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AN IMPROVED FREQUENCY POLYGON 

by 

Pieter H.F.M. van Casteren 

ABSTRACT 

The frequency polygon, as it is commonly constructed, is not 

compatible with the frequency distribution from which it is 

derived. As a result it is too flat. Therefore a more accurate 

frequency polygon is constructed and the corresponding ogive is 

constructed as well. 

KEY WORDS: frequency distribution, polygon, ogive. 

1. Introduction 

Suppose a number of observations on a certain variable is given. It may 

then be useful to make a diagram in order to get a visual impression of the 

distribution of these observations. Many types of diagrams may serve this 

purpose, such as the quantile plot, scatter plot, box plot, stem and leaf 

diagram, histogram, frequency polygon, density trace, ogive (see e.g. Chambers 

et al. 1983 Ch.2, Schmid 1983 Ch.4). This paper concentrates on the histogram 

and the polygon. Both are representations of a frequency distribution (e.g. 

table 1), hence it is not necessary to know the exact observed values. 

The histogram is explained in most statistical textbooks (e.g. Harnett 

1982) and it is incorporated in many statistical packages (see Ootjers 1987). 

An example is given in table 1 and figure 1. The histogram is discontinuous at 

the class bounds, so if a continuous representation is preferred, another kind 
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of graph is needed. This may especially be the case if the random variable is 

continuous, and if it is assumed to have a continuous density function. 

Continuous representations may also be preferable to histograms, when two or 

more distributions are to be compared on the same chart, because the 

overlaying of several histograms may hamper recognition of the individual 

histograms. The frequency polygon is such a continuous representation of a 

frequency distribution. It is commonly constructed by connecting the 

consecutive midpoints of the tops of the bars of the histogram by straight 

lines (see figure 1). In section 2 this common polygon, is reviewed and it is 

argued that it is inappropriate. Hence, section 3 provides an alternative 

polygon and section 4 presents the corresponding ogive. Section 5 comments 

briefly on the estimation of a probability density function. 

Table 1. Frequency 

distribution, example 1. 

Figure 1. Frequency histogram and common (-) 

and alternative (---) polygon, example 1. 

class frequency 

0-<10 
10-<20 
20-<30 
30-<40 

6 
11 
8 
2 

2. The common frequency polygon 

Anticipating the analysis to follow, an exact description of the 

construction of a histogram and a common polygon for the general case of 

nonequal class widths is given below. Suppose that for some random variable x 

a frequency distribution is given, with c>2 the number of classes, uL the 

upperbound of class i for x such that ^<ul+1 for all i—l,...,c-l, u0 the 

lowerbound of class 1, and fA the frequency of class i, with fjX) and fc>0, 

while f1 + . . .+fc is equal to n (the number of observations) or 1 (if the 

frequencies are relative). Then the class midpoints nq ^(u^ +ui) and the 

class widths wi-ui-ui_1 can be calculated immediately. It is required to 

choose a standard class width, say ws (often chosen equal to the predominant 

class width or equal to one) , so that for each class i the average frequency 

density di=wsfi/wi (interpreted as the amount of frequency per standard class 

width) can be calculated as well. If all the class widths are equal, say w^w 
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for all i-1.c, and ws-w is chosen, then dj-fj . 

The histogram is now constructed by drawing a bar between and ^ with 

height dt for each class i. See table 2 and figure 2. The surfaces of the bars 

(not the heights) are associated with frequencies, see Velleman and Hoaglin 

(1981 p.258), Schmid (1983 p.71), Ootjers (1983 p.32). Thus, as the surface of 

the i-th bar diwi-fiwB is proportional to ft, the histogram is compatible with 

the given frequencies. Note that w8 can be chosen as to achieve any preferred 

positive value for the total surface of the histogram (f1+...+fc)ws. The 

histogram generates a frequency density function, which is obtained by taking 

it's height as a function of x. 

