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REGRESSION MODELS FOR CHANNELING 

John P. van de Geer* 

ABSTRACT 

Given a variable y] and another set of variables Y2. It is assumed that variation in y! depends 
primarily on variation in variables Xj, and that Y2 depends primarily on X2. 
The problem is: is it possible to channel the effect of X2 on yx through Y2? This would imply that 
prediction of yi on the basis of (Xj, Y2) does not become better if y] is predicted from (Xi, Xt, 
y2). 

Such channeling solutions have been used mainly in econometrics, but could be applicable in 
many other fields of research. 

The paper discusses: under what conditions is a perfect solution for channeling feasible (called 
the "just identifiable" case). This is followed by a discussion of two methods which can be applied 
if a perfect solution is not feasible (the "overidentified" case). They are: two-stages least squares 
(2SLS) and least generalized residual variance (LGRV). The two methods are explained in terms of 
algebraic and geometrical properties of vectors (not in terms of their mathematical-statistical 
properties). 

The main focus of the paper is on the situation where Y2 contains only one variable y2, and 
where not only the effect of X2 on yj is channeled through y2, but also the effect of X! on y2 is 
channeled through yj (non-recursive path diagram). A numerical example is added. 
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1 STATEMENT OF THE PROBLEM 

1.1 Path diagrams 

In a path diagram, variables usually are pictured as little circles. Arrows between those circles are 
used to indicate that some variable has an effect on some other variables. See Figure 1A for a 
simple example. The figure just says that y\ and y2 depend upon the variables in X; the figure 
represents a multiple regression solution of y j and y2 on X. In the figure, X has been partitioned 
into two subsets X = (X], X2). The reason for this partitioning needs not concern us for the 
moment; it will be explained in the sequel. 

Obviously, the purpose of a path diagram is to explain the intercorrelations between variables in 
terms of a simple "model". A simple model requires that one should not draw more arrows than 
necessary. In this paper we study the possibility of simplifying a model by means of "channeling". 

Figure 1 Figure A shows path diagrams for regression of yj and of y2 on X = (xi, ...xg). 
The lines in the diagram are arrows pointing towards yj or to y2. Figure B gives the diagram 
in which the effect of X2 = (X4 x5 xg) on yi is channeled through y2. Figure C contains the 
diagram of Figure B but shows in addition the diagram where the effect of Xj = (X] x2 x2) 
on y2 is channeled through yj, which results into the double arrow between yj and y2 (non¬ 
recursive path diagram). 

1.2 Channeling 

Would it be possible to channel the effect of X2 on yj through y2, so that the latter variable obtains 
the role of transmitter, as shown in Figure IB? We call this a "channeling" solution. 

Obviously, the diagram in Figure IB is a simplification compared to Figure 1A. But the 
advantage of channeling should not be that it merely simplifies the path diagram. There should be 
substantive arguments as well. We shall formulate them in terms of abstract conditions - illustrated, 
between brackets, by a reference to the empirical example described in section 6. 
(i) Xj should be an obvious set of predictors of yj (a child's occupational aspiration can be 
predicted from the child’s background). 
(ii) Prediction of yj will improve if y2 is added to the set of predictors (Xj, y2). (A child’s 
aspiration can be better predicted if we know not only the child's background, but also the 
aspiration of its best friend). 
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(iii) Prediction of yi will also improve if X2 is added to Xj in the set of predictors (the child's 

aspiration can be predicted better if we know not only its own background, but also that of its best 
friend). 

(iv) However - and this is the crucial point for channeling - prediction of yj on the basis of (X [, y2) 

will not improve if X2 is added to this set of predictors which then would become (Xj, X2, y2). 
(Prediction of a child's aspiration based on the child's own background and its friend's aspiration 
does not become better if we also know its friend’s background). 

However, there is another aspect. For Figure 1B we may write a multiple regression equation 

Vi = X) bu + y2 c2i +V] (1) 

in which bn is a vector of weights, c2i is a single weight, and vj a random vector. Multiple 
regression requires that vj is uncorrelated with Xj and yj . But this multiple regression solution 
ignores X2 , and therefore does not forbid that V] is correlated with X2 . 

For a channeling solution we may require instead a regression equation in which v, must be 
uncorrelated with Xj and X2 (not necessarily with y2). 

