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The Analysis of Multivariate Censored Survival Times 

Richard D. Gill 

ABSTRACT. A very informal discussion is given of the problems of 
multivariate survival analysis. A recent proposal of Dorota Dabrowska 
for estimating a multivariate survival function with censored data is 
explained. The estimator is based on a representation of the survival 
function in terms of iterated odds ratio measures. The representation 
generalizes the one-dimensional representation of the survival function 
in terms of its hazard function, leading to the familiar product-limit 
estimator for ordinary censored data. 

[This is a rough English translation of the text of my lecture at prof. G. J. Leppink’s farewell 
symposium, given then (of course!) in fluent Dutch. However it is also a completion of that 
lecture so I hope that those who were present at the symposium, and especially Gerard 
Lcppink himself, will find it interesting to read on to the end.) 

I am very pleased indeed also to be speaking at this symposium to honour professor 
Leppink, but I must admit straight away that my relationship with him has been perhaps 
only a superficial one. When I arrived in Utrecht two years ago he had carefully and quietly 
withdrawn himself from the scene, leaving me very free to go my own way; happy to give 
me helpful advice but not bothered if I did not take it! However the relationship does have 
a prehistory: still at Cambridge but thinking of coming to the Netherlands back in 1973, 
I sent a deluge of letters to (I hope) all the statistical departments in the country. From 
the academic world I got two very hopeful replies: one from Utrecht and one from the 
then Mathematical Centre, Amsterdam. This resulted in a very pleasurable conversation 
with Gerard Leppink in his office at the Mathematical Institute (that summer was largely 
spent in Utrecht; I also spent much time in the maths library and in the hortus botanicus). 
Unfortunately there would not be an opening in Utrecht for a half year or so and nothing 
was certain; the Mathematical Centre had more concrete hope to offer so it was there I 
went in 1974. But I always preserved a very positive memory of that conversation and it 
made me really happy to in a sense ‘come home’ to Utrecht and succeed him there. 

The other speakers have dwelt on many aspects of a statistican’s life. In particular 
especially this morning’s talks have concentrated on the relationship with real scientists 
working in applied fields, as a source of pleasure and motivation (and if not these, then at 
least of good stories to tell to your mathematical colleagues later). My talk will concentrate 
on another equally important aspect: doing real mathematics, and the opportunities to 
use it in an original way, for solving or understanding real life problems, is the other 
equally rewarding side of our profession. As de Kroon said this morning: after such an 
introductory lecture we tend to quickly forget the fine words and start to introduce the 
Banach spaces! So here they come! 

Mathemathisch Instituut, Rijksuniversiteit Utrecht, Postbus 80.010, 3508 TA Utrecht. 
Tel: 030-533763. Email: gill@math.ruu.nl. 
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The analysis of multivariate censored data is a notoriously tough but in some ways 
also dubious problem. I avoided getting involved in this for a long time, suspecting that 
the problem is not a real life problem, but an academic one, invented by mathematical 
statisticians looking for subjects to write papers on; and also believing that the problem 
is a dirty one, without mathematically nice (i.e., aesthetically pleasing) solutions. However 
recent work by Dorota Dabrowska (1988) has changed my mind on the second score; and 
I would like to tell you a bit about her contribution and my own work building on hers, 
together with colleagues in Amsterdam and Utrecht. She must have the credit for a really 
original new idea (and though many papers get written and published, truly original ideas 
are few and far between!). I hope I can make this idea seem natural and simple to you; 
and if I succeed, that will have been my own main contribution to this field. It took me a 
long time indeed to understand it. As for applications—I do now believe there are many 
applications. The nonparametric estimation of a multivariate survival function will not 
usually be the end-point of a statistical analysis, but it can play a crucial role in model 
building and testing on the way to a definitive analysis. 