The common polygon is drawn as a linear spline function, connecting 

consecutively the points (m0 , d0 ) , (1% , di (mc , dc ) , (mc+1 , dc+1 ) , where 

m0”U0-hw1 , mc+1 -uc+*swc and d0-dc+1 -0 (see figure 2). The first and the last 

point in this series are added in order to make the polygon a continuous 

function of x. Their positions on the x-axis can be considered the midpoints 

of two imaginary classes (i*0,c+l) with zero frequency and width Wj and wc 

respectively. Their position is rather disputable in the case of unequal class 

widths (an alternative would be to choose both imaginary class widths equal to 

the average class width). 

Table 2. Frequency 

distribution, example 2 

(choosing w8-10). 

class fi d, 

0-<10 
10-<20 
20-<40 

6 6 
11 11 
10 5 

Figure 2. Frequency histogram and common (-) 

and alternative (---) polygon, example 2. 

There is however one fundamental objection against the common polygon: it 

is not constructed such that the surface under the polygon within each class 

is proportional to the frequency of that class, which means it is not 

constructed to be compatible with the given frequency distribution. One can 

see this by comparing the surfaces under the polygon with those of the 

histogram. In particular, the surface under the polygon is too low within the 

peak classes (10-20 In figures 1 and 2) and too high in the imaginary classes 

directly below class 1 (<0) and above class c (>40). This means that the 

common polygon is too flat and therefore it is not a proper representation of 
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the given frequency distribution. A related problem is that the common polygon 

may allocate positive surface to imaginary classes, consisting of impossible 

values of x (this happens in figures 1 and 2, if x is a nonnegative variable). 

In fact a disaccord between the surface under the polygon and that of the 

histogram may arise within each class i—0, . . . ,c+l (see also Yule and Kendall 

1950, p.78-80). This can be explained as follows. The polygon attributes the 

function value ^ to x-n^ for i-0.c+1 and then interpolates between the 

successive class midpoints. If as a result the polygon is concave in class i 

(e.g. peak classes), the average height of the polygon in class i is smaller 

than dA , so that the surface of class i is too small compared to the 

histogram. If the polygon is convex in class i (e.g. i-0,c+1), the average 

height in class i is larger than ^ , so that the surface of class i is too 

large. Hence, in order to get the surface of class i in accord with the 

histogram, one could draw a similar polygon, but with a larger value instead 

of dt if the common polygon is concave in class i and with a smaller value 

instead of dj^ if the common polygon is convex in class i. This basic idea is 

effectuated by the alternative polygon presented in the next section. Since 

Yule and Kendall (1950 p.80) and Schmid (1983 p.71) preferred using the 

histogram rather than the common polygon, because of the latter's 

incompatibility, this alternative might be a welcome new option. 

3. An alternative frequency polygon 

(a) Requirements 

As the objective of a polygon is to give a proper continuous representation 

of a given frequency distribution, a polygon should be: (1) continuous\ (2) 

nonnegative] (3) compatible with the given frequency distribution, that is the 

surface under the polygon within each class should be proportional to the 

frequency of that class. The compatibility requirement is included to avoid 

misrepresentation of the given frequencies. As this rules out the common 

polygon, the alternative is designed to satisfy all three requirements. 

(b) The basic procedure 

Suppose a frequency distribution, as specified in section 2, is given. In 

principle the alternative polygon is drawn as a linear spline function, 
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connecting consecutively the points (uq.O), (m!,Si(mc,ac), (uc,0), where 

the values of alf...,ac are yet to be determined such that, choosing the 

standard class width w8, the surface under the alternative polygon within each 

class i equals the corresponding surface under the histogram fiW,. Because 

each surface fiWB is proportional to fi , this will satisfy the compatibility 

requirement. Writing bi for the function value of the polygon in x—ui for 

i-0, . . . ,c (see figure 3), which means that b0-0 and bc-0 are known, while 

bi-(wi+1 ai+w1ai+1 )/(w1+1 +wi ) for i—1, . . . ,c-l depend on ax , . . . ,ac , the values 

of alt...,ac are to be determined such that 

k(bi_i +2ai+bi ) Wi-fi w8 f°r i"l,...»c. 

