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A NOTE ON THE USE OF THE PRODUCT OF SPACINGS 
IN BAYESIAN INFERENCE 

F. P. A. Coolen & M. J. Newby1, 
Eindhoven University of Technology, 
The Netherlands. 

Abstract- The product of spacings is suggested as an alternative to the likelihood 
in Bayesian inference. It is shown the product of spacings can be used 
in place of the likelihood in Bayesian inference without losing the 
structure and properties of the Bayesian method. The method is also 
shown to have computational advantages. 

KEYWORDS: likelihood; Bayes theorem; Bayesian inference; product of spacings; 
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1. Introduction 

This note arose from the consideration of two problems that occur in classical 

likelihood estimation and are inherited from it by Bayesian methods. The problems arise 

from some of the shortcomings of the likelihood function: (i) in some circumstances the 

likelihood function is unbounded; (11) the sensitivity of the likelihood function to 

outliers. The importance of sensitivity is to some extent context dependent, but the 

unboundedness of the likelihood function can be a serious impediment in both classical 

and Bayesian analysis. Here we want to give a brief outline of the use of the product 

of spacings and show its potential in Bayesian analyses. 

Consider the problem of estimating a parameter i? in the univariate distribution F(t|i?) 

with density function f(t|i7). The problem of an unbounded likelihood most commonly 

arises when the parameter i? is in the boundary of the support of f, for example the 

maximum likelihood estimator of the left hand end-point of a domain is almost always the 

first order statistic (Cohen and Whitton-Jones, 1989). Indeed, for any densities which 

are J-shaped or heavy-tailed maximum-likelihood is bound to fail (Cheng and Amin, 198.3; 
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Ranneby, 1984). In these cases the derivation of a posterior density function for the 

parameter j? may also be problematic. 

Our objective here is to summarize the properties of the maximum product of spacings 

method as given, with rather different perspectives, by Cheng and Amin (1983), Ranneby 

(1984), and Titterington (1985), and then to illustrate its use in some simple Bayesian 

analyses. 

2. Product of Spacings 

The maximum product of spacings method has been known implicitly (Titterington, 1985) 

for a long time, but was first formally defined and analysed by Cheng and Amin (1983) 

and Ranneby (1984). Cheng and Amin (1983) began by attempting to replace the likelihood 

function by an alternative which retained as many of the useful properties of the method 

of maximum likelihood as possible. Ranneby (1984) began from an information theoretic 

problem: he noted that the likelihood is an approximation for the Kullback-Liebler 

information and sought other satisfactory approximations for this measure of distance 

between a fitted distribution and the true distribution. The approach of Cheng and Amin 

(1983) is more intuitively attractive and can, to some extent, be regarded as a 

pragmatic solution to the problems associated with likelihood (Titterington, 1985), but 

that of Ranneby is more powerful theoretically and allows the derivation of the 

properties of maximum product of spacings estimators. Many related results and the 

required proof techniques can be found in the review paper by Pyke (1965). 

The approach is most easily illustrated by considering a univariate distribution F(t|i?) 

with density f(t|$) where it is required to estimate il. The density is assumed to be 

strictly positive in an interval (a, /?) and zero elsewhere, a and /? may also be elements 

of i?, a=-oo and /?=oo are included. That is F(t|#)=0 and f(t|t?)=0 for t<o:, F(t|i2)=l and 

f(t|t?)=0 for t>/3. Let t, < t2 < t3 < ... < t„ be a complete ordered sample, further 

define t0=c*, tn+1=^. The spacings are defined through the probability integral 

transform as follows. 
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Uj = F(t,|i?) , i=0, ... ,n+l 

D; = u, - u,., , i=l, ... ,n+l. 

If the true distribution, F, with a true parameter value, i>0, is chosen then the ut are 

order statistics from the standard uniform density. In this case the sum of the D/s is 

1 and the expected value £[D,] = —iy . The product of spacings method utilises the 

geometric mean of the spacings 

Which in view of the preceding remarks is a bounded function of the parameters. 

Furthermore the maximum value of G will only be obtained if the D* are all equal which 

corresponds to choosing the true value in the parameter space. Thus as Ranneby 

points out the function G(i>) is a measure of deviation from the true model. The 

maximum-product-of-spacings method obtains estimators by maximising G as a function of 

t?. As with likelihood the approach is usually to maximize S=to(G). It is clear that 

estimation can also proceed directly from the product of spacings itself and that the 

same estimators will be obtained. Since Bayes theorem requires probabilities we use the 

product of spacings 

n +1 

GW =.110; 
i =1 

in the rest of this note. The above observation is also a natural consequence of what 

in essence has been a pragmatic version of the product of spacings obtained by grouping 

data to give a grouped-likelihood without singularities (Titterington, 1985). 

