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COMPARISON OF TWO ITEM BIAS 
DETECTION PROGRAMS 

(A simulation study) 

H.J. Ader* 

Abstract 

In 1984 van der Flier proposed an algorithm to identify test items that are differently 
responded to by equally able test takers in distinct (cultural) groups. Iterativily, biased 
items are removed from the test set. The method means a significant improvement over 
previous (non-iterative) approaches. 

The present paper reports an extensive simulation study that has been recently con¬ 
ducted to analyse the behaviour of the algorithm and track down differences in perfor¬ 
mance between two well-known implementations. 

Results show that the algorithm should be used with care. The programs show an 
overall performance of ± 85 % correct classifications, but performance is dependent 
on the characteristic curves of the items and on the ability distribution of the groups: 
easy items that are biased risk to remain undiscovered. Both programs tend to indicate 
unbiased items as biased more easily than the other way around. Therefore, one shouldn’t 
use the technique in a ‘diagnostic’ setting, in which the biasedness of the items is explained 
by characteristics of the groups. 

Finally, recommendations on the proper use of the technique are formulated, and some 
adaptations to the programs are proposed. 

Department of Psychology, Methodology Division, de Boelelaan 1111 Vrije Universiteit, Amsterdam.tel • 
020-5484404. 
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1 Introduction 

Commonly, the historical development of Item Response Theory is started with Thurstone 
(1925), who tried to quantify the concept of ‘mental age’, on which the intelligence test of 
Binet and Simon is based. Thurstone assumed the (intellectual) ability of children of a fixed 
age to have a normal distribution. The present article concerns a special application of Item 
Response Theory: Item Bias Detection. 

An item in a test is characterized as biased if equally able test takers are systematically 
different between subgroups. These subgroups may be racial, ethnic, or cultural subgroups but 
also bias in sex groups has been studied (Lucassen and Evers, 1984). The concept of item bias 
is relevant for tests in any domain: it may involve items in the educational or the psychological 
fields, but one could very well define bias in other test situations, for instance, market research. 

In van der Flier, Mellenbergh, Ader and Wijn (1984) an iterative algorithm was proposed 
to detect item bias. The comparison of two implementations of this algorithm by means of 
Monte Carlo methods is the subject of the present paper. The first program by Ader (1982) 
is the ‘prototype’ implementation. It is written in Algol 68, a programming language that 
is very useful for the precise description of an algorithm, but which, unfortunately, produces 
rather slow object code. The second program, written in Pascal by Kok (1986) overcomes the 
practical drawbacks of the prototype. However, it also uses a slightly different method to assign 
observations to ability classes. 

Experiments are carried out to test this difference and to get a general impression of the 
overall behaviour of the algorithm. It is expected that the influence of the shape of the item 
characteristic curves is not at all negligible. Finally, recommendations are given for the design 
of an ‘optimal’ item detection program along the lines of the original algorithm. The literature 
on item bias detection has steadily been growing in the past few years. Introductionary reviews 
have appeared in several articles and books. In his introduction, Kelderman (1986) gives such 
an overview. Also worthwhile in this respect is van der Flier et al. (1984). Handbooks by Berk 
(1982) and Jensen (1980) give broader information. Recently Kok’s thesis (1989) appeared, 
which contains an account of earlier and recent developments. 

Van der Flier distinguishes between unconditional and conditional methods, i.e. methods 
that are (or are not) conditioned on the ability level. Historically, unconditional methods 
come first. Cardall and Coffman (1964) used analysis of covariance to analyse p-valuesMn a 
group x items design. To satisfy the analysis of variance requirement of equal cell-variances 
they applied an arcsine transformation to their data. Echternacht (1974) and AngofF and Ford 
(1973) proposed other transformations, using standard normal deviates. Early research in this 
field concentrates on this ‘equal-variances’ problem and on problems related to the distribution 
of the (transformed) p-values. 

