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A WEIGHTED LOEVINGER H-COEFFICIENT EXTENDING 

MOKKEN SCALING TO MULTICATEGORY ITEMS 

*Ivo W. Molenaar 

ABSTRACT 

A Mokken scale originally was a nonparametric item response model for 

measuring a not directly observable property (latent trait) from a person's 

answers to a set of dichotomously scored items. The concept was extended to 

items with more than two ordered answer categories by Molenaar. This 

extension and its implementation in the computer program MSP so far were 

based on a count of Guttman errors in the contingency table of each item 

pair. 

The present paper argues that a weighted count of such errors is a more 

effective way to assess the closeness to the Guttman scalogram. It leads to 

a version of Loevinger's H-coefficient that is always equal to the ratio of 

the correlation between the two item scores and the maximum possible 

correlation given the marginal distributions per item. 

After an introduction, the new coefficient is first explained by two 

examples. Then the new and the old coefficient are compared. Proofs are 

collected in the final section. 

*Ivo W. Molenaar, Vakgroep Statistiek & Meettheorie, FPPSW, 

Rijksuniversiteit Groningen, Grote Kruisstraat 2/1, 9712 TS Groningen, 

tel. 050-636185 
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1. INTRODUCTION 

Mokken (1971) has proposed a nonparametric item response model for 

dichotomous items. Statistical models for item responses are used to assess 

and improve the quality of a measurement procedure that infers a person's 

position on an unobservable latent trait (usually an attitude or an ability) 

from his/her answers to a set of items believed to be relevant to that 

trait. The core idea of item response theory is to express the probability 

of a positive answer of a person to an item as a function of the person s 

latent trait value and of the properties of the item, summarized in the 

socalled item characteristic curve that represents the probability of a 

positive answer as a function of the latent trait value. 

Mokken's model is nonparametric, in the sense that neither the 

distribution of the latent trait across subjects, nor the item 

characteristic curves, are assumed to belong to a parametric family (like 

the normal or the logistic). As a result it only provides an ordering of the 

persons and of the items, as opposed to numerical estimates of person and 

item parameters. With the computer program MSP (Debets and Brouwer, 1989) 

one can test the assumptions of the model and obtain the resulting order for 

a given data matrix of persons by items. Moreover, if no satisfactory fit is 

found, a bottom up search procedure finds possible subsets of items that do 

form a Mokken scale. 

A Mokken scale can also be viewed as a probabilistic extension of the 

Guttman scalogram. The major tool for assessing scalability according to 

this model is Loevinger’s H-coefficient for two items H - 1 - F/EF, where F 

is the number of persons scoring positively on the most difficult and 

negatively on the easiest of the two items, and EF is the expected value of 

F under the null hypothesis that the item scores are independently 

distributed given the observed marginal distributions. Mokken (1971) derives 

from the asymptotic sampling distribution of H a one sided significance test 

whether the population H is zero or positive. He works out the search 

procedure mentioned above, in which H-values per item are only viewed as 
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acceptable when they exceed a lower bound c to be provided by the user 

(default 0.3) . 

As is explained in Molenaar (1982), Sijtsma (1988, p.32-34) and Debets 

& Brouwer (1989), the model, the scaling procedure and the use of 

Loevinger's H-coefficient can been extended to items with M>2 ordered 

categories. They will be scored in this paper as 1,2.M, but any other 

equidistant scoring system produces equivalent results. Indeed, Molenaar 

(1982) uses m+1 for the number of categories and scores them as 0,1,...,m. 

The new notation, however, is much easier for our proofs. If k items of this 

kind form a Mokken scale, they measure the same latent concept, and persons 

can be ordered by their Likert sum score across the k items as an indicator 

of their position on the latent trait. 

The extension proceeds as follows. The score, denoted by X, obtained on 

an item, can be written as the sum of the dichotomous scores X on M ordered 
g 

"item steps", defined by X^-l if X>g and Xg=0 otherwise, for g-l,2,..,M. 

A person scoring X-h, say, has passed the first h item steps and failed the 

remaining M-h steps. Note that the very first item step X>1 is trivially 

passed by everyone (and is omitted if scores 0,1.m are used). Suppose, 

for example, that an ability item has M=3 ordered rating categories wrong, 

partially correct, wholly correct, scored as X * 1, 2 and 3 respectively. 