In one dimensional time (univariate survival data) I would make the grand claim that 
the counting process approach—modelling the conditional intensity in time of occurence 
of the events under study, and using the intimately connected martingale tools in the 
mathematical analysis of the associated statistical procedures—is the right mathematical 
approach for understanding classical methods from survival analysis: the Kaplan-Meier 
estimator, the log rank test, the Cox regression model, and so on. Moreover (and this is 
how we can see it is right) it leads to a far reaching and practically extremely important 
generalization of classical survival analysis to what one could call ‘event history analysis’. 
But in multidimensional time—silence. The problems have been lying around for a long 
time now; there are published and unconvincingly analysed data-sets to play with; but 
so far only solutions in a one-dimensional spirit: Markov and semi-Markov models for 
modelling the different stages in an individual’s life history; frailty models, modelling 
dependence between survival times of biologically related individuals by assuming that 
all dependence occurs through a latent variable (called frailty) summarizing the family’s 
shared genetic make-up; etc. In these approaches the different time variables for one 
individual or one family unit are all firmly embedded in one-dimensional ‘real-time’ and a 
one-dimensional analysis is made. 

But these problems are important, and even if the preferred analysis will be Markov, 
semi-Markov or frailty oriented in one-dimensional time, one would still like to judge the 
goodness of fit of such (rather restrictive) models against a wider multivariate background. 
In the biostatistical area there are applications to matched pair and litter-matched survival 
and carcinogenisis trials; studies of association of survial times in families, or of different 
organs or treatments of the same individuals; however I recently also came across a great 
deal of applications in astronomy, where radiation emission of certain quasars is measured 
in different wave lengths, there being a background radiation of varying amount per wave¬ 
length which leads to multivariate left censored observations rather that the usual right 
censored observations common in survival analysis. (Turning the overhead-sheet 180 de¬ 
grees transforms bivariate left censored data into bivariate right censored data, so at least 
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for a mathematician it is clear that this could be the same problem). If you are interested 
in such examples, you will find sorted references at the end of the paper. 

What is so special about one-dimensional time? Think about a single survival time 
T > 0 with survival function 

S(t) = Pr(T > t), 

and cumulative hazard 

-S(du) 

S(u-) ’ 

from which one can reconstruct the survival function 5 by the pro duct-integral (the notation 
is supposed to be suggestive, so use your imagination) 

U — t 

S(t)= J[(l-A(du)). 
11=0 

If you are unfamiliar with these ways of writing things, you had better start getting 
used to them now! Here are the intuitions behind the formulas: think of ‘df’ (and similarly 
‘du’) not just as a (very small) length of time but also as the corresponding small time 
interval [tf, £ + d<). Then — S^df) (the minus sign because S is decreasing) can be interpreted 
as the probability Pr(T 6 d£), S(t-) as Pr(T > £), and S(t) as Pr(T > f + dt). Then the 
hazard assigned to the small interval d£, which I write as A(d<), is just 

A(d£) — 
-S(dt) 

S(t-) 

Pr(T e df) 

Pr(T > t) 
= Pr(X 6 dt | X > <). 

Thus 1 — A(df) = Pr(X > t + df | X > f). Now we can get S(t) (the probability of surviving 
the long time-interval from 0 to t + df, by multiplying together, over a sequence of small 
time-intervals du partitioning [0,t + df), the conditional probabilities 1 —A(du) of surviving 
the right endpoint of each small interval given you have survived the left endpoint. That 
is exactly what the product-integral J[ does; see Gill and Johansen (1990) for a complete 
exposition of this neglected object. 

0 

Already we see: from hazards you can build survival functions. On the other hand hazards 
are a natural object to describe from an applied point of view. Engineers, doctors, biolo¬ 
gists, and so on, have intuition, experience and theoretical knowledge of hazards (or hazard 
rates). Model building is conveniently done in terms of hazards. (In a moment we will 
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consider whether multivariate hazards are the right objects to use in building multivariate 
survival functions). 

Not only are hazard rates natural from the point of view of model building but they 
also have at least two other characteristics, which lead to the great succes of counting 
process methods: they are undisturbed by censoring; and they are fundamentally connected 
to martingale theory. 