Substituting , bi and fi this is equivalent to 

2 + —^2- lai+ T —la2 - 4dx 
L W2+Wl J L W2+Wl J 

^-lai.i + [- + 2 + wltl.. .1ai-h [ - 1 ai+1 - 4di for i-2, 
[wi+w^j j 11 Lwi+wi-i wi+i+wiJ Lwi+i+wiJ 

^-1 ac_i + [ +2 lac - Adc , 
L"c+»c-i J ° 1 K+Wc-i J c 

, C-l 

which can be written in the matrixform 

qi rj 0 0 
P2 <12 r2 0 

3l 

^2 4d2 

Pc-1 ^c-l rc-l 
0 Pc qc . 

^c-l 

with obvious definitions of Pi , qi and ti . There is always a solution for 

(alt...,ac), which can be computed by an algorithm which exploits the 

tridiagonal form of the matrix (see Press, et al. 1988, section 2.8). The 

algorithm is always successful, because |qi|>|Pi| + |ti | for all i-1.c. In 

the special case of equal class widths Wi-w for i-1.c the system becomes 

5ai + a2 - 8dx 

• a^ + 6ai + a1+1 - 8di for i-2.c-l 

. ac-i + 5a0 - 8dc . 

Examples of the alternative frequency polygon are given in figure 1 (ai—7.19, 

a2-12.07, a3-8.40, aA-1.52) and figure 2 (ai-7.15, a2-12.23, a3-5.08). 
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Figure 3. The alternative 

polygon within class i. 

mi_i Ui-l EDi uL %+! 

I_I 
wi 

Figure 4. The alternative polygon before (-; 

and after (-) the first step of adjustment. 

class 1-1 class i class i+1 

(c) Adjustments 

The procedure described above yields a polygon that satisfies the 

continuity and compatibility requirement. However, the nonnegativity 

requirement is violated, if ajCO for some ie{l,...,c). Roughly speaking this 

occurs if fi is small relative to f^ + f1+1 . Such cases are presumably rare, 

but require an adjustment of the basic procedure given above. If possible, 

choosing a different set of class bounds (enlarging the classes with a^O) 

might solve the problem. Otherwise, a simple adjustment is to replace each 

negative value of ai (i-l,...,c) by zero. This will obviously violate the 

compatibility requirement, but presuming that shifts of the alternative 

polygon due to this adjustment will be relatively rare and small in practice, 

it can be considered an acceptable practical solution. Nevertheless, the ideal 

solution would be an adjustment that respects the given class bounds and 

complies with all three requirements. Such an adjustment is described below. 

This more complex adjustment starts after the values of ax,...,ac and also 

those of b0,...,bc have been calculated. Then, constructing the polygon as a 

linear spline function connecting the points (uQ.bo), (n^.a!), (u!^), 

(m2,a2), (u2,b2). (mc,ac), (uc,bc), the adjustment consists of two steps 

in which some of these points may be replaced by some other points in order to 

achieve nonnegativity, while preserving continuity and compatibility. 

In the first step all zero-frequency classes (^-0) are considered 

subsequently. For such a class i the integral of the polygon is zero, so that 

either [b^ -^-^-0] or [b^ <0 v a^O V ^<0] holds. In the latter case the 

three prevailing values are replaced by b^ -0, a*-0 and b*-0, so that the 

requirements are satisfied within class i, and at the same time a^ and ai+1 

are replaced by aj^ and a*+1 which are chosen such that compatibility is 

preserved in classes i-1 and i+1 (see figure 4): 
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- *i(4d1+1 -bl+1 ). 
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‘‘(bi-z +23*-! +b^! )wt_1 

>«(bj +2aJ+1 +b1+1 )w1+1 

“i-1 

ai + l 

In the second step of adjustment all nonzero-frequency classes (^>0) are 

considered subsequently. Indicating all the values obtained after the first 

step without an asterisk, the new values can be indicated with an asterisk 

again. The polygon can be left unchanged within the domain of class i, if 

>0, a^O and ^>0. If this is not so, an adjustment is required. As a 

general principle any negative b^ or bi will be replaced by zero, while 

positive values of b^ and bi will remain unchanged. Any further adjustments 

depend on the signs of bi_1 , and bi. Table 3 gives the relevant cases and 

figure 5 illustrates the adjustments. 