A competent person will probably earn three points on this item by passing 

the trivial step X>1 but also both nontrivial item steps X>2 (from wrong to 

partially correct) and X>3 (from partially correct to wholly correct); thus 

Xg=l for all three item step scores. A person with average competence will 

probably pass the first two item steps but fail the last one, and earn two 

points (X~2, X^-=l, X2=l, X^-0). An incompetent person will only pass the 

trivial first step and obtain the minimal score of X-l with X^-l, X2-‘0, 

X3=0- 
As is worked out in Molenaar (1982), there is a logical relation 

between the item step scores X^ : if X^-l then xg“l f°r all g<h, and if 

then Xg-'O f°r all g>h. It would thus be incorrect to analyze the scalability 

of k items with M categories each by computing the Loevinger H coefficient 

for all pairs formed from the k*(M-l) nontrivial dichotomous item step 
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scores : the relation implies that step scores from the same item have 

perfect Guttman scalability. 

Therefore an adequate analysis should be based directly on the value of 

H for each pair of multicategory items, with scores denoted by X and Y. It 

can be calculated from the M by M contingency table of X and Y in the 

following way. First order the estimated probabilities of the 2M-2 

nontrivial item steps X>g and Y>h for g,h — 2,3,...,M. Each person passing 

the easiest s of these nontrivial steps plus the two trivial ones and 

failing all other steps (0<s<2M-2) falls in one of the cells of the 

contingency table that are compatible with the cumulative Guttman idea. 

Frequencies in such conformal cells are underlined in the examples below and 

marked by stars in the MSP output. Persons falling in the other cells of the 

contingency table are in error with respect to the Guttman model. 

In all publications up to now, except for a brief remark in 

Molenaar(1983), the H-coefficient for the scalability of the two items is 

then defined by H' = 1 - F'/EF', where F' is the sum of the frequencies in 

the error cells and EF' is its expectation under the null model of global 

independence of the item scores X and Y with the given marginal 

distributions. Primes are added to F and H in order to distinguish them from 

the new version proposed in this paper. 

The goal of this paper is to introduce an alternative definition of H, 

in which F' is replaced by a weighted sum of the frequencies in the error 

cells, to be denoted by F. As explained below, the weight per cell is the 

number of item step pairs for which the Guttman order is reversed in the 

answer to both items corresponding to that cell. 

The next section gives two examples of the calculation of F' and F for 

two items with four categories each. Section 3 presents an evaluation of the 

differences between the old coefficient H' — 1- F'/EF' and the new 

coefficient H - 1 - F/EF. Some favorable properties of H, announced there, 

will be proven in the last section. 
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2. TWO EXAMPLES 

It is a relevant property of multicategory Mokken scaling that the 

order of the item steps and thus the separation into conformal and error 

cells differs for different item pairs. In the first example below it will 

be shown that the sequence of conformal cells (underlined) has first two 

vertical steps, then two horizontal ones, and next a vertical one followed 

by a horizontal one (WHHVH); in the second example this order will be 

VHVHHV. Both examples deal with items scored 1,2,3,4 for the categories very 

often, often, rarely, never, taken from the GSLDT data set of Weijmar 

Schultz and Van der Wiel (1991, p.158-167). 

I X-l X—2 X=3 X=4 | marg step 

Y-l 

Y-2 

Y-3 

Y-4 

10 22 

17 

34 

40 26 

3 (178) 

14 175 

69 161 

92 92 

marg 

step 

26 46 77 29 

(178) 152 106 29 

178 

From the marginal frequencies, one derives the popularities per item step 

that are displayed in the last column and row. The number of persons passing 

the trivial first steps X>1 and Y>1 is of course 178. More interesting is 

that the most popular real item step is Y>2 passed by 175 persons. The next 

most popular is Y>3 passed by 161 persons, and then X>2 passed by 152 

persons. Proceeding in this way one obtains that the cells 11, 21, 31, 

32,... of the table are in agreement with the Guttman ordering of the item 

steps; these entries are underlined. In the table below the item steps are 
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ordered from most to least popular (top to bottom). For each cell (column of 

the table) it is indicated whether the item step is passed (+) or failed 

(-). In a perfect Guttman pattern (underlined entry in the previous table) 

no minus sign in the corresponding column may occur above a plus sign. 

cell ij 11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44 

item step pop. 

y>2 175 - - - - + + + + + + + + + + + + 

y^3 161 .+ + + + + + + + 

X>2 152 _ + + + . + + +- + + +- + + + 

X>3 106 --++--++--++-- + + 

Y>4 92 .-.+ + + + 

X>4 29 + 

error weight w.. 0247012400012100 

obs. frequency nij 3^00047 30 10 22 34 3 9 17 40 2€± 

The MSP output assigns error weight 1 to each of the error cells 12, 13, 14, 

22, 23, 24, 34, 41, 42 and shows an error frequency F — 7+3+3+9+17 — 39. 