Several authors have criticized unconditional methods. Hunter (1975) and Shepard, Camilli, 
and Averill (1981) show by example that these methods can lead to what will be called in 
paragraph 4 ‘type I unreliability’ : indicating bias while items are not biased. 

Scheuneman (1979) used a modified x2 as a test statistic for testing item bias. Her approach 
was improved by Camilli (1979) and Nungester (1977) and fitted into a more general loglinear 
framework by Mellenbergh (1982), who formulated a logit model to measure item bias. Van 
der Flier uses Mellenbergh’s logit model in an iterative procedure to detect item bias. 

1 , _ #of correct responses 
p-va ue — total score 
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2 Iterative Item bias detection 

Let a test be administered to g groups of subjects. The test consists of m items. Item responses 
are scored correct (1) or incorrect (2). The total score t of a subject is the number of correctly 
answered items in the test. These total scores are divided into s score categories. The data for 
each item can be summarized in an s x jr x 2, Score category x Group x Response, contingency 
table. Consider the three-dimensional contingency table for item I, in which a cell contains 
the sample frequency fijk of score category i, group j and response category k — k = 1 for a 
correct response and fc = 2 for an incorrect response —. Let Fijk be the expected frequency. 
The logit is defined as the natural logarithm of the ratio of correct and incorrect responses. 
The saturated logit model may be formulated as (Fienberg, 1980, chap. 6): 

^(tT- ) = C + S'; + Gj + SGij (1) 
* ij2 

with the usual constraints: 

Es, = 0; E G, = 0; £ SG.y = £ SG.y = 0 
•=1 1=1 i=l 1=1 

G is the overall item difficulty parameter, S; the main score category effect, Gj the main group 
effect and SGij the score category X group interaction effect parameter. When the following 
model is valid: 

M^) = G + S; (2) 
rij2 

the item is said to be unbiased. If 

ln(^-) = C + Si + Gj (3) 
Cil2 

represents the valid model, the item is called uniformly biased (Mellenbergh, 1982). If the SGij 
-term cannot be dropped from the model, i.e. the model is described by (1) but not by (3) then 
the item is said to be nonuniformly biased: in addition to the main group effect, in this model 
the interaction between score category and group is not neglectable. The expected frequencies 
for the unbiased item model of formula (2) are estimated by 

fijk= j E (4) 

As a test statistic the likelihood ratio statistic is used: 

G2 =2 E E E /.i*HU/fijk) (s) 
;=i 1=1 *=i 

which is asymptotically x2 distributed with s(g — 1) degrees of freedom. 
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2.1 The iterative Algorithm 

The algorithm given in van der Flier et al. (1984) is thus formulated: 

Each iteration step T proceeds as follows: 

I. First, for each item J four steps are taken: 

1. Per subject a rest score is computed, i.e. the total score over all items except item J and 
those items that were found biased in the preceding iteration. 

2. The overall frequency distribution of the rest scores is computed. Subjects are equally split 
up over the specified score categories. If a borderline between categories coincides with 
a tie, subjects are assigned randomly to the adjacent categories. In this way a uniform 
distribution over the score categories is obtained. 

3. A Score X Group x Response table is constructed. If in the table a zero frequency is 
found, all frequencies are raised by .5. 

4. Using Formulae (4) and (5) the likelihood ratio chi-square of item X is computed. 

II. Next, the T items with the highest LRx2 values are considered biased, the rest of the items is 
included in a set considered unbiased for this iteration. 

III. The Algorithm terminates if at the end of the iteration one of the following conditions arise: 

• the prescribed number of iterations has been performed, or 

• the maximal LRx2 of the set of unbiased items does not exceed the critical value. 

Note that in each iteration G2,s are computed for all items of the test, including items 
found biased in the preceding iteration. In each iteration one more item than in the previous 
iteration is eliminated. The items excluded in a given iteration are not necessarily excluded in 
subsequent iterations: if an item that was considered biased before has an acceptable G2 in the 
actual iteration, it is included again. In this way the score is iterativily freed from biased items 
and all items are tested using an unbiased rest score as ability indicator. 