Consider the zero-one random variable 1{T € d<} (the indicator variable that the 
survival time T lies in the interval d/). Think of the random time T as being the time of 
an event (usually called ‘failure’) on the time axis drawn above; think about time slowly 
unrolling, so that in the beginning, the event lies somewhere still unknown in the future, 
till at some time point the event suddenly occurs; after that, the event lies fixed in time 
(its position known) behind us. Consider a given time-point t and condition on the past 
up to that time point (in fact, up to the beginning of the small time interval ‘d<’). If the 
event has already happened, nothing more will happen now: the conditional expectation 
of 1 {T 6 d<} is zero. Otherwise the probability of the event happening is A(d<). This is 
then also the conditional expectation of 1{T 6 df}. So writing Tt- for ‘the past till just 
before time-point t' we can combine the two cases as 

Pr(T € df | F,-) = E(1{T 6 df} | = A(df) • l{r > f}. 

Add censoring into this model. We don’t observe T itself but only a ‘censored survival 
time’ T equal to the smaller of T and a certain ‘censoring time’ C at which the individual in 
whose life the event of interest happens is lost to observation through other, independent, 
causes. We do at least know (at time T) which of the two events (‘failure’, ‘censoring’) has 
occured. Let A be the ‘censoring indicator’ (really a ‘failure indicator’) equal to 1 if the 
time T is actually the failure time X, equal to 0 otherwise. Consider the indicator random 
variable 1{X G df, A = 1} which registers ‘observed failure in df’. Now consider again 
time unrolling. Again if censoring or failure has happened before time f, ‘observed failure 
in df’ has probablity zero. If neither has yet happened, then if failure were to happen in 
df it would be observed (suppose df is so short that if X and C are different at most one 
is in df). Moreover by independence, if failure and censoring have not yet happened then 
failure still has the same chances of happening as in the absence of censoring. So we can 
again summarize the different cases in the equation 

Pr(X £ df, A = 1 | Xi_) = E(l{X 6 df, A = 1} | f,-) = A(df) • 1{X > f}. 

Note two things, the two things I alluded to above. Censoring hasn’t significantly 
changed the equation; the conditional probability of an observable event is of exactly the 
same form as without censoring, involving the same ‘pre-censoring’ hazard. Secondly, and 
more for the connoisseurs, this equation can be interpreted as stating that the difference 
1{X G df, A = 1} - A(df)l{X > f} is a martingale increment—its conditional expectation 
given is zero—and adding it up over small intervals partitioning [0,f + df) gives a 
martingale. Now martingale theory is one of the most beautiful, deep, and most powerful 
parts of (pure) probability theory, so one should not be surprised that this martingale 
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property connecting various basis ingredients of our problem—the hazard measure and 
the counting process registering the observed occurence of failure—can be exploited and 
has far reaching consequences. Moreover, if you are feeling uncomfortable about how I 
manipulate ‘df’s then you should also be pleased to hear that martingale theory completely 
justifies these heuristics. (If you want to know what a martingale really is then consult 
Rabelais (1542), Gargantua, book I, chapter 20). 

Now let’s turn to multivariate time. We will use the same ideas to study why martin¬ 
gale techniques are not available, but also discover there is hope for some progress using 
other tools. I would like you to consider the natural fc-variate extension of the classical 
random censorship model, and we will study the problem of nonparametric estimation of 
the multivariate survival function. In one dimension this problem is solved by the famous 
Kaplan-Meier estimator which makes use of the representation S(t) = J[0 (l — A(du)), sim¬ 
ply plugging in the almost as well known Nelson-Aalen estimator of A: we estimate A(du) 
by the number of observations known to lie in du, divided by the number of observations 
known to be greater than or equal to u. 