The argument is that the set X forms the ultimate set of predictors, and that the term y2 c2i in eq. 
(1) above is nothing but a substitute for a term X2 b2j in an equation for multiple regression of y i 
on X = (Xj, X2). 

This difference between multiple regression and channeling will be further discussed in 
section 3. 

1.3 Non-recursive path-diagrams 

Of course, given Figure IB, one might ask: is it also possible to channel the effect of Xj on y2 
through yj? We then obtain the diagram of Figure 1C. 

This diagram is non-recursive. In general, a recursive diagram requires that, if one starts at some 
variable and follows a path indicated by arrows, it is not possible to come back at the initial variable. 
The diagram in Figure 1C is non-recursive: starting at yj and following arrows, one may come 

back to yj again. The double arrow between yj and y2 is only the simplest example of a non- 

recursive path. (E.g., a triangular non-recursive path would imply that there is some variable yj 
with an arrow directed to y2 , that there is an arrow from y2 to y3, and that there is again an arrow 
fromyjtoyj). 

Clearly, a non-recursive diagram, such as in Figure 1C, can be acceptable only if yj and y2 are 
synchronous variables: things which happen later in time cannot have an effect on things which 
happen earlier. But it also may be true that variables yj and y2 are aggregated over time (which 

means: at some moments yj influences y2, and at other moments y2 influences yj - but aggregated 
over time, one finds that yj and y2 influence each other). 

1.4 Objectives of this paper 

The objectives of this paper are: 

(i) to introduce the channeling solution (compared to the multiple regression solution) in terms of 
data theory (instead of using a mathematical-statistical approach) - section 3; 

(ii) to show under what conditions a unique channeling solution can be identified - section 4; 

(iii) to discuss two compromise solutions for the situation where a channeling solution cannot be 

uniquely identified because there are too many restrictions (overidentification) - section 5; 
(iv) to display a numerical example with a non-recursive path diagram - section 6. 
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2 NOTATION 

In this paper we shall assume that all variables are standardized in such a way that they have zero 
mean and that their sum of squares is equal to unity. The latter assumption is just for notational 
convenience (classical standardization requires that the sum of squares is equal to n = number of 
elements in a vector). 

In addition, we use a special notation which is summarized in the Appendix. A more complete 
treatment of this notation can be found in Van de Geer (1986). 

3 CHANNELING AND MULTIPLE REGRESSION 

3.1 Multiple regression 

An equation for multiple regression of yj on Xj and y2 can be written as 

yi = Xjbjj + y^i + vl (2) 

in the same format as equation (1) in section 1.3. But we may also write, in the notation adopted for 
this paper: 

yi = yiECX!, y2) + yiA(X1, y2) = yiE(Xi, y2) + v, (3) 

where 

yi£(Xi, y2) = yiEXj + yiE(y2AX1) = Xibn + y2C2iAXi. (4) 

Development of equation (4) reveals that 

£21 = C21 
bn = bn - b]2c2i 

where bu gives the weights for regression of y2, on Xj, and bj2 the weights for regression of y2 
on X2. 

Equation (3) shows that 

vi = yjAIX], y2) = (yiAX1)A(y2AXi) 

and that vj therefore is uncorrelated with Xj and with y2. Note that vj is not uncorrelated with X2 - 
in fact, X2 plays no role in the equations above. 

3.2 Channeling 

Here the regression equation can be written as 

yi = yiEXj + y2C2iAXi + ui =X1b11 + y2C2iAX! + uj (5) 
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with the same solution for regression weights bj], as in eq. (4), but with a different solution for 
C21, and therefore also a solution for uj which differs from that for vj. The point is that C21 now 
must be chosen in such a way that Uj becomes orthogonal to Xj and X2 (but not necessarily 
orthogonal to y2>, whereas V] was orthogonal to X] and y2 (but not necessarily orthogonal to X2). 

This can be achieved by taking c2i in eq. (5) such that 

(yiAX1)P(X2AX1) = (y2C2iAX1)P(X2AX1). (6) 

In words: yjAX! and y2C2lAXi must have identical projections on X2AX1. Such a solution is not 
always feasible (this will be further discussed in section 4). If the solution is feasible, it must be 
true that the difference vector (yi-y2c2l)AXi has zero projection on X2AX1. It thus follows that 

ui = ((yi-y2C2l)AX1)A(X2AX1) (7) 

which confirms that uj is orthogonal to X. To spell it out: it is true by definition that (yi-y2C2i)AXi 
is orthogonal to Xj, and eq. (7) adds the further requirement that uj is the component of (yp 
y2C2i)AX1 which is orthogonal to XjAXj, and therefore orthogonal to X2. 