The error weight in the table above, however, is the number of Guttman vio¬ 

lations between item steps : per column each combination of a plus sign with 

a minus sign above it contributes one violation. In cell 14, for example, 

the plus signs in rows 3 and 4 each have two minus signs above them, and the 

plus in the last row has three, leading together to a weight of 7. 

The weighted sum of observed error frequencies F « S S wijnjj equals 

51. If one replaces the observed frequencies by the null-expected 

frequencies e^ - n1+n+j/n++, not shown above but given in the MSP output, 

one obtains an expected error count of 62.97 in the unweighted case and 

96.91 in the weighted case. Thus one obtains H' = 1 - 39/62.97 — 0.3807 and 

H - 1 - 51/96.91 - 0.4737. 

We now turn to the second example. Here the two least popular item 

steps happen to have an equal estimated probability of 29/178. In the table, 

X>4 has been arbitrarily designed as the easiest one. This leads to F'- 57, 
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EF'« 83.70, H'— 0.3190 for the unweighted and F - 86, EF — 147.80, 

H - 0.4181 for the weighted case. 

Z-l 

Z-2 

Z-3 

Z-4 

marg 

step 

X-l 

12 

_8 

4 

2 

26 

(178) 

X-2 

6 

15 

23 

2 

46 

152 

X-3 

4 

18 

41 

14 

77 

106 

X-4 | marg step 

2 | 24 (178) 

5 | 46 154 

U I 79 108 

U I 29 29 

29 I 178 

29 

cell ij 11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44 

item step 

Z>2 

X>2 

Z>3 

X>3 

X>4 

Z>4 

pop. 

154 

152 

108 

106 

29 

29 

error weight 

obs.frequency 

alt.error weight 

ij 
n. . 
IJ 

0 

12 

0 

0 0 1 

8 15 18 

0 0 1 

10 0 0 

4 23 41 11 

10 0 1 

+ + 

2 1 

2 14 11 

10 0 

If Z&4 is chosen as the easier step, the fifth and sixth line of plus 

and minus signs are interchanged. One easily verifies that this leads to the 

line of alternative error weights given at the end of the table. Now in the 

unweighted case one finds F' - 54, EF' - 84.03, and H'« 0.3574. For the 

weighted case one can verify that both F and its null-expected value remain 

unchanged, and H=0.4181 as before. 

The MSP output prints a warning for the two equal cumulative marginals. 

The program takes the mean of the two F' values (57+54)/2 =55.5 and the 
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mean of the two EF' values (83.70+84.03)/2 — 83.87 and thus uses 

H'- 1-55.5/83.87 - 0.3382 for the analysis of the scale. Although this 

interpolation can be justified by the argument that there is equal 

probability that each of the Z^4 and X>4 steps is the easiest in the 

population, it is more convincing to use a coefficient that has the same 

value regardless of the choice. Later in this paper it will be shown that H 

always has this property. 

3. COMPARISON OF H' AND H 

Note that in the dichotomous case, H' and H coincide : there is only 

one error cell, and it gets weight one in both coefficients. In the case of 

more than two categories, the new coefficient H has the following advantages 

compared to the original coefficient H': 

1) In the case of equal item step probabilities, there is ambiguity which of 

two cells is an error cell. H has the same value for both choices, 

whereas H' has not (the computer program MSP then gives both possible 

values and operates with a third value based on the means of F' and EF'). 

2) The interpretation as the observed correlation between the item scores 

divided by the maximum possible correlation given the marginals, holds 

for H' in the dichotomous case only (H'= phi/phimax). For H this 

interpretation is valid regardless of the number of categories. 

3) The null-expected frequency of errors EF equals the product of the sample 

size with the maximal possible covariance given the marginals, which 

makes it easier to obtain than EF'. 