Here follows the set-up and (very important) notation. Let T = (Ti,...,T*) and 
C = (Ci,...,C/b) be independent vectors of (positive) survival times and censoring 
times of one individual. For each i = 1..... 1' define Ti = T, A Ci and A; = 1 {7, < C,}; 
these are the censored survival time and the (non)censoring indicator for the i’th time- 
dimension (A means ‘minimum’). Put these together into two i-vectors T and A. Define 
5(f) = Pr(T > t) where t is now also a fc-vector of nonnegative components, and ‘3>’ 
for vectors means componentwise ‘>’. (We use the special symbol 3> to emphasize strict 
inequality of all components. The inequality sign *>’ for vectors will be interpreted as 
componentwise >). Thus S(t) is the probability that the survival time T lies strictly 
inside the ‘upper, right’ orthant of IR4 whose corner is placed at the point t in that space. 

Our data will consist of n independent and identically distributed realisations of 
(T, A), and our problem is to estimate the survival function S nonparametrically. 

Each of the n observations can be visualised as a point in Hi at the corresponding 

T with some mark on the point indicating the value of A (there are 2k possible different 
values). This mark shows where the underlying T must be: at the point itself, on a half¬ 
line starting at the point, in an orthant located at the point, ..., and so on. Here is the 
picture for k = 2: 

^ ci 

□- 

The ‘points’ are given as little boxes; also ‘d£’ is also going to be a little box rather than 
a little interval from now on. If the box is filled the observation lies at that point. If the 
box is empty then the actual observation lies on a half-line, orthant, ..., starting at that 
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point but not including it. When k = 2 then A can take four different values (0,0), (0,1), 
(1,0), (1,1). The picture shows one observation of each type. 

What made life so beautifully simple in one-dimension was that there was just one 
way to get from time 0 to time f; and that one meets everything on the way in between. 
In higher dimensions there is no canonical way. In fact a different ad hoc estimator can 
be built on each ‘path’ from 0 to t. 

U- 
Not only is there no canonical way to get from 0 to f, there is also no canonical way to 
define past, present and future at ‘time’t. However motivated by our problem—estimate 
the probability of ‘failure’ inside the upper right orthant located at t—it seems sensible to 
take as ‘future’ everything inside that orthant, as ‘past’ everything outside, and as ‘present’ 
the border region between past and future. The present is now rather more complicated 
than in the one-dimensional case as the next picture shows: 

future 

past 

o 

However this picture is extremely important and we will study it in different ways. Firstly 
the picture suggests how to introduce multivariate hazards; in the two-dimensional case 
for instance we can define 

A(d<) = Pr(X e dt | T > <), 

the probability that T lies in the little box in the corner of the ‘present’ given that T is 
somewhere in the present or future; but also we can define 

A1|2(df1|f2) = Pr(T1 e dfj |T > t), 

A2|i(d<2 | fi) — Pr(X2 G dtj \ T > t)\ 

these are the conditional probabilities of the left strip and the bottom strip respectively of 
‘the present’ (both including the corner), given T will lie in present or future (supposing the 
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x-axis is ti and the i/-axis is t2). With these three ‘overlapping’ conditional probabilities 
we can determine the conditional probabilities of each of the four disjoint parts of present 
and future, and conversely. 

In higher dimensions we can introduce similar things but there are now many more of 
them (2* —1 in dimension k). But I claim that it actually makes things better to be general! 
The pay-off will actually be: shorter formulas with better interpretable terms, if we take 
the trouble to find a convenient notation. So here is one (we are going to abuse standard 
notation even more than we have been doing, but I think it is going to be worthwhile): 
let E = {1,..., fc}, the set of variables (time dimensions) under consideration. We will 
use A, B, C for subsets of E (the new C no relation to the old one); 0 is the empty set. 
These are all subsets of variables. If t is a i-vector, then by tA I mean the subvector of 
length \A\ (the number of elements of A), obtained by collecting together the t, with i g A. 
Now I would like to introduce a complete set of multivariate conditional hazards (hazard 
measures), defined for every (Z A G C C. E: 

A.4|c(d<,4 | tc) = Pr(T4 6 dt,4 | Tc > tc)- 

The infinitesimal elements of these measures are the probabilities, conditional on the 
‘C variables’ taking a value in the orthant (including faces) located at tc, that the ‘A 
variables’ (a smaller set of variables) lie in the corresponding border between past and 
future; this is a hyperface (|.4| = 1), a cornerf A = C), or something in between, depending 
on how many variables we are talking about. (In line with the two-dimensional notation I 
should have written something painful like A^|c\/i(dtyi|fc\>i) but notation is meant to be 
abused; it’s better to keep things looking easy when they indeed are!) 