In step 1.2 the distribution is chosen to be uniform over the categories to minimize the 
number of zero frequencies. This is where the two implementations differ. 

2.2 BIASIT and BIAKOK 

BIASIT is a direct implementation of the iterative algorithm. During each iteration rest scores 
are computed for each item. The data are classified accordingly into a fixed number of ability 
classes, each with an equal number of observations. Especially, in later iterations when the 
maximal rest score decreases, many subjects will have equal rest scores: since the program tries 
to keep the class frequencies equal, many random assignments to classes may occur. Recom¬ 
putation of the rest scores and the splitting of the ties turn out to be very time-consuming. 

The output of the program is straightforward: for each iteration a G2-table is printed 
(see formula (5)). The output ends with an overview of the detected biasedness of items in 
subsequent iterations. 

As the documentation states: “BIAKOK has been included in the Zielery-library since it is 
much faster than BIASIT” (Kok, 1986). Kok’s handling of rest score class assignment deviates 
from the original algorithm: in BIAKOK, subjects with the same total score always belong to 
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the same class. Conceptionally this seems more logical than the original approach: subjects 
with the same rest score cannot be discerned in ability. 

In this paper we concentrate on the different methods of assigning cases to score classes. 
BIASIT adheres closely to the original algorithm which indicates that cases should be assigned 
to subclasses in a way as to keep classes of equal size. BIAKOK assigns cases with the same 
rest score to the same rest score class possibly creating unequal classes. In the following we 
call the first method random assignment, the second strategy fixed assignment. 

3 Design of the experiments 

One could try to analyse analytically the way in which the class assignment strategy influences 
the item bias detection outcome. This appears to be a complicated theoretical exercise. 

Here a Monte Carlo approach to the problem is reported. Before I describe the way test sets 
were generated, it should be remarked that a simulation experiment, in contrast to a complete 
algebraic treatment of the subject, is never conclusive, and rather gives an impression of the 
behaviour of the programs. 

The test sets were generated using item parameters borrowed from van der Flier et al. 
(1984). Items were assumed to be scored on a five point scale. A number of three scoregroups 
was fixed throughout the experiment and a fixed number of 500 cases per group was generated. 
The characteristics of the groups were chosen after Kok (1982) in a way that often may be 
found in social science research. He argues that usually it is not realistic to assume the means 
of the ability distributions of both groups to be equal. 

Data sets were generated that vary only in the number of items: for each test length, hundred 
(100) data sets were produced. A procedure was fixed to determine the ultimate iteration. As 
a measure for comparison the number of misclassifications of each program was taken. 

To generate the item characteristic curves a three parameter normal ogive model has been 
used: 

P(6) = c +n(\ - c) j ( ) f(t)dt (6) 

in which 0 is the latent variable corresponding to the ability, a is the item discrimination power, 
b corresponds to the difficulty of the item, c is the juessm^-parameter and f(t) is the standard 
normal density function (Anderson, 1980). Since we assume the items in the test to be five 
point items, the guessing parameter c is taken .20 for both groups. For a and b , itemparameters 
have been used, which were chosen by van der Flier et al. (1984) to generate a 29-item test set. 
p is included in the model to be able to induce bias in the itemresponse. For the first group 
the p has been taken 1.0 for all items, for the second group fi is taken .75 for half of the items, 
1.0 for the other half, as was done in van der Flier’s experiments. (It may seem that this is a 
rather high percentage of biased items. Observe that this will only put some extra strain on the 
technique, since ability estimators become less reliable if the number of biased items increases. 
Furthermore, in real life it is usually impossible to fix the amount of bias involved, due to the 
influence of confounding error sources (f.i. distribution). Therefore it is not easy to determine 
what a realistic amount of bias would be.) 