4) This maximal covariance is the covariance for the table with the given 

marginals in which all error cells have zero frequency. 

The proofs of these properties are given in section 5. 

Note that F weighs deviations from the perfect Guttman pattern 

according to their severity, whereas F' does not. In other words, passing a 

certain item step and failing another one which is much easier (in the sense 
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of : there exist many other item steps in between) is punished more severely 

than passing the same step and failing the adjacent easier one. There is an 

analogy with the relation between kappa and weighted kappa, or between the 

Wilcoxon symmetry test and the sign test. The former weighs by the "number 

of observations in between" and the latter just uses the sign of the 

difference. 

The extension of H for item pairs to a scalability coefficient per item 

or for the total scale proceeds exactly like for the dichotomous model: 

errors and expected errors are added across the item pairs containing the 

fixed item, and across all item pairs, respectively. In both cases the 

weighted coefficient counts the weighted number of inversions per person of 

the relevant item steps, whereas the unweighted one counts the number of 

relevant item pairs per person in which at least one step pair is reversed. 

A possible drawback is that H, more than H', has an instable value when 

it is estimated from a small sample: having one person more or one person 

less in a heavily weighted cell makes more difference for calculating H than 

for H'. A similar instability occurs in the dichotomous case between a very 

popular and a very impopular item, because one person more or less in their 

error cell makes much difference when EF' is close to zero. This effect of 

small expected frequencies is discussed in detail in Molenaar (1982, section 3). 

A pilot version of MSP using the new H rather than H' has been 

developed for the author by Debets. Running both versions on a dozen 

available datasets with three to seven ordered answer categories per item 

has led to the following tentative conclusions. 

Pairwise H'-values are often close to pairwise H-values, but occasional 

absolute differences of 0.10 and even 0.30 occur, mostly with H larger than 

H'. The reverse, such as H'«0.35 and H -0.21, is more exceptional. It seems 

to occur for tables in which a relatively high frequency is found in a very 

unusual cell with many Guttman violations as counted by item steps in the 

wrong order. Since such a contingency table tends to produce a negative H' 

value even in the unweighted case, there is a general trend that pairwise H 

values lie further from zero than their unweighted counterparts. Exceptions 

to this trend do occur, however, notably for small samples of persons. 
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Item H(i) values are much closer to item H'(i) values than the pairwise 

coefficients; in general the new coefficients tend to be a bit higher, but 

occasionally they are lower than the old ones. 

For the total scale H is almost always somewhat higher than H'. The 

median difference obtained lies between .05 and .07. 

The differences between the weighted and unweighted cases tend to be 

more pronounced when the number of categories is larger. 

It is not unusual to find some item pairs for which the old and the new 

pairwise coefficients have opposite signs, or in which an item coefficient 

H'(i) falls just on the other side of the lower bound c for scalability than 

H(i). Both phenomena may cause exclusion of an item in a search procedure 

with one coefficient while it will be included with the other. 

4. DISCUSSION 

The new coefficient H based on the weighted error count is superior in 

many respects to the older version based on the unweighted counts. The 

natural interpretation as the ratio of the correlation to the maximum 

possible correlation given the marginals is often easier than viewing H as 

the complement of the frequency ratio of the observed errors to the null- 

expected errors. In particular, taking the H value obtained from a sample of 

persons as an estimate of the corresponding value in the larger population 

of persons, is more natural in the former interpretation. Note that Mokken 

(1971) discusses the population H in both interpretations. 

Attaching additional weight to errors which are more sharply in 

contrast with a score pattern expected under the Guttman scalogram 

assumption appears desirable in most applications of the Mokken model to 

multicategory items. The present author does not exclude, however, that the 

use of the unweighted version H' might be desirable in some cases, 

especially for a test consisting of a few items each with many categories. 

Multicategory Mokken scaling may also be applied when the number of 

ordered categories varies between items. The reader can easily verify that 

the results in this paper remain valid for this case; the modifications are 
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trivial but the notation becomes more cumbersome. This extension can already 

be handled in the present version of MSP which is based on the unweighted 

H'. It will also be included in the new version using the weighted H. If the 

same category set can be meaningfully used for all items, one is advised to 

do so : note that for example in the sum score for three two-category items 

and three four-category items the former set of items allows earning less 

points, although these items need not be less important for determining a 

person's position on the latent trait being measured. When some items do not 

allow a natural meaningful set of categories that corresponds to the 

categories used for the other items, it should be left to the investigator 

whether reduction to an equal number of categories per item is preferred to 

using unequal numbers of categories. 