Now we can, keeping the last two pictures continually in mind, identify a number of 
key features of our problem, and then put everything together into a beautiful representa¬ 
tion of a multivariate survival function in terms of its multivariate conditional and marginal 
hazard measures; and an accompanying natural estimator. On the way I will argue that 
rather than hazard measures, so-called iterated odds-ratio measures, or L measures (Lep- 
pink measures?) are the things to concentrate on. The representation, the estimator and 
the L-measures were all introduced by D. Dabrowska but in a rather different way to the 
way done here. _ 

The first feature is that, looking back at our data, for each observation (T, A), given 

that f lies in an orthant (present and future) located at t, we can decide in which of 
the 2k subregions the underlying failure time T must lie. Simply move the marked boxes 
about, keeping the box inside ‘present and future’, to convince yourself of this. The crucial 
point is that if T lies somewhere on the border, we can see from the corresponding A.’s 
if the underlying T, lie on the border too or not. (In formulas, given Tc > tc, the events 
{Ta € dT,} and {TA g dtA, Aa = 1^} coincide; '=’ being interpreted componentwise and 
IA a vector of one’s). 

Next, given Tc > tc, Tc has the same distribution as the distribution of Tc given just 
Tc > tc- This follows trivially from the independence of T and the censoring variables 
(which were also called C, I am sorry!). So the conditional hazards AA^c(dtA\tc), derived 
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from our unknown survival function S (I won’t bother you with the formula), are the same 
as the conditional probabilities (given Tc ^ ic) of observable events I a 6 df^. Aa 1a- 

So if we do not worry about the fact that the survival distribution is really continuous, 
maybe, while our data is just n discrete points, we could set about estimating these condi¬ 
tional hazards by just forming ratios of munbers of observations ‘known to lie’ in certain 
regions of IR1). 

Now I want to move away from hazards to something closely related called odds 
ratios. The four comers of the little box ‘dt’ in the previous picture are at the same time 
the defining corners of four overlapping orthants (all ‘upper, right orthants, got from one 
another by small shifts). Call the corners and the associated orthants 1,2,3,4, say (top 
right, top left, bottom right, bottom left). 

2 i 
■1 3 

Now look at the odds ratio 

1/2 _ Pr(T g jl—)/ Pr(T £ 2I_) 
3/4 _ Pr(T€ 3l-)/Pr(Te 4L.) 

that is, the odds on 1 to 2, divided by the odds on 3 to 4. (We’ll stick to k = 2 for the 
time being; but in higher dimensions we’ll just recursively take ratios of odds ratios in a 
way you may already be able to guess). Again we note a few key features. 

Firstly we can estimate conditional odds ratios—conditional meaning, all probabilities 
being conditional on X > f, i.e. X 6 4l_—just count observations ‘known’ to lie in regions 
1, 2, 3, 4 and form the ratio of ratios (l/2)/(3/4). 

Secondly, conditional odds ratios coincide with unconditional odds ratios—get from 
unconditional to conditional by dividing all four probabilities by the probability of the 
conditioning event, Pr(X € 4L). It cancels out. 

Thirdly, (unconditional) odds ratios are multiplicative: if we multiply together the 
odds ratios for two adjacent small boxes, e.g., 1,2,3,4 and 3,4,5,6 in the picture below , we 
get the odds ratio for the union 1,2,5,6. 
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2 

6 5 

1/2 3/4 1/2 
3/4 ' 5/6 “ 5/6' 

Usually the odds ratio for d< is going to be very close to 1: most probability lies in 
future, only a little in the present. Put another way, the odds ratio for ‘dt’ minus 1 will 
be infinitesimal and we will define the iterated odds ratio measure, denoted L. as 

L(dt) = iterated odds ratio for dt — 1. 