Figure 2 Comparison of multiple regression and a perfect channeling 
solution. All vectors in the graph are projections on the plane orthogonal to 
X[. Further explanation of the figure in section 3.3. 
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3.3 Graph of the two solutions 

The multiple regression solution and the channeling solution are graphed in Figure 2. In this figure 
it is assumed that X2AXJ is the one-dimensional vector X2AXj. The graph then shows a three 
dimensional vector-constellation, spanned by the vectors X2AX], y | AX], and yjAXi. In the figure, 
labels for vectors have been simplified by omitting the specification "AXi". E.g., yj in the figure 
stands for the vector y] AXj, label X2 for the vector xjAXj. Also, the figure distinguishes between 
the weights C2m and C2C for the multiple regression solution, and the channeling solution, 
respectively. The label y2C2i therefore stands for the vector y2C2i AXj, etc. 

Figure 2 shows two interlocking rectangular blocks. These blocks have sides which are 
rectangles. One block, drawn with light lines, gives the multiple regression solution. This block is 
defined by the vectors yjAXi, Vj, and y2c2mAXf. It is typical of this block that y2c2mAX j is the 
projection of yj on y2AXi. 

The other block, drawn with heavy lines, gives the channeling solution. This block is defined by 
the vectors yjAX], its projection yiP(x2AXi), and its anti-projection yiA(x2AXj) = y]AX. 

In other words: we have a rectangular decomposition 

yiAX, =y2C2mAX1+Vl (8) 

which corresponds to the multiple regression solution. And we also have the decomposition 

yjAX] = y2C2cAX! + uj (9) 

where this decomposition describes a parallelogram. This is further illustrated in Figure 3. This 
figure shows the plane spanned by yjAX^ uj, and vj. The figure shows that yjAX^ vj, and 
y2ci2mAXi form a rectangle, whereas yjAX], uj, and y2C2cAXi form a parallelogram. 

Figure 3 In Fig. 2 the vectors u,, vb and yiAX! are located in a plane. 
Fig. 3 shows this plane. 



71 
Figure 3 therefore also shows that in the multiple regression solution (with the rectangle) SSvj is 

unconditionally minimized, whereas in the channeling solution (with the parallelogram) SSui will 

be larger than SSvj (and is minimized conditionally: U] must be orthogonal to X2AX1). In fact, in 

Figure 2 it is shown that U] is a vector in the side of the heavier drawn block, where this side is 
orthogonal to yiP(x2AX]) = y2C2CP(x2AX1). 

3.4 Feasibility of the channeling solution 

Figures 2 and 3 picture a perfect channeling solution, in which yiP(x2AXj) = y2C2CP(x2A.X1). 

Such a solution is not always feasible. The next problem, therefore, will be to find out under what 

conditions such a solution is feasible if X^AXj and Y2AXi are higher-dimensional (instead of uni¬ 
dimensional). 

4 IDENTIITAIill.ITY OF THE CHANNELING SOLUTION 

4.1 Basic requirement 

The basic requirement for a channeling solution is: 

yjAXj - Y2c2iAXi + ui (10) 

where c2j is a vector of weights, and where uj must be orthogonal to X2AX1. 

In situations where a unique solution for c2i exists, eq. (10) is said to be "just identifiable". If 
there are no solutions for c21 such that uj obeys the basis requirement, eq. (10) is said to be 
"overidentified". If there is more than one possible solution, the equation is called "underidentified". 

4.2 Simplification 

Under what conditions can a solution for c2i be identified? To answer this question, we need a 
number of preliminary simplifications. 

(1) The first one is that, without loss of generality, Y^AXj may be replaced by an orthogonal and 

unit-normalized basis IT. This means that the space spanned by Y2AXj is identical to the 
space spanned by n, where ITO = I. 

(ii) Secondly, X2AX! can also be replaced by an orthogonal and unit-normalized basis 'F 
('F spans the same space as X2AXi, with VF'VI/ = I). 