Table 3. Cases with negative values of bj-j , ai or bi. 

cases A B C D E F G 

Vi 
Si 

bi 

_ _ — - 

Figure 5. The alternative polygon before (-) and after (-) the second step 

of adjustment. 

Case B Case C Case E Case FI Case F2 

Case A cannot occur, because fi>0 and compatibility has been preserved. In 

case B the negative b^j and bi are replaced by b*^ -0 and b*-0, while ai is 

replaced by a* in order to preserve compatibility: 

^(bj_i +2a*+bi)Wi - fi ws o a* = 2di (>0). 

In case C the negative bi is replaced by bJ-0 and the point (mi,ai) is 

replaced by the point (111*,0) such that 

bbi,! ) - fiW, 0 % - ui-i + 2fiw5/bi_1 (>ui_1 and <mi ) . 
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Case D Is similar to case C. In case E the point (m^aj) is replaced by two 

other points, (m*,0) and (%,0) respectively, satisfying 

in* -u1_1 —Uj-nJ and Hbi_1 (m; -u1_1 ) + bbj (u1 ) — f j ws « {m* - Ui.i + afiW./Cbi.! +bi) (>*1-1 and <mt) 

nj - u4- 2f1w./(bi_1 +b1) and <u4). 

In case F the negative b1.1 is replaced by b^.j -0; if 1<biw1<f1wa (case FI) 

then a4 is also replaced by aj, satisfying 

'sCb'-j +2aJ+b1)w1 - f4w5 o a* - 2dt- hbi (^), 

but if ><b1w1>f1wa (case F2) the point (m^ai) is replaced by (m4,0) with 

hb1(ui-mj) - fjW, » m* - u4- 2f1w5/b1 (^ and <u4). 

Case G, finally, is similar to case F. 

(d) Corollary 

Obviously the procedure presented above leads to an alternative polygon 

that satisfies the continuity, nonnegativity and compatibility requirements. 

Moreover the surface under this polygon equals for each class the surface 

under the histogram, so this polygon can be considered a proper continuous 

representation of the histogram, which is obtained by simply reshaping the 

surface of each bar of the histogram. 

(e) Modifications 

It is worth noting that the alternative procedure can easily be modified by 

choosing positive values for b0 and bc rather than b0 —0 and bc —0. One can also 

endogenize b0 or bc or both, for instance by taking b0-O and bc-hac or b0-ba[ 

and bc-hac . In such cases one would obtain a compatible, but discontinuous 

polygon, which could be made continuous by extending it with one straight line 

from (Ud-hWi.O) to (uo.b,,) and another from (uc,bc) to (uc+hwc,0). For bo-haj 

and bc-hae such an extended polygon would be similar to the common polygon, 

yet compatible over the classes 1 to c. 
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(f) Choice of class bounds 

When one looks at a histogram or either type of polygon, one should be 

aware that the shape of the figure depends heavily on the position of the 

class bounds Ug,...,uc. Large class widths make the figure smooth, while small 

class widths lead to a figure with more detail (see Chambers et al. 1983 

Ch.2). If the exact observations are available, one is in a position to choose 

a set of preferred class bounds. This choice requires judgement and it is not 

possible to give precise rules for it (Schmid 1983 p.68), yet some helpful 

guidelines are given by Ootjers (1987) and Doane (1976). 

(g) Interpretation of the function values 

The values indicated on the vertical axis give the frequency density, i.e. 

the frequency per standard class width, so they can be interpreted by 

multiplying with a certain number of standard class widths. 

With the common polygon the average density of each class di can be read 

directly from the figure. This advantage is lost when the alternative polygon 

is used. On the other hand the height of the polygon becomes more meaningful 

with the alternative polygon, because the height (density) derives its meaning 

from its integral (frequency) and the integral over each class is correct with 

the alternative polygon, but not with the common polygon. 