The word ‘iterated’ is because I have moved back to dimension k now. In k dimensions we 
have an odds (ratio)*-1. (Dabrowska’s L is actually minus mine). 

In one dimension the Leppink measure is just minus the one-dimensional hazard mea¬ 
sure. In two dimensions one can think of it as being a marginally weighted measure of 
interaction: in terms of the 2x2 table with cell probabilities a, b, c, d (orthant 1, strip 2, 
strip 3, box 4) one can write L(dt) = (ad - bc)/((a -t- b)(a + c)). It should be possible to 
express the higher order measures in terms of higher order interactions. 

With it = 3, the box dt is a small cube with 8 corners, at the same time the comers 
of 8 overlapping orthants. If 1,2,3,4 are the corners on the top face and 5,6,7,8 the ones 
on the bottom we calculate the odds ratio ratio 

1/2 / 5/6 1 467 
3/4 / 7/8 “ 235 8' 

The second way of writing this shows that the odds ratio ratio can be calculated by starting 
at the very top corner (1), then dividing by all probabilities at corners one step down a 
rib of the cube (2,3,5), then multiplying by all probabilities one step further down (4,6,7), 
and finally dividing by the probability at the bottom corner (8). 

The multiplicativity tells us that the iterated odds ratio for the large box [0, t 4- dt) 
(with bottom corner at 0 and top corner just outside f) is the product-integral, over that 
large box, of 1 -)- d. Now the probabilities of being in the orthants located at the corners 
of this large box are the survival function at f (top comer) together with the survival 
functions of subsets C of the variables evaluated at points tc, C C E. 
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These are easily seen to ocur altematingly in numerator and denominator of the 
iterated odds ratio (written as a ratio of two products) as we move down (dropping more 
and more variables). In order to cancel out all these lower dimensional survival functions 
it turns out that one must just multiply by every lower dimensional odds ratio (for faces, 
edges, ...) of the large box [0, t+d<) (check this yourself!). This gives us the representation 
we are looking for: 

S(t) = n J[ (l + Lc(duc))- 
CQE uc£[0c.tc] 

The natural estimator of S associated with this representation is obtained by ‘estimating’ 
1 -|- Lc(<iuc), the iterated odds ratio for the variables with index in C and the small box 
due, by the corresponding empirical odds ratio based on numbers of observations with the 
C variables known to lie in the various (upper right) orthants located at the corners of due- 
With n observations there will be at most ! points uc at which the empirical iterated 
odds ratio is unequal to 1, and where the empirical iterated odds measure (a discrete 
measure) is unequal to zero. One can recursively build up the values of the estimator of S 
on the grid of nk points generated by the observations by simply using the multiplicativity 
in the representation. Dabrowska rightly calls her estimator the multivariate Kaplan-Meier 
estimator since it generalizes that famous estimator for the case & = 1 in a convincingly 
natural way (unlike previous attempts). 

Before going further, let me mention that that these iterated odds ratio measures 
could be a very important new ingredient in multivariate survival analysis. The measures 
are measures of dependence. Positive dependence goes with positive i-measures. At 
independence between two groups of variables, all Leppink measures involving variables 
from both groups are zero. Well known parametric multivariate survival functions have 
Leppink measures of particularly simple forms. Modelling dependence could be done by 
modelling the L-measures. This is as yet unknown territory. It is amusing, when S has 
a density, to write down the first few L-measures in terms of the conditional hazard rates 
(densities of the A,j|c). One finds for k = l and k = 2: 

/l = —Aj, l\2 = A12 — AJI2A2I1, 
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or schematically (just noting the indices to the left of the 

Zi = -(1), 

/12 = +(12)-(l)(2), 

and then for k — Z, k = A: 

1,23 = -(123) + (12)(3) + (13)(2) + (23)(1) - 2(1)(2)(3), 

1,234 = + (1234) - (123)(4) - (124)(3) - (134)(2) - (234)(1) 

— (12)(34) — (13)(24) — (14)(23) 

+ 2{ (12)(3)(4) + (13)(2)(4) + (14)(2)(3) + (34)(1)(2) + (24)(1)(3) + (23)(1)(4) } 

-6(1)(2)(3)(4). 

