the analysis of the stability of alienation 

data set where very small differences were found between the fd and the LISREL 

standard errors. 

It seems reasonable to advise anyone who has occasion to program his or her own 

routines for structural equation modeling to use either the fd approximation, or the 

Information matrix. The finite difference method has the advantage that it combines very 

light programming requirements with a very good approximation to the exact Hessian. 
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Appendix 

The first order derivatives of the likelihood ratio function given in Eq. 3 for the model 

defined by Eqs. la and lb (JOreskog, 1977): 

l/2d£0A = Q A (I-B)-l 4' (I—B1)-1 

l/29fy3B = -(I-Bt)-lAt (fl A (I-B)-l 4' (I-B')'1) 

df/dV =(l-Bt)-'AtnA(I-B)-1 

df/d&£ = 11 

where O = S"1 and matrices B, A, 4/ and 0e are defined in the text. 

For the model 2 = A4,At + ©e, the second derivative of the ML function with 

respect to A is obtained as follows: Let uy be the element on the i-th row and the j-th 

column of ft (defined above), denoted uy = [ft]y. Furthermore: vjr = [ftA4']ir, wrs = 

[4'AtftA4']rs. oU = [I'Mij, nir = A4']ir, prs = [4,A‘I-1A4']rs and Vrs = ['I'lrs- 

The Hessian matrix consists of the elements (Lawley and Maxwell, 1971, page 145): 

1/2 3^fmi/9XirX.js = o*j [prs - wrsl + ,nisTljr - TlisVjr - Tljrvis + [Vrs - M-rsl uy 
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