(hi) Thirdly, we may require in addition that n and 'F correspond to the canonical solution 

between Y2AX] and X^Xj. This is further specified in Table 1. Here, the matrix II (with m 
columns) is partitioned as IT = (ri], n2) with m* and m** columns, respectively (m* + m** 

= m). Similarly for VF (with k columns), partitioned as 'F = ('Fj, VF2), with k* and k** 
columns, respectively, and where k* + k** = k, but also k* = m*. 

The canonical solution implies that n’1'F1 = Q is a square and diagonal matrix, with on its diagonal 

the non-zero canonical correlations between Y^X, and X2AX1. The matrices ITiT2 and IT2'P] 
(if they exist) are zero matrices. 
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Table 1 Correlations between auxiliary 
variables: most general case 

ti h, n2 v, y2 

1 a'i a'2 b'] b'2 

ai 10 Q 0 
a2 0 1 0 0 

b! no io 
bj 0 0 0 1 

Table 1 also contains the correlations between yiAXj and (I!], II2), indicated as the vectors aj and 
32- Similarly for the correlations between yiAXi and OF], 4,2), with notation bj and b2- The 
symbol T| is used for the unit-normalized version of yjAX 1 (so that ri'ri = 1). 

In the sequel we shall assume that the correlations in a^ 82, and b], l>2 are not all equal to zero. 

4.3 Just-identifiable solution 

The just-identifiable solution is defined as a unique solution for d, such that 

>F'('n, n)d = 0. (11) 

This solution can be identified if 112 and vi/2 do not exist, as in Table 2. 
The solution then becomes: 

d’ = (1, -b'^-l). (12) 

Table 2 Just-identifiable 
case 

ti nx 

1 a'j b'i 

a! I Q 

b, a I 

In fact, eq. (11), in this special case, defines k* = m* homogeneous equations with (k* + 1) = 
(m* + 1) unknowns, so that a solution for d can be identified uniquely (up to an arbitrary 
proportionality coefficient: this explains why the first element of d’ can be set equal to unity). 

The solution implies: 

u, =(n,n,)d 
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where is uncorrelated with X, (because 13 and IT, are uncorrelated with X]), and where u, is also 
uncorrelated with X2 (because eq. (11) requires that u1 is uncorrelated with Tj, and therefore 
uncorrelated with X^X], and therefore uncorrelated with X2). 

4.4 Overidentification 

This situation arises if n2 does not exist, as shown in Table 3. Now eq. (11) gives m > k* 
homogeneous equations with k* unknowns. There is no solution for d, because there are too many 
restrictions in eq. (11). 

Nevertheless, one might look for a compromise solution of d. Such solutions will be discussed 
in section 5. 

Table3 Over-identified case Table 4 Under-identified case 

T1 n, V) y2 

1 a'j b'i b'2 

ti_n, n2 

1 a'j a'2 b'j 

a, 1 no 

b, n 10 
b2 0 0 1 

a, I 0 n 
a2 0 1 () 

bj no 1 

4.5 Under-identification 

This situation arises if T/2 does not exist, as shown in Table 4. Eq. (11) now specifies m* 
homogeneous equations with more than (m* + 1) = (k* + 1) unknowns. As a result there will be 
more than one solution for d. These solutions can be summarized as 

d'= (1.-b'in-l, g’3) (13) 

where g'3 is any arbitrary row of weights. 
Of course, we may compromise. One possibility is to take g3 = 0, which comes to the same 

thing as ignoring n2, so that we are back to the situation in Table 2. 
Another compromise would be that we take g3 in such a way that SSu! is minimized. This will 

be true if we take g3 = a2. This solution is a compromise between a perfect channeling solution 
with respect to nj, augmented by a multiple regression solution with respect to n2. 

4.6 Both Tlj and HS exist 

This is the situation of Table 1. One possible compromise would be to ignore n2 and TS, so that 
Table 1 becomes reduced to Table 2, and we have a pseudo-just identifiable solution. Or^we may 
ignore n2, so that Table 1 is reduced to the overidentified case, and possible compromises art- 
shown in section 5. Or, we may ignore T2, so that Table 1 is reduced to the under-identified case, 
and the compromise suggested in section 4.5 would apply. 
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4.7 Conclusion about identifiability 

There are two problems to be considered. 
(i) The first one is that the rank of H or'T might be smaller than the number of variables in Y2 or 

X2. This means that there is linear dependence among the variables in Y2AX | or in X^Xj. 
If Y2AXJ has deficient rank, it follows that a weighted sum Y2C2i AX! is not uniquely defined 
in terms of the weights C21. In fact, those weights can be chosen in different ways without 
effect on the values in Y2C21A.X1. We do not consider this as an instance of 
"unidentifiability". Linear dependence among predictors always can be handled (e.g., by 
applying "truncation" methods, such as "principal component truncation"). 
The same problem arises in fact if there is linear dependence among Xi, so that there is no 
unique solution for bn, where yjPXi = Xibn. Although then one can take different values 
for the weights bn, the vector yiPXj remains uniquely defined. 