In contrast to van der Flier, the normal distributions of the supposed ability distribution 
of the drawn subjects has been taken differently for both groups: group 1 is supposed to be 
A'(0,1) distributed, group 2 is A"(—.5,1) . In this way the influence of differences in the location 
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parameter may be studied. The test length has been varied. The test lengths used are: 

2,3,6,9,10,11,12,15,20,24 

It would have been attractive to have test length greater than 24. Only practical reasons 
prevented this: the amount of computer time required would be too great. The smaller, even 
degenerate test lengths have been included since it was expected that here the differences in 
class assignment strategy of the programs would appear most clearly. 

For each test length, a subset of van der Flier’s items have been used, so that the items 
in the different sets are comparable. For instance, for test set 6, items 1 to 6 correspond to 
items 24 to 29 of van der Flier. Hereafter, we will use van der Flier’s numbering. For all test 
lengths hundred (100) data sets of two groups were drawn, each consisting of 500 cases. Both 
programs were run on all data sets. The scoring procedure was as follows: (a) The one iteration 
in which all bias induced items could have been discovered, was considered ultimate. Since the 
odd numbered items were bias induced, the number of iterations in which all biased items could 
have been detected is: 

, .. . I I * test length if test length is even 
number of iterations = < f, , ..i , , -r, * i n. • jj I [j * test length] + 1 if test length is odd 

(b) Per test set misclassifications of each item for the ultimate iteration were scored. 

4 Analysis 

Two kinds of misclassification may be thought of in item bias detection: 

(1) unbiased items are classified as biased 

(2) biased items are classified as unbiased 

(1) will be called ‘type I unreliability’; (2) will be called ‘type II unreliability’ after ‘type I 
error’ and ‘type II error’ in hypothesis testing. It depends on the particular application what 
kind of misclassification is judged more undesirable: if item selection is the aim of the study, a 
technique that is type I unreliable is less harmful, since it keeps items that can be trusted to 
be unbiased: in other words, it rejects easily. On the other hand, if the group differences play 
an important role in the investigations and the emphasis is on the meaning of bias of the items 
for the make-up of the groups, type I unreliability may face the researcher with interpretative 
problems. He will tend to ascribe the bias of the item to certain characteristics of the groups, 
although it is due to dysfunctioning of the used technique. 

In our analysis, the interaction between induced bias of the items and the way both programs 
classify them is of main interest: one would expect Kok’s program to be type I unreliable in 
contrast to BIASIT which may be expected to produce conservative classifications errors (type 
II unreliability) since the randomization of the class boundaries could lead to loss of information. 
Test length may also play a role in the detection of bias. 

A preliminary question is, whether the items in the test sets generated as described in the 
last section contain the induced bias, indeed. As we mentioned in section 3, the groups are 
taken to have different location parameter values. This may have some influence on the induced 
bias of the items. 

Since our data consist of frequencies, loglinear analysis is the most attractive way to analyse 
them. Fienberg(1980) and Bishop, Fienberg and Holland (1975) are well known references for 



this technique. As usual, we will only use hierarchical models in which together with any 
interaction term all lower order interaction terms or main effects are present. We adhere to the 
notation given in BMDP (1985) to indicate a model with its highest order interaction terms 
and we drop indices if no confusion may arise. 

As an example, the model TIB stands for 

F = T + /+ B + r/ + TB + /B + TIB (7) 

F : Classification effect (1 = misclassified, 2 = well classified) 

T : Test length effect (t = 2,3,6,9,10,11,12,15, 20,24) 

/ : Item-effect (i = 1,2 ... 29) 

B : Induced Bias effect (1 biased, 2 unbiased) 

M : Method-effect (m = 1 (BIAKOK) or 2 (BIASIT)) 

Our design has fixed marginals if summation is over the classification score index. (In all sets 
the number right and the number wrong classifications sum to 100). Therefore the interaction 
term over the other factors is fixed and should be included in all models. 

Corresponding to the two questions formulated above, two sets of analyses are conducted. 

A. Do the generated test sets conform to expectations about induced bias? The factors 
included are: I(item), F(classification), M(method), B(bias induced) and T(test length). 