Mokken scaling has been successfully applied, both with dichotomous and 

with multicategory items, in many domains; for an overview see Sijtsma 

(1988, p.31). Incorporating the change proposed in the present paper 

hopefully will lead to the development of even more good Mokken scales in 

the future. 

5. PROOFS 

This section contains the proofs of the four properties mentioned in 

section 3. It will be convenient to prove them in reversed order, from 4) 

via some auxiliary results to 3) and finally 2) and 1). For the direct 

algebraic verification of the four properties, it is an obstacle that 

different cells play the role of error cells in different contingency 

tables, depending on the numerical values of the cumulative marginal 

proportions. In the proofs that follow below, this obstacle has been avoided 

by the use of general principles that hold for any contingency table, 

regardless of which cells are error cells. 

The problem of finding a joint distribution of two variables, with 

given marginal distributions, that maximizes their correlation or 

covariance, has a long history. The treatment by Whitt (1976), for example, 

refers to Frechet (1951); see also Naddeo (1987, p.98). Although some of our 
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theorems can be derived from these earlier results, the present note 

presents a complete set of proofs, in a notation consistent with our problem 

of H coefficients. 

In each contingency table of two M-category items, there exists a 

sequence of 2M-1 conformal cells, in which the s easiest item steps for 

2<s<2M have been passed and the 2M-s more difficult ones have been failed. 

The first such cell (s-2) is the 11 cell, in which only the two trivial item 

steps have been passed; the last cell (s—2M) is the MM cell. For each 

conformal cell, the next conformal cell lies either immediately to its right 

or immediately below it. If one joins consecutive conformal cells by line 

segments, cell 11 is joined to cell MM by segments that move downward or to 

the right, never upward or to the left. All cells outside this trajectory 

are error cells. 

It is very important for the proofs that we only consider contingency 

tables with the same marginals as the observed one; they form the socalled 

isomarginal family. In the proof of theorem 1 this allows us to fill the 

remainder of certain rows or columns with zeroes; the goal of finding the 

table Z with zero entries in all error cells is achieved stepwise by putting 

in each cell the maximum frequency permitted given the assignment to 

previous cells and the constraint of equal marginals. 

In proving theorems 2 and 5 the property is used that different members 

of the isomarginal family can always be obtained from one another by a 

sequence of elementary shift operations of the following type. If the new 

table has a frequency of one unit less in a certain cell than the previous 

table, it has one unit more in some cell of the same row (fixed row sum). 

Moreover, it has another row in which the column that was just decreased by 

one must be increased by one, and in which the column that was just 

increased by one must be decreased by one, in order to keep the marginal 

values of these two columns fixed. 

Theorem 1. For each M by M contingency table of two items X and Y with 

entries n^, there exists a unique contingency table with entries z^ which 

has the same marginals and zero entries in all error cells. 
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Proof 

A numerical illustration of the procedure follows after the proof. 

Denote by n^ the observed frequency of X-i, Y-j and by n the grand total. 

Let n^+ and n+^ be the individual marginal frequencies of X-i and Y-j, 

respectively. Finally let and be the item step freqencies observed 

for X>i and Y>j respectively; they were denoted by "step" in the examples of 

section 2. Note that they differ from ordinary cumulative frequencies by 

counting "i or more" rather than "i or less", and similarly for j. 

The first conformal item cell is cell 1,1. 

If is the last cell established to be conformal, then the next 

conformal cell lies either to its right or below it. The choice is trivial 

when there is no cell to the right (h«M) or no cell below (g=M). Otherwise 

the choice depends on which of the corresponding step frequencies is 

largest. The following rule establishes (a) the frequency assigned in the Z- 

table to the currently considered cell and to the remaining cells in the 

same row/column; (b) the identity of the next conformal cell : 

When either h=M or Ng+^ N+ , then g+l,h is the next conformal 

cell and one puts 

z_v, ” n - .S?' z and if h<M also z . - 0 for all j>h. gh g+ j-1 gj gj J 

When either g=M or +< h+i holds, then g,h+l is the next conformal 

cell and one puts 

gh 
n - Sg1 
+h i-1 'ih and if g<M also - 0 for all i>g. 