(ii) Even if Y2AX! and X2AX! have the same rank k = m as Y2 and X2 themselves, it does not 
follow that there are no zero canonical correlations between Y2AX! and X2AX!. Knowledge 
of the number of variables in Y2 and X2 therefore is not sufficient to decide whether the 
situation is just-identifiable, overidentified, or under-identified. Goldberger (1964) is not 
complete in this respect: his exposition ignores the possible difference between k and k*, and 
between m and m*. 

5 OVERIDENTIFICATION 

5.1 Introduction 

The overidentified case receives a lot of attention in econometric literature. Compromises for a 
channeling solution then are introduced mainly on the basis of mathematical-statistical arguments 
(unbiasedness, efficiency, sufficiency). Such a treatment makes it somewhat difficult what these 
compromises mean in terms of data theory, by which we mean an understanding in terms of the 
algebra and geometry of the vectors involved. The latter also makes it easier to see how their 
compromises are related to other multivariate techniques, more common in the social sciences. 

We shall discuss two compromises: (1) two-stages least squares (2SLS), and (2) least 
generalized residual variance (LGRV). Our discussion is based mainly on Goldberger's textbook 
(1964). 

5.2 Two-stages least squares (2SLS) 

In section 3.3 it was explained that the channeling solution takes a weight c2 for y2 , in such a way 
that yiE(X2AXi) and y2C2P(X2AX!) become identical (eq. 6 and Figure 2). If Y2 contains more 
vectors, the same solution remains valid, on the understanding that c2 now is a vector of weights. 
This produces the just-identifiable solution, if it exists. 

However, in the situation of Table 3 no such solution exists. The reason is simply that 
yiP(X2AXI) = y]P'F| + yiPHG - a sum of two non-zero vectors. 
But Y2C2E(X2AXi) = Y2C2PH'! + yiE^ ■ where the latter vector is a zero vector for any choice of 
c2. It follows directly that YjE^ and Y2C2E'^, never can be identical. 

2SLS takes the compromise solution for c2 which results in equality of the two projections 
y 1EVP1 and Y2C2EvPi. In other words, this solution just ignores 'P2. This means that Table 3 is 
reduced to Table 2 where a just-identifiable solution is possible. This solution has weights 
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d’= (1,-b’lfi-1) (14) 

which is the same expression as in eq. (12). 
The geometry of this solution is illustrated in Figure 2, for the special case that Y2 is one¬ 

dimensional (so that FI] = y2), and replacing the vector X2AX1 in Figure 2 by the single vector 
\|/l. More generally, the compromise says that IT = fli has dimensionality m = m*, and that T'j 
also has dimensionality k* = m*. It then follows that the projection of FI on j also has 
dimensionality m*. But (T),!!) has dimensionality (m*+l), whereas the projection of (r|,n) on y! 
still has dimensionality k* = m*. It follows that there must be a direction in the space spanned by 
(r|,n) with zero projection on >F'i. This direction is specified in eq. (14); it is the direction of the 
vector 

OlJF)d = Ti-nn-ltq. (15) 

The vector in eq. (15) has the same direction as uj. In fact, uj is defined by the equation 

yjAXi = Y2C21AX1 + uj (16) 

whereas eq. (15) can be re-written as 

t| = nn-^! + (ri,n)d. (i?) 

The two equations (16) and (17) differ in a proportionality constant, because r| is the unit- 
normalized version of yjAXj, orq = yiAXi/SSlyjAX])1^. it follows that 

(ri,n)d = u1/SS(y1AX1)1/2. (18) 

One should note that there is not necessarily a unique 2SLS solution if X2AX1 has larger rank than 
Y2AXi. The fact that k>m does not guarantee that there are no zero canonical correlations. In other 
words: the fact that k>m does not guarantee that FI2 does not exist. 