(h) Conclusion 

The alternative procedure leads to a continuous representation of a given 

frequency distribution, avoiding misrepresentations as produced by the common 

procedure. The price is greater complexity and more computations, but the 

basic idea of reshaping the bars of the histogram into a polygonal form is a 

trivial matter and in this computer era the computational burden should not be 

an impediment for implementation. Hence, statisticians might consider to 

incorporate the alternative polygon as a continuous version of the histogram 

in statistical textbooks and software, optionally with the simple or more 

complex adjustment procedure. 
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4. The common and alternative ogive 

The ogive is a graphical representation of the cumulative frequency as a 

function of x. In the terminology of a given frequency distribution of section 

2 the ogive is commonly constructed as a linear spline function, connecting 

consecutively the points (Uq.O), (^ , fx ) , (u2>f1+f2). (uc , f 1+f2 +• • •+fc ) • 

See table 4 and figure 6. This common ogive is also called the cumulative 

frequency polygon. Obviously it is compatible with the given frequencies. The 

common ogive is in fact the integral of the height of the frequency histogram 

as a function of x, yet after dividing each height by ws , so that the 

height-measure becomes frequency per unit of x. 

Table 4. Cumulative 

frequency distribution, 

example 2. 

ui fi + .-.+fi 

0 
10 
20 
40 

0 
6 

17 
27 

Figure 6. Common (-) and 

alternative (---) ogive, example 2. 

Similar, an alternative ogive can be derived by integrating the alternative 

polygon of section 3, after dividing the polygon function by ws. For 

convenience the alternative polygon is described as a linear spline function, 

connecting p points (xj.yx), ..., (xp,yp), where x1<x2<...<xp and yx.yP>0» 

while in particular (x^yj) - (u0 ,0) and (xp,yp) - (uc,0). This polygon can be 

formulated as 

P(x) 

p-i 
S (x-Xi)+ for x1<x<xp 
i-i * 

0 elsewhere, 

where 

(x-x^t r l X-Xi 

if x<xi 

if x>Xi , 
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“i 

Yi+i -Vi i-i 
- — S Q i 
Xi+1 "Xi J-1 J 

for i-1,...,p-l. 

The alternative ogive can now be derived as follows: 

x 
q(x) - [ J p(x)dx ]/w5 

*1 

0 

[’s (x-Xi )+ ]/ws 
i-1 

['s (Xp—Xj )+ ]/ws 
i-1 ^ 

for x<xx 

for x1<x<xp 

for x>Xp. 

An example is given in figure 6, where p-5, (xlt...,X5) - (0,5,15,30,40) and 

(olf...,a4) - (1.43,-0.922,-0.9847,-0.0313). 

The alternative ogive is a spline function of the second degree. It is: (1) 

continuous and differentiable; (2) nondecreasing; (3) compatible with the 

given frequency distribution. It is smoother than the common ogive, which is 

not differentiable. If the random variable x is assumed to have a continuous 

density function, then the cumulative density function is differentiable, so 

that in such cases the alternative ogive might be preferred. Therefore it 

might be incorporated in statistical textbooks and software along with the 

alternative polygon as two appropriate and mutually consistent representations 

of frequency distributions of random variables with a continuous density 

function. 

5. Some remarks on density estimation 

In the above the histogram and both types of polygons were discussed as 

tools of descriptive statistics. Nevertheless the resulting frequency density 

functions could also be used as estimators of the unknown probability density 

function of x. For this purpose the total surface under the density estimator 

should be equal to one, so one should choose ws«l/(f1 + . . .+fc) , and with the 

common polygon all class widths should be equal (see figures 1 and 2) . Scott 

(1985) gave results on the efficiency and the optimal class widths of the 

histogram and the common polygon. Similar results on the alternative polygon 

would be required in order to justify it's use as a density estimator. Hence, 

research on this subject is welcome. 
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