If g-M and h-M, one only applies any of the two formulas for z , for e-h-M- 
gh 

they both assign all the remaining frequency to the last cell. 

This algorithm uniquely determines the conformal cells of the given 

table. It assigns zero frequency to each error cell, because each such cell 

either has all conformal cells of the same row to its left (in which case it 

has zero z-frequency by the first rule) or it has all conformal cells of the 

same column above it (in which case the second rule assigns zero z-frequency 
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to it). Moreover, the rules clearly ensure that the marginals are preserved; 

once this holds for the first M-l rows and columns it must also hold for 

the last one. 

Let us illustrate now in some detail how the perfect Guttman table Z with 

entries z.. can be obtained from a given table N with entries n^ by a 

sequence of elementary shift operations in which four entries forming a 

rectangle are increased and decreased by one unit. In this algorithm, used 

in the proofs of theorems 2 and 5, the table currently under consideration 

forms a frequency matrix T with entries t^. Next a different matrix D is 

defined, with entries d„ - t.^- z.^. Because T and Z must have the same 

marginals, the matrix D is doubly centered (row and column sums are always 

zero). 

ALGORITHM. For any given matrix N, create the matrix Z as described in 

Theorem 1. Put initially T - N. 

(1) Inspect matrix D - T - Z. If D is the null matrix we are ready. If not, 

g - number of the first row in which D has a nonzero entry; 

p - number of the first column in which D has a positive entry in row g; 

q - number of the first column in which D has a negative entry in row g; 

h - number of the first row for which D has a positive entry in column q. 

Clearly g exists because D is non-null, and p,q,h exist because D is doubly 

centered. By definition h>g. In the proof of theorem 2 it will be shown that 

also p>q. 

Now use the elementary shift, adding one to t^ and , while diminishing 

t and t. by one. As D - T-Z, the same changes occur in D. Repeat this 
gp hq J 
shift until one of the two diminished d-values equals zero. Then go back to 

(1) because now one or more of the four values g,h,p,q have been changed. 

This completes the algorithm. For later proofs, we define the raw cross 

product sum 

CP - t++* E XY - S X i*j*tij . (1) 
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Each shift increases CP by an amount CPC - gq-gp-hq+hp - (h-g)(p-q). 

The algorithm is demonstrated for the first example of section 2. Conformal 

cells are underlined. For later use, we also give the weights w^^ and the 

weighted number of Guttman errors F (see theorem 5). 

Jmarg step table Z table N 

3 0 0 0 | 3 

4 7 3 0 | 14 

10 22 24 3 | 69 

9 17 40 26 | 92 

(178) 3 0 0 0 

175 14 0 0 0 

161 9 46 14 0 

92 0 0 63 29 

weights W 

0 2 4 7 

0 12 4 

0 0 0 1 

2 10 0 

marg 26 46 77 29 |178 

step (178)152 106 29 | 

Comment : Z is obtained from N by the steps in the proof of Theorem 1. 

The "step" entries N^+ and N+^ determine the next conformal cell. 

Now we determine g,q,p,h for each step of the algorithm. The four cells of 

matrix D involved in the shift operation are printed in bold. 

table T 
3 0 0 0 
4 7 3 0 

10 22 34 3 
9 17 40 26 

3 0 0 0 
_5 6 3 0 
_9 22 34 3 
9 17 40 26 

3 0 0 0 
11 0 3 0 
_9 22 34 3 
3 23 40 22 

3 0 0 0 
14 0 0 0 

_9 22 24 3 
0 23 42 26 

2 0 0 0 
14 0 0 0 
_9 42 14 3 
0 3 62 26 

3 0 0 0 
14 0 0 0 
_£ 46 14 0 
0 0 62 22 

table D-T-Z 
0 0 0 0 

-10 7 3 0 
1-24 22 3 
9 17-23 J 

0 0 0 0 
^9 6 3 0 
0-23 20 3 
9 17-23 j_3 

0 0 0 0 
J 0 3 0 
0-23 22 3 
3 23-23 J 

0 0 0 0 
0 0 0 0 
0-23 20 3 
0 23-20 zi 

0 0 0 0 
0 0 0 0 
0 ^3 0 3 
0 3 0 J 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