The name "two-stages least squares" can be explained by taking the projection of yj on X[ as the 
first stage, followed by taking the projection of yiAXj on X2AX1 as the second step. Obviously, 
the latter projection is identical to the projection of yj on X2AX1. 

5.3 Least generalized residual variance (LGRV) 

Define Y = (yj, Y2). In the just-identifiable case there is a unique solution for weights w, such that 
YwAXj has zero projection on X2AXj. This solution implies that the angle between YwAXj = iij 
and the space spanned by X2AX1 is an angle of 90° degrees. 

In the overidentified case no such solution for w can be found. But it would be a compromise to 
take the solution for w in such a way that the angle between YwAXj and its projection on X2AX] is 
as much as possible close to an angle of 90°. This is equivalent with saying that w gives weights for 
YAXj which correspond to the smallest canonical correlation between YAXj and X2AX1. 

Now it will be true for any arbitrary choice of w that YwAX and YwP(X2AXj) are orthogonal 
vectors, with sum vector 

YwAXj = YwAX + YwP^AXj). (19) 

The proof of the theorem used in eq. (19) can be derived from the Appendix of this paper. It 
follows that the compromise based on the smallest canonical correlation between YAXj and X2AX] 
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is equivalent to the solution for weights w which give the largest canonical correlation between 
YwAX, and YwAX. 

Figure 4 gives a geometrical illustration. The figure shows a rectangular block, in which the 
diagonal vector Yw is decomposed into three orthogonal components: YwPXj, YwPiX] AX]), and 
YwAX. In the just-identifiable case, this block collapses into a single plane rectangle, with sides 
YwAX = YwAXj and Yw£X = YwPXj, with diagonal Yw = YwA.(X2AXj), and with 
YwP(X2AX1) = 0. 

The rationale of the LGRV compromise must be clear. Yw has a component YwAXj 
(uncorrelated with X]), and this component should be as much as possible similar to the component 
YwAX (the component of Yw not predictable from X as a whole). 

YwAX 

.YwACx^Ax ) 

Yw 

/ 
/ 

YwPUjAXj) 

Figure 4 Decomposition of a vector Yw into ortho¬ 
gonal components: 
Yw = YwPX + YwAX, Yw = YwPx! + YwAx,, and 
Yw = YwP(x2Axj) + YwA(x2Axi). 
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First of all, the two compromise solutions become identical to the just-identifiable solution if there is 
such a solution. In the overidentified case, however, the two solutions comprise in different ways. 

2SLS acts as if XjAXj may be replaced by (Y2AXi)E(X2AXi) = YtPCXjAX]). The result is that 
uj will be orthogonal to X| (this is the first "stage"), and, as the second "stage", will be orthogonal 

to 4/i. But U) will not necessarily be orthogonal to In fact, '¥2 is "ignored". Or perhaps better: 
the correlations b2 between yj and \|/2 are ignored. 

LGRV does not ignore 'Vj- This solution makes uj as much as possible orthogonal to both Tj 
and 4,2, and the solution therefore does depend on the values in b2 (which are ignored in 2SLS). 

The two compromise solutions become identical if the correlations b2 are zero's, which would 
mean that y) is uncorrelated with directions in X2 which are independent of X] as well as of Y2. 

5.5 Numerical illustration 

The following small example is based on the correlation matrix in Table 5. It is assumed that 1) and 

FI are uni-dimensional, whereas lF has the two dimensions \|/i and \|/2- The table also contains 
correlations with an additional vector z, defined as the unit-normalized vector 'nA.II. These 

correlations between z and other vectors can be easily derived from the other correlations given in 
the table. 

Table 5 Numerical example of section 5.5 

_£I|| 

1 .4 

.4 1 

.5 .7 

.6 0 

.9165 0 

Vl Y2_z 

.5 .6 .9165 

.7 0 0 

1 0 .24 

0 1 .6547 

.24 .6547 1 
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Figure 5 The figure is based on the example of Table 5. It shows projections 
on the plane spanned by \j/j and \\i2 (located on the unit circle, which is only 
partly drawn). The 2SLS solution appears as the rectangular decomposition 
T) = jtcs + us (where us must be orthogonal to tj/j). The multiple regression 
solution appears as the parallelogram r] = jtcm + um (the projection of the 
corresponding rectangle in Figure 6). The LGRV solution is given by the 
parallelogram T) = rtCg + Ug, where ug has the same direction as the shortest 
principal axis P2 of the dotted ellipse (this ellipse is the projection of the unit circle 
in Figure 6) - so that ug is orthogonal to pj. Only one half of the ellipse has been 
drawn, cut off by its shortest principal axes P2 and -p2- 