The function C has many of the properties of a likelihood, the simpler forms of 

censoring and truncation can also be handled exactly as in the usual likelihood 

approach, with each censored observation, t , contributing a term 1-F(t*) to the 

product, and truncation at ta and t(, dividing each contribution by F( t/J-f'i ta). It 

follows that the likelihood principle can be maintained (Press, 1989). The product can 

readily be updated to take account of new observations, but without the simplicity of 

the likelihood. For discrete distributions there is no problem with the likelihood, and 
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in some senses the use of iy in place of a standard likelihood can be seen as replacing 

some unpleasant qualities of a continuous density function with the more attractive 

properties of a discrete probability mass function. The product of spacings is itself a 

probability function on the sample space. It is also clear that the invariance 

properties of maximum product of spacings estimators are the same as those of maximum 

likelihood estimators. That is if rp~ip(\t) is a 1-1 transformation then the estimator of 

<)> is where 3 is the estimator of i2. More interestingly, Ranneby showed that: (i) 

the estimator of t? is invariant under monotone (and therefore order preserving) 

transformations of the data; (ii) that Vn-Sf^ol+T , with S(i?0)=in[G(t>0)], i?0 the true 

value of «?, and y Euler’s constant, is asymptotically normally distributed with zero 
2 

mean and variance g - 1, thus providing an immediate classical test of fit along with 

the estimates; (iii) that the estimators themselves are asymptotically normally 

distributed around the true values. 

3. Bayesian Inference 

Now that Q has been described in the context of an approximation to a likelihood, or as 

an estimating function in its own right, its r61e in Bayesian inference can be examined. 

Firstly, as an approximation to a likelihood 0 can be used directly in the Bayes 

equation, and secondly, it is a probability function in its own right as the product of 

the probability masses associated with the spacings tj-t,.,. Parameter free estimates, 

for example the Kaplan-Meier, of the distribution F yield parameter free versions of G- 

More importantly, as noted above, G maintains the likelihood principle so that the 

handling of new observations and censoring will still fall within the usual Bayesian 

framework. 

The idea of a conjugate prior may no longer be of use, the definition of a conjugate 

depends on the likelihood, and it is not clear whether there are classes of 

distributions which would be conjugate with respect to the product of spacings. 

Although the loss of the idea of a conjugate prior may make it harder to see the 

separate contributions of the prior and the data to an estimator, it is no loss from the 
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technical point of view since there are now sufficiently many effective numerical 

methods available to handle the integrations required in the Bayesian context (Smith et 
al., 1985). 

To introduce g into the Bayesian framework consider the ordered sample {t,} used above 

and the calculation of a posterior density for t?. Write 0 as 0(data|i?) and p(i?) for the 

prior density of i?. In standard Bayes we can derive the posterior density from a prior 

p and likelihood C as follows. 

{ f(ti |i?)dt,} x pftfjdi? 

J{ .rWftipMt,} x p^d,? 

J^datal^pl^d,? 

where the integral in the denominator is over all possible values of i?. Now in a rough 

and ready way we can write 

fftipjdti s AFftil^) = D,- 

„ nAF(t, l^lxpl^Jd)? 
Pt(^|{ti}i=i)d<? = Pg(^| {ti}"=i)di? = ■= 1 

f nAF( t ,• |>?)xp(i?)dj? 
J * = 1 

Pt(^|{t,}7=1) s pG(i?|{tI}7=1)= g(datap)xp(,») 

J(/(dat a | )xp (t?) dt? 

In view of the remarks above and in section 2 there are at this point no theoretical 

problems associated with using the product of spacings in place of a likelihood. The 

posterior is certainly not the posterior obtained from the likelihood, but following 

Cheng and Amin (1983), Ranneby (1984), and Titterington (1985) the asymptotic 
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equivalence of G and the likelihood show that pG is asymptotically equivalent to the 

posterior obtained in the standard way. Further, if the prior is continuous and bounded 

so is pff as the product of two continuous bounded functions. This removes some of the 

problems associated with distributions defined on finite intervals with unknown 

endpoints. 

4. Examples 

Now that the validity of the product of spacings as an alternative to the likelihood has 

been demonstrated it is useful to compare the performance of a standard Bayesian 

approach to one where the product of spacings is used. We give three examples to 

illustrate the differences in the case where there is a simple parameter estimation 

problem, and one in which the endpoint of the support is also a parameter. 