situation 
CP - 1629 F - 51 
g—2 q=l p=2 h=3 CPC=1 applied once 

CP - 1630 F - 50 
g-2 q=l p—2 h=4 CPC=2 applied 6 times 

CP - 1642 F - 38 
g—2 q-1 p-3 h=4 CPC—4 applied 3 times 

CP - 1654 F - 26 
g—3 q=2 p=3 h—4 CPC—1 applied 20 times 

CP - 1674 F - 6 
g-3 q—2 p—4 h—4 CPC—2 applied 3 times 

CP - 1680 
D-0 ready 

F - 0 



Theorem 2. The covariance and the correlation of two item scores with fixed 

marginals attain their maximum when all error cells have frequency zero. 

Proof 

Denote the two item scores by X and Y. Note that the marginal dis¬ 

tributions of X and Y are fixed by assumption. Thus their means and 

variances are fixed as well. Maximizing the correlation between X and Y is 

thus equivalent to maximizing their cross product sum CP given by (1) 

across all sets of cell frequencies t^ which give the correct marginals. 

Let T denote an arbitrary member of the isomarginal family determined 

by the marginals of X and Y. and let Z denote the table from this family in 

which all error cells have frequency zero. Unless already T—Z, we transform 

T into Z using our algorithm. At each shift operation, CP changes by 

(h-g)(p-q). If this is always positive, then Z must have a larger CP than T 

and our proof is complete. 

The property h>g is obvious from their definitions. The property p>q, 

on the other hand, does not hold for any pair of matrices, but here it can 

be derived from the procedure by which Z has been constructed. In order to 

show this, consider any fixed stage of the algorithm in which the current 

matrix is denoted by T and the difference T-Z by D. Again g denotes the 

first row of D that has a non-zero entry; on this row let j denote the 

column in which the first non-zero entry occurs. Our claim is that dgj< 0. 

The reader may verify from the proof of theorem 1 that the rules for 

creating Z imply that any element of Z, in particular our current gj-cell, 

always obtains the maximum possible frequency given the frequenties assigned 

to all cells to its left and to all cells on higher rows. For all such cells 

the current d-value is already zero. Therefore T and Z both belong to the 

subfamily of the isomarginal family with the same fixed values in all 

earlier cells. Given the constraints that this implies, assumes the 

maximum possible value and t . is free. Thus d . — t .-z . ^ 0, but it is 

unequal to zero by the definition of j and thus it must be negative. As a 

consequence, the first negative element of row g always stands to the left 

of the first positive element, by which q<p is proven. 



Theorem 3. Consider two cells i,j-l and i,j of row i of the contingency 

table of two M-category items X and Y. Let w^ denote the number of pairs of 

item steps for which one step is passed and an easier step is failed by a 

person with X-i and Y-j. 

(a) There exists a unique integer g (l-i<g<M-i) such that in row i+g the 

cells in columns j-1 and j are both conformal. 

(h) w1J-wi J_1- g. 

(c) The difference in w-value decreases by 1 for each subsequent row in the 

table : 

-1. 
*i+l,j ' Wi+1»j-1 i J i.j-1 

Proof 

a) is correct because the sequence of line segments joining cell 11 to cell 

MM passes exactly once from column j-1 to column j. 

For the case g - 0, w^j” wi l j* ^ as conf°rmal cells have no errors, 

and b) follows directly. 

If g > 0, the g steps down from row i to row i+g have been failed in cell 

i,j-l. Going from there to cell ij , the step Y>:j which was failed in cell 

i,j-l is now passed, and nothing changes for any other item step. Thus going 

from i,j-l to ij increases w by an amount g. 

The g < 0 case follows by an analogous reasoning, so b) holds for all three 

situations. 

Statement c) follows immediately from b), because going from row i to row 

i+1 the unique number g decreases by one. 

Note that theorem 3 allows us to calculate the weight matrix without 

inspecting columns of plus and minus signs like in section 2 : first 

establish which cells are conformal and give them weight zero, next fill one 

row using b) and finally apply c) to find the other rows. In the example 

used before, we have 
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3 0 0 0 

N - 4 7 3 0 so we already know that W - 

10 22 34 3 

9 17 40 26 

0 . . . 
0 . . . 
0 0 0. 