Figure 6 The figure is based on the example of Table 5. It shows projections of vectors on the plane spanned 
by 7t, r|, and z (these three vectors are ioctaed on the unit circle). The multiple regression solution appears as the 

rectangle T| = 7tcm + um (projected on Figure 5 as a parallelogram). The 2SLS solution is shown in the 
paralleogram T| = itcs +us, where us is orthogonal to (the projection) of xi/!. The LGRV solution is given as 

the parallelogram r) = 7tcg + ug, where ug has the same direction as the shortest principal axis P2 of the 
ellipse, and therefore is orthogonal to the longest axis pj. 

Note that um, us, and ug are vectors located in the plane of drawing (because Ti and it are located in this plane). 
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Results are pictured in the two figures 5 and 6. Figure 5 shows the plane spanned by lF, with 

\|/l and 1^2 as two orthogonal radii of the unit-circle. Earlier definitions imply that the projection of 
FI on this plane must have the same direction as H'1. Figure 6 shows the plane spanned by z and Id 
as two orthogonal radii of the unit-circle. Here the vector T|, located in the plane of drawing of 
Figure 6, also appears as a radius of the unit-circle. 

The unit-circle of Figure 5 projects on Figure 6 as an ellipse, on which the projections of Yi 
and \|/2 are located. Conversely, the unit-circle of Figure 6 projects on Figure 5 as an ellipse on 
which the vectors z, T), and H are located. The two ellipses have identical size (i.e., their principal 
axes have the same lengths). 

The two figures show three solutions. 
(i) Firstly, we have the solutions for regression of T) on H. This solution is shown in Figure 6 as 

the decomposition of T) as a rectangle with sides riPn and riAn. We write T] An = um, and it 
is easily derived from Table 5 that um = r| - ,4n. This rectangular decomposition appears in 
Figure 5 as a parallelogram. 

(ii) The 2SLS solution appears in Figure 6 as the decomposition r] = ncs + us. This 
decomposition has the shape of a parallelogram, with the characteristic feature that us must be 
orthogonal to y j. In Figure 5 the same decomposition appears as a rectangle, with the 
projection of us orthogonal to \|/j. The numerical solution is: us = T) - .7140. 

(iii) The third solution is the LGRV solution, indicated by ug = r) - 1.306n. The characteristic 
feature is that ug has the same direction as the shortest axis of the ellipse, as can be seen in 
both figures. The rationale of the solution is: since ug has the same direction as the shortest 
axis of the projection of the unit-circle, the angle between ug and its projection on Figure 5 
must be larger than the angle between any other radius of the unit-circle in Figure 6 and its 
projection on Figure 5. The cosine of this angle therefore corresponds to the smallest 
canonical correlation between (r|,n) and T'. In the example, this smallest canonical correlation 
is equal to .566 (in the figure equal to the length of the shortest principal axis of the ellipse). 

The three solutions, um, us, and ug, are located on the straight line defined by q - lie with 
different solutions for c. In Figure 6, the solution for c is chosen in such a way that q - He = um 
has minimum length; i.e., um is orthogonal to II. On the other hand, the 2SLS solution is chosen in 
such a way that the projection of us on Figure 5 has minimum length; i.e., in Figure 5 the 
projection of us is orthogonal to V[/|. These two solutions, for um and us, do not depend on the 
location of the principal axes of the ellipses. They therefore ignore the value of b2 = .6, in the 
example. 

In contrast, the solution for ug does depend on the location of the shortest axis of the ellipse, and 
therefore does depend on the value of b2- In the example, this value is relatively large, which 
explains why ug is relatively far away from us and um. In fact, to the extent that b2 becomes 
smaller, ug will approach us. In the limit, when b2 = 0, the vectors ug and us will coincide, 
because we then have a special just-identifiable case (\|/2 may be ignored without penalty, because 
\|/2 is uncorrelated with q). This limiting case does not imply, however, that um becomes the same 
as us = ug. 
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6.1 Introduction 

For a real-life numerical example, data have been taken from Duncan, Haller, and Pones (1968). In 
this study data were collected for 17-year old boys. They refer to three "background" variables 
X] = (X] X2 X3), and one direct variable yj. The same data were collected for boys which 
respondents considered to be their "best friend", collected in X2 = (x6 x5 x4) and y2. Table 6 
gives a short description of the variables. Note that the variables (Xi, yi) are in a sense symmetrical 
to those in (X2, y2). The symmetry is not complete, however: if respondent John says that Peter is 
his best friend, it does not follow that Peter will say that John is his best friend. 