The term IMBT has to be included in all models. Our main interest with this question 
will be in the term IFB; we test models to find out if this term can or cannot be missed 
in the model. If this term appears to be needed the observed frequencies of the marginal 
table for IFB indicates in what way induced bias and item characteristics interact. 

B. Do the programs differ in their detection performance ? The same model and data 
as mentioned in A may be used to give an impression of reliability of the programs. 

Our main interest is now in the term FMB, indicating the interaction between method 
and induced bias of the item. However, there may be some interaction with test length, 
in which case the terms FMT and FBMT are of interest. 

5 Results 

The following model is used to test the first question (see Table 1 for an overview of other 
models): 

IMBT, I FMB, IFBT, FMT G2(43) = 33.75 (Prob. = .8429) 

It turns out that the factor M(ethod) cannot be missed, so the term IFMB has to be included 
instead of only IFB and FMB. Inspection of the marginal frequency tables shows that for several 
items more than 40% misclassifications are made. This is true for item 23, 26, 27, 28 and item 
29. Several considerations are justified here: the item characteristic curves of the two groups for 
these items may not differ due to the shift in location ability distributions of the groups. The 
items concerned are items with extreme difficulty parameters: (b = 1.096,1.516,1.600,2.954), 
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Table 1: Fit of Various Models containing IFB 

Model df G5 Prob." 
IMBT, IFMT, IFBT, FMBT 34 47.10 .0669 
IMBT, IFMB, IFBT, FMT 43 33.75 .8429 
IMBT, IFMB, IFBT 46 43.33 .5846 
IMBT, FMB, IFM, IFBT, FMT 57 59.25 .3934 
IMBT, IFMB, FBT, IFT, FMT 63 136.28 .0000 

respectively. Test sets 2 and 3 are degenerate in that the ability estimates are based on 1 
or 2 items only. Consequently, one can expect to find unreliable results for item 28 and 29. 
For the rest of our analysis we leave out these items and test lengths, although it should be 
stressed that in a real life situation it may not at all be clear that the group ability means differ: 
their estimation is based on total scores that contain biased information. Furthermore, it will 
be usually impossible to get reliable information on the interaction between biasedness and 
distribution. We conclude that due to these factors, both programs may completely misclassify 
certain items. 

5.1 Performance analysis 

From Table 2 we conclude, that BIAKOK performs better for test length 6,12 and 15; that the 
differences for test length 9,10,11 are slightly in the advantage of BIAKOK. BIASIT performs 
better for test length 20 and 24. Considering the terms in the model, we conclude that items are 
differently responded to (in the sense of misclassifications) for different test length. Percentages 
rnisclassifications for the different test length are indicated in Table 3. To investigate the 
connection with induced bias an analysis is done in which bias induced items are contrasted to 
unbiased items. We find as best fitting model (see Table 4): 

BMT, BFT, FMT x2(4) = 5-64 Prob. = .2280 (8) 

Table 5 shows that unbiased items are much more easily misclassified than biased items: both 
programs are Type I unreliable. 

6 Discussion and conclusions 

Simulation experiments, in contrast to a complete algebraic treatment of a subject, are never 
conclusive, and rather give an impression. In this case, generalizibility is further restrained 
by (a) a specific choice of test lengths and (b) an arbitrary (although realistical) shift of the 
location parameter of group 2. On the other hand, experiments have been extensive, so that 
some valuable information may be obtained about the behaviour of the programs and the 
iterative item bias detection technique in general. 

Results in the previous section show that the algorithm as proposed by van der Flier should 
be used with care. The programs show an overall performance of ± 85 % correct classifi¬ 
cations, but performance is dependent on the characteristic curves of the items and on the 
ability distribution of the groups: easy items that are biased risk to remain undiscovered. The 
same may be true for difficult items (6 < —1.0). In practice, one should check on this: item 
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Table 2: Observed frequencies for effect FMT 