. . 0 0 

By result b) w^^- w^j — 1, because we have to go one 

conformal cells in the third and fourth column. 

So our third row is 0 0 0 1 

with differences of 0 0 1, respectively. By c) 

has differences of -1 -1 0 so w^- 1 an<^ w, 

has differences of 1 1 2 so w22“ 

has differences of 2 2 3 so wi2“ 

23 

W13' 

'41 ' 

2, 
4. 

row down to find 

the fourth row 

■ 2. The second row 

w2^- 4. The first row 

Theorem 4. For any four cells situated in rows i and i+g and columns j and 

j+h of a contingency table, the second order difference of w and the 

analogous difference of the row and column numbers used in the cross product 

i*j matrix are equal to -g*h and g*h respectively : 

wij- wi,j+h- wi+g,j+ wi+g,j+h “ -e*h and 

i*j - i(j+h) - (i+g) j + (i+g) (j+h) - 6*h. 

Proof 

The second order difference considered is the sum of such differences 

for adjacent columns. For the w matrix the desired result then follows from 

repeated application of statement b) in the preceding theorem. For the cross 

product matrix it is very simple algebra. 

Theorem 5. The weighted number of errors F in the observed table is equal to 

the difference between the maximum possible cross product sum CPniax and the 

observed sum CP, and thus to the sample size n times the difference between 

the maximum possible covariance and the observed covariance. 



In order to establish the relation F - CPmax - CP, we shall change the 

observed table N into the table Z defined in Theorem 1. This will be done 

by our algorithm, which consists of a suitable sequence of elementary shift 

operations that preserve the marginals. For each such operation (which may 

take place between non-adjacent rows and columns) we have already seen that 

CP is increased by an amount (h-g)*(p-q). 

Adding one to t and t, while subtracting one from t and t. implies 
& gq hp 6 gp hq 

that F - ,2. t..* w,.changes by an amount w - w - w, + w. .By theorem 4, 
i,j 1J ij 6 J gq gp hq hp J 

this means that F decreases by (h-g)*(p-q). 

This implies that the total change in F during the algorithm is minus the 

total change in CP, as is also illustrated in the example after theorem 1. 

Now CP is the cross product sum for matrix Z (theorem 2), for which all 
max r 

error cells are zero and thus Fz - 0. Therefore 

F — -(F^- F) = minus total F-change - total CP-change — CPmax " CP. 

Because both tables have the same marginals, they have the same means, and 

the statement on the difference between the covariances follows from that on 

the difference between the CP values, using the definition of a covariance. 

Theorem 6. The expected value of the weighted error count for an item pair 

X,Y under the null hypothesis of independence and given marginals equals the 

maximal covariance given the marginals multiplied by the sample size, or in 

formula 

E F 2 2 e..w.. 
ij ij 

n cov (X,Y). 
max 

where e 
ij vn+j/n- 

Proof 

It is easy to modify the proof of theorem 5 and the algorithm for 

transforming N into Z for the situation where the given frequencies n^ are 

replaced by the null-expected frequencies e^, which have the same 



marginals as N and Z. Now at each step a suitable fractional number can be 

added to the gq and hp cells and subtracted from the gp and hq cells, rather 

than an integer number. If we use the index e to denote values obtained from 

e. . , this new version of theorem 5 yields that E F — ^max ~ ^e ' ^ext one 

obtains CP from 0 - cov (X,Y) - CP /n - EX EY. As a result one has 
e e e 

EF-CP -nEXEY-n cov (X,Y) . 
max max 

Theorem 7. The weighted coefficient H equals both cov(X, YVcov^^X.Y) and 

r<X.Y>/rmax(x.Y). 

Proof 

The identities F - n[covmax(X,Y)-cov(X.Y) ] and EF - n*covmax(X,Y) can be 

obtained from theorems 5 and 6. Substitution into H - 1 - F/EF gives the 

first result. 

The ratio of the correlations equals that of the covariances, because the 

standard deviations are fixed within the isomarginal family. 

Theorem 8. If an observed frequency table has two item steps X>g and Y>h 

with equal observed frequencies, the values of F, EF and H are not changed 

by choosing one or the other of the two equally popular item steps as the 

easiest one. 

Proof 

The three quantities have been interpreted in terms of covariances, and any 

covariance is a symmetric function of its arguments. 
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