There is a simple algorithm for getting from one dimension to the next, but I do not know 
how to write down directly the coefficients in e.g. 1123456789 i o - An interpretation in terms 
of interactions in 2k tables would be very useful. 

In a moment I will describe something of the mathematics behind Dabrowska’s rep¬ 
resentation and the estimator, but perhaps it is more important first to say something 
about the results. You will be relieved to hear that the representation can be proven to be 
true. This is not trivial at all and involves the rather dehcate problem of defining correctly 
the Leppink measures. The estimator does have all (or nearly all) the nice properties you 
could want. It is consistent, asymptotically normal at the usual \/n rate; one can in fact 
calculate asymptotic variances and they seem close at surprisingly small sample sizes to 
actual variances. It is asking for trouble to mention a specific sample size but I’ll do it all 
the same: for k = 2, there is at n = 100 already excellent agreement between asymptotic 
theory and real life, for typical censoring patterns and not going too far into the tails; in 
fact, no worse than the situation would be for fc = 1. How one can calculate asymptotic 
variances I will mention in a moment, but here is how one can estimate them in practice: 
pretend S is discrete so that the estimator is a ratio of products of a fixed finite number of 
counts of observations; use the delta method (first order Taylor expansion) to approximate 
with an expression linear in these counts; then estimate the multinomial type variances and 
covariances in the naive way. In case you are worried, when 1' “ 1 this quaint procedure 
yields exactly the famous Greenwood estimator for the variance of the Kaplan-Meier esti¬ 
mator. The procedure sounds horrific, but one could program a computer algebra package 
to write the program to do the calculations. Alternatively one may bootstrap, in several 
ways: ‘empirically’, resampling from the data, or ‘semiparametrically’, generating artifical 
censored data by taking failure times from the estimated survival distribution and censor¬ 
ing times from the correspondingly estimated censoring distribution. These two bootstrap 
procedures are the same for 4 = 1 but otherwise are different. 

The above description of how to estimate variances in practice serves also as de¬ 
scription of an algorithm for getting theoretical formulas for theoretical efficiency studies: 
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pretend the product integral is an ordinary discrete product, so the estimator is indeed 
a ratio of products of numbers of observations; linearize by the delta-method; then ‘de- 
discretise’ by replacing all sums over time-points by integrals and products over time-points 
by product-integrals. The result will be a legal expression, a linear functional of empirical 
processes for the data, and its asymptotic Gaussian distribution (in particular its vari- 
ance), will be the same as that of the estimator itself. It is a mathematical theorem that 
this formula manipulation algorithm, of which I have not given complete details here, does 
work. Again one could program a computer algebra package to produce and numerically 
evaluate expressions for asymptotic variances, given formulas for the failure and censoring 
distributions. 

I said that the estimator had nearly all the properties one could want. What it misses 
is efficiency though the possible efficiency loss with respect to a fully efficient estimator 
(none is known at present) is hopefully small. A lot more work is needed here. Despite 
the beauty of i-measures the problem remains a nasty one and an explicit expression for 
an asymptotically optimal variance does not exist (if it did, we would probably know an 
efficient estimator too). In one special case one can do exact calculations: when all com¬ 
ponents of the failure variables and of the censoring variables are independent. Because of 
independence, the ‘information operator’ which has to be inverted in order to determine the 
optimal asymptotic variance maps products to products, and its inverse can be described 
in terms of the (known) ‘one-dimensional’ solution. At the same time one can simplify the 
asymptotic variance of the Dabrowska estimator to something manageable—and one finds 
the same answer! By an amazing coincidence the estimator is fully efficient ‘at complete 
independence’. (If you knew you had independence, you wouldn’t use the estimator. The 
conclusion to be drawn is that with mild dependence, you are probably close to efficiency). 