Example 1: sensitivity 

Here the problem is to estimate the parameter A of an exponential distribution 

f(t|A) = A-exp(-At) 

F(t|A) = 1 - exp(-At) 

with a simple discrete prior p(A=l)=0.5, p(A=4)—0.5, and with three observations, 

t^O.l, t2=0.3, t3=0.6, with to=0 and t4=oo. 

The likelihood is 

£(A|data) = A exp(—A[ti+t2+t3]) 

and the product of spacings is 

4 

S(A|data) = H [expl-Atj^) - expl-At,)] . 
i = i 

The estimators are: 

maximum likelihood A = 3.00 

maximum product of spacings A = 2.36. 
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For the posteriors calculate: 

£(l|data) = exp(-l) = 0.3679; 

ff(l|data) = 0.0016; 

£(4|data) = 64exp(-4) = 1.1722; 

5(4|data) = 0.0023. 

The posterior densities are 

Pi(l|data) = 0.239, pL(4|data) = 0.761, with £(A) = 3.28 

and 

Pc(l|data) = 0.414, pc(4|data) = 0.586, with £(A) = 2.76. 

Thus the effect of the one larger observation t3 is seen to be smaller both in 

estimation directly from the product of spacings and in the Bayesian estimates. Thus 

the product of spacings appears to give an outlier less weight than the likelihood. 

example 2: sufficiency 

Cheng and Amin (1983) considered how far the idea of sufficiency could be retained in 

the product of spacings method. Continuing with the above example on the exponential 

distribution, F(t|A) — l-exp(-At), shows that the product of spacings distinguishes 

between samples with the same total time on test, whereas likelihood sees all samples 

with the same value of the total time on test as the same because the total time on test 

is a sufficient statistic for A. Consider the situation of example 1 but now with three 

samples, *,={0.01, 0.99}, ^={0.2, 0.8}, and A'3={0.4, 0.6}. The likelihood does not 

distinguish between these samples because the total time on test is 1 for all three and 

so all three give the same posterior density, pi(A=l)=0.56, and Pi(A=4)=0.44. On the 

other hand the product of spacings function associated with each sample is different: 

sample 1 - 0(A'1|A=1)=O.OO2, S(,V1|A=4 )=0.0007; pc(A=l)=0.76, pG(A=4)=0.24; 

sample 2 - S(A'2|A=1)=0.030, t;(,V2|A=l)=0.009; pc(A=l )=0.77, po(A=4)=0.23; 

sample 3 - e(*3|A=l)=0.022, C/(,V3|A=4)=0.00S; pc(A=l)=0.73, pc(A=4)=0.27. 

Thus there is a different posterior associated with each sample. Since the product of 

spacings is asymptotically equivalent to the likelihood this should be a small sample 

phenomenon. 
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Example 3: singularities in the likelihood 

Cheng and Amin give an example of a truncated exponential density, f(t|a)=exp[-(t-o:)], 

f(t|«j-0 for tea, to demonstrate how the product of spacings method handles the 

estimation of the location parameter a. To make the point more forcibly we consider 

both their example and the estimation of the location parameter in a Weibull 

distribution F(t|a) = l-exp(-[t-oi]4), with density f(t|a) = 2exp(-[t-a] ). In 

this case both the likelihood and the product of spacings exist, but the likelihood has 

a singularity at the smallest sample value. An un-normalised posterior can be obtained 

from the likelihood, but we have not investigated whether the singularity prevents the 

calculation of a normalised posterior. Certainly such a singularity causes numerical 

problems requiring careful handling when writing computer programs to carry out Bayesian 

analyses. Because the product of spacings is a bounded continuous function taking the 

value zero for t—cx<0, the minimum observation may be an interior point of the support of 

the prior without causing problems. Indeed, the product of spacings results in a 

posterior which assigns zero probability to values of the location parameter greater 

than the smallest observation. 

We simulated a sample of 15 observations from the distribution F(t|l) and compared the 

product of spacings method and likelihood. The ordered data, {ti},=i, are 

1.0006 1.0087 1.0682 1.1084 1.1823 
1.2256 1.3357 1.4616 1.9437 2.2487 
3.0994 3.9001 4.0802 7.8657 9.9195 

The prior was /3(6,3), E(a)=^, spread over the interval (0,2). The likelihood, product 

of spacings, and the posterior are plotted as functions of a in Figure 1. The 

likelihood shows the singularity a=ti, Q has a clear maximum, and the posterior density 

obtained from the product of spacings has a well defined maximum. 