Test Method Classification 
length_Incorrect Correct Total 

6 BIAKOK 61 439 500 
BIASIT 78 422 500 
Total 139 861 1000 

9 BIAKOK 93 707 800 
BIASIT 95 705 800 
Total_188 1412 1600 

10 BIAKOK 102 798 900 
BIASIT 105 795 900 
Total_207 1593 1800 

11 BIAKOK 102 898 1000 
BIASIT 107 893 1000 
Total_209 1791 2000 

12 BIAKOK 113 987 1100 
BIASIT 124 976 1100 
Total_237 1963 2200 

15 BIAKOK 179 1221 1400 
BIASIT 287 1113 1400 
Total_466 2334 2800 

20 BIAKOK 308 1572 1880 

BIASIT 296 1604 1900 
Total_604 3176 3780 

24 BIAKOK 427 1573 2000 
BIASIT 418 1582 2000 

_Total 845 3155 4000 

Table 3: Misclassifications (in percentages) for different test lengths 

Test length: 6 9 10 11 12 15 20 24~ 
Percentage: 14 12 12 10 11 17 16 21 

Table 4: Fit of Various Models contrasting Biased and Unbiased Items 

Model df G2 Prob. 
BMT, BFM, BFT, FMT 3 4.15 .2456 
BMT, BFT, FMT 4 5.64 .2280 
BMT, BF, FMT 7 175.91 0.000 
BMT, BFT, FM_7 22.87 .0018 
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Table 5: Observed frequencies for effect BFT 

Test Classification Biasedness 
length Biased Unbiased Total 

6 Incorrect 6 133 139 
Correct 394 467 861 
Total_400_600 1000 

9 Incorrect 16 172 188 
Correct 584 828 1412 
Total_600 1000 1600 

10 Incorrect 33 174 207 
Correct 767 826 1593 
Total_800 1000 1800 

11 Incorrect 34 175 209 
Correct 766 1025 1791 
Total_800 1200 2000 

12 Incorrect 53 184 237 
Correct 947 1016 1963 
Total_1000 1200 2200 

15 Incorrect 167 299 466 
Correct 1033 1301 2334 

Total_1200 1600 2800 
20 Incorrect 230 374 604 

Correct 1560 1616 3176 
Total_1790 1990 3780 

24 Incorrect 276 569 845 
Correct 1524 1631 3155 
Total 1800 2200 4000 
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parameters should first be computed for both groups. If an item has a difficulty parameter 
with absolute value above 1.0, it should be discarded from further analysis. Estimation of the 
item parameters poses some problems, of course: since some of the individual items are biased, 
one may suspect the estimated itemparameters to be unreliable. 

Both programs are type I unreliable: they tend to indicate unbiased items as biased more 
easily than the other way around. Therefore, one shouldn’t use the technique in a ‘diagnostic’ 
setting, in which the biasedness of the items is explained by characteristics of the groups. 
BIAKOK and BIASIT may both be unrestrictedly used in the construction of unbiased test 
sets. 

One may safely conclude that the iterative algorithm is also applicable with small test 
lengths, especially if the class attribution mechanism of Kok is used. BIASIT performs slightly 
better for the longer test lengths (20 and 24). The best approach would be to use BIAKOK for 
test lengths below 20 and BIASIT for longer test lengths. Generally, one would like an item 
bias detection procedure along the lines of van der Flier to take the following steps: 

1. Determine mean and standard deviation of the (estimated) ability distribution (total 
score). Big differences between the groups will make any outcome unreliable. In the 
following steps one should check on this difference if items are left out from the total 
score. 

2. Determine the difficulty parameters of the items. Remove those items that are very 
difficult or very easy and for which both groups perform more or less the same. 

3. Test on nonuniform bias. If model (1) fits but (3) doesn’t, ability and group membership 
are interacting and van der Flier’s method is not applicable. 

4. For test length below 20 use a fixed assignment method, for longer test length use a 
random assignment method. 

5. Compute p-values for the chosen number of iterations. 

Remark that in step 3 for test length below 20 one would wish to get G2’s for all iterations. 
We recommend the programs to be adapted in such a way that these steps may be taken more 
easily. 
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