Asymptotic variances are not pretty. There is asymptotic independence (nice) coming 
from ‘nested orthants’, but dependence from ‘crossed ones’, as you can easily imagine. In 
terms of martingale theory, there are weak martingales around (which are not of much 
use) but no strong ones in this problem. 

L 

The mathematical derivation of these results goes by rewriting the iterated odds ratio 
measures in terms of the conditional hazard measures we looked at earlier. Here is the 
(amazing) formula for this: 
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For the estimator we can write a corresponding formula. I won’t explain the derivation 
but really there is nothing to it: write out the definition of the (conditional) iterated odds 
ratio for the box due, and use the inclusion-exclusion principle to express conditional 
probabilities of orthants in terms of the complementary events (strips along borders) T; < 
Ui + duj. 

Now one can consider the estimator as a composition of three mappings: from the 
empirical distribution of the data to the empirical hazard measures, from these to the 
£-measures, and from these to their product-integrals. The hard part of this is from the 
hazard measures to the h-measures: 

Lc(duc) = H (l + E — 1- 
see' ACB 

This expression is easy to understand intuitively but unfortunately mathematically it does 
not yet make sense at all. Combine and expand the right-hand side as a ratio of two huge 
polynomials in ‘A^ictdu^juc')’; then we see that we are adding and multiplying elements 
of measure on all kinds of different spaces as if this was legal. But certainly expressions 
occur which do not have any standard meaning at all and in particular neither numerator 
or denominator is ‘homogenous’; measures of different ‘dimension’ are added together. 

However if one considers this ‘formal’ rational function in the conditional hazards, it 
turns out that a small number of algebraic transformations can be made which turn the 
formula from nonsense into something completely legal. In particular the embarrassing 
elements in numerator and denominator which are of less than full dimension turn out to 
coincide exactly, so they can be ‘cancelled out’ (they don’t actually disappear but they can 
be made harmless). Just three tricks are needed (whatever k): dividing out terms of the 
wrong dimension, replacing ‘one plus element of measure’ by ‘one plus atom of measure’, 
and replacing incompatible products of transition measures by products of Radon-Nikodym 
derivatives and dominating measures. 

Here is how it goes in dimension 2: 
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These three tricks convert a reasonably neat and moreover nicely interpretable but 
illegal formula into a huge, ugly, but legal one. In fact for general k one can’t explicitly 
write out the result at all. How can one establish properties of such an object? The aim 
is to get statistical properties of the estimator from analytical properties of the transfor¬ 
mations (empirical data to hazards to L-measures to survival function). We want to prove 
continuity and differentiablity of these mappings (considered as mappings between various 
Banach spaces—I told you they were coming!); this will give us to start with the validity 
of the representation itself (continuity gets us from discrete, where the representation is 
‘trivially’ true, to continuous), also consistency; differentiability will give us asymptotic 
normality and correctness of the bootstrap (we need a kind of continuous differentiability 
for this). 

I can tell you even less about this part of the project, but just assure you again that 
one can get further; see the references. The key is not to worry what the exact expression 
for L is (after legalisation), but just to be able to describe the kinds of terms which can be 
met with after further expansion. It turns out that the terms occuring share a great deal 
of structure and can be dealt with ‘abstractly’ all in the same way. Apart from integration 
by parts, only three tricks (another three) are needed: a ‘Helly-Bray’ trick to deal with 
convergence of integrals when you have no right to expect it, a ‘fraction-splitting trick’ for 
dealing with unpleasant denominators, and ‘d-Delta interchange’ for switching between 
integrating measures and atoms of measures. 

I hope that you can begin to taste the flavour: a curious mixture of analysis, algebra 
and probability. The mathematics is algorithmic; a big part of it consists of rewriting 
rules for formula manipulation. There seems to be scope for a systematic approach using 
ideas from computer algebra. Alternatively perhaps non-standard analysis could be used 
to switch more easily between discrete and continuous. But this would be a rather different 
research project. 
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