The estimates of a are: 

maximum likelihood estimator 5 = 1.0006; 

maximum product of spacings estimator S = 0.99 . 

and the squared error loss function estimator is: 

posterior mean using spacings E(a) = 0.97 . 
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FIGURE 1: Wei bull example 

prior darmitu likalihood 

product of spacing* un-normalisad postarior from likalihood 

9.4 

0 0.6 1 1.6 2 

alpha 

postarior from product of spacing* 

alpha 

0.6 1.6 



28 

The method also copes well with situations in which more than one parameter is to be 

estimated. Consider a shifted exponential distribution 

F(t|a,A) = 1 - exp{-A(t-a)} = 1 - e exp{-At}, t>a 

with density 

f(t|a,A) = A exp{-A(t-a)} = Ae exp{-At}, t>a 

the log-likelihood for an ordered sample {t,}7=i 18 

n 

C = nln(X) - A ^ (t, - a) 
i = 1 

the derivatives are 

n 

£a = ^ + not - £ t; and £a = nA 
i = 1 

Clearly £a is a positive increasing function of a for all A and so the likelihood 

estimates are: 

6t = t! 

and 
n 

A = n/{ £ (t,- - tj) } . 
t =2 

The product of spacings is 

^ _ ^1 _ _ e-^(tj-ot )j j^e-A(tn-a) 

and we use the function H=ln(G) as the basis for estimation, 

required derivatives can be written as 

With some care the 

Wo 
A e -A (t! -a) 

1 - 
nA 
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H = (t,-«)e A(t‘ a> y - (t,-a)e-A( 1 - ■~ot) 
1- -A(t1.1-aT) _ -Afti-a) 

Solving WC(=0 yields 

1 c* = t. <ft(l + ^ ) 

and substituting a in WA gives 

Y2, (t -t ^ i ) It t lo-'M *• i -1-'* i) 
Wa(5) = ) ,_I_tT1 ijg__ 

4, g-Aft,.,-!,) _ e~A(t,-t,) (^n~i'l) • 

Neither or H^(a)~0 yields an explicit solution, but H^{oc) is readily evaluated and 

is a monotone decreasing function of A so that a simple search gives an estimator A 

which in turn can be used to evaluate a. 

To illustrate the method a simulated sample ol size 10 was drawn from the distribution 

with A=5 and cx=l. The ordered data were 

1.0331 1.0422 1.0428 1.0549 1.0977 
1.1455 1.1586 1.3109 1.4993 1.9482 

From the above the estimators are: 

maximum-likelihood & = 1.0331 A = 4.99 

product of spacings 5 = 1.0079 A = 3.78 

To illustrate the use of the product of spacings in Bayesian analysis a prior, p(a,A), 

was chosen in which the two parameters cv and A were taken as independent random 

variables with marginal distributions /?(6,3) on (0,2) and T(3, i) respectively. Thus 

the prior density is just the product of the two marginal densities. The prior means 

for a and A are £(o()=i and £(A)=4. The posteriors are then simply obtained from 

Pc ^ C7(ck,A |data)xp(a,A) 

and 

-a) 

Pi <x £(o:,A|data)xp(a,A) . 
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FIGURE 2: Shifted exponential 

POSTERIOR FROM PRODUCT OF SPACINQS 
«hift»d exponential 

POSTERIOR FROM LIKELIHOOD 
ehifted exponential 

The squared loss Bayes estimators are, based on a crude numerical calculation: 

posterior means using spacings E(ot) = 0.99; £(A) = 3.98; 

posterior means using likelihood £(«) = 101; E(X) = 4.35 . 

The product of spacings, likelihood, and the two versions of the posterior density can 

be seen in Figure 2. 
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In these examples the product of spacings shows clear advantages over the likelihood. 

Firstly, from a theoretical point of view there is no problem dealing with values of the 

location parameter interior to the support of the prior, secondly, as a result of this 

first remark there are no numerical problems caused by singularities. 

5. Conclusion 

This note shows how the maximum product of spacings can be used to replace the 

likelihood in a Bayesian argument, and that all the necessary properties of the 

likelihood are also possessed by the product of spacings. Some properties of the 

likelihood are lost because the ordering by magnitude of the observations is required. 

Further, since Bayes theorem requires only a conditional probability and a prior, it can 

be seen that choices other than the likelihood are available as the joint probability of 

a particular set of observations conditioned on a parameter. The idea of a conjugate 

prior may be lost, and the role of sufficiency is less clear. 

From a number of simulations the product of spacings appears to give less weight to the 

data than the likelihood function. However since the product of spacings is a bounded 

continuous function of the parameters its numerical behaviour is better than that of the 

likelihood. 
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