All further analyses are based on the matrix of correlations between the 8 variables described in 
Table 6. These correlations are given in Table 7. 

We will show results of five different analyses. 
(A) Multiple regression of yj and of y2 on X. 

The diagram for such a solution is given in Figure 1A. 
(B) Multiple regression of yj on X], and of y2 on X2. 
(C) Multiple regression of y] on (Xj, y2) and of y2 on (X2, y^. 

The path-diagram is shown in Figure 1C. 
(D) The same diagram as in (C), but now with 2SLS solution. 
(E) Same diagram as in (C) or (D) but now with LGRV solution. 

Although solutions (C), (D) and (E) have the same path-diagram, their numerical solutions for 
weights are different. Solution (C) is based on eq. (2) in section 3.1 - (D) is based on the equations 
in section 5.2 - (E) on those in section 5.3. 

Table 6 Variables used in the numerical example of section 6 

respondent best friend 

parental aspiration (degree to which parents 
encourage their child to have high levels of 
achievement) 

family socioeconomic status 

intelligence of child 

occupational aspiration child 

X] Xg 

x2 *5 

x3 x4 

yi y2 
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Table 7 Correlations between the variables given in Table 6 

X1 x2 

1.0000 .1839 
1.0000 

x3 x4 

.0489 .0186 

.2220 .1861 

.0000 .2707 

1.0000 

x5 x6 

.0782 .1147 

.3355 .1021 

.2302 .0931 

.2950 -.0438 
1.0000 .2087 

1.0000 

Yl Y2 

.2137 .0839 

.4105 .2598 

.3240 .2786 

.2930 .3607 

.2995 .5007 

.0760 .1988 

1.0000 .4216 
1.0000 

Table 8 Weights for the variables in X in the five solutions described in section 6 

MR yj MR on 
on X Xi&X2 

Pi Pll 

xj .1423 .1410 
x2 .2780 .3304 
x3 .1888 .2407 

Pl2 

x4 .1562 .2287 
x5 .1059 .2238 
x6 -.0015 .0393 

P2 P21 

x, .0225 .0354 
x2 .0560 .2018 
x3 .1115 .2321 

P22 

x4 .2163 .2478 
x5 .3671 .4013 
x6 .1130 .1259 

MR yj on 
Xj and yj 

P21c2 bn 

.0103 .1307 .0134 

.0587 .2718 .0764 

.0675 .1762 .0879 

Pl2cl b22 

.0581 .1897 .0680 

.0569 .3446 .0666 

.0100 .1159 .0117 

LGRV 

.1276 .0136 .1274 

.2540 .0773 .2531 

.1558 .0890 .1548 

.1798 .0684 .1795 

.3347 .0669 .3344 

.1142 .0118 .1141 

6.2 Results 

Regression weights for X are given in Table 8: weights which refer to the regression equations for 
y] in the upper half, and those that refer to y2 in the lower half of the table. The "symmetry" in the 
variables makes the lower half almost the mirror image of the upper half. 

First the upper half. The first column gives weights flj for regression of yj on X. The second 
column gives weights Pj j and P12 for regression of yj on Xj alone and on X2 alone, respectively. 
The fourth column gives weights bj j for Xj in the regression of yi on (Xj, y2). It has been shown 



83 
in section 3.1 that bn = pjj - p2lc2 (where C2 is the weight given to y2 in this regression 
equation - these weights can be found in Table 9). The third column of Table 8 shows values of 
P21c2- Fifth and sixth column have the same interpretation as third and fourth column, but now for 
the 2SLS solution, whereas the last two columns refer to the LGRV solution. 

The lower half of Table 8 has the same interpretation, now with respect to regression equation 
for y2. 

Table 9 gives the solution for weights c j and c2 (for analyses C, D, and E). 
Table 10 shows results for SSuj and SSu2- In all five analyses it will be true that u; = u;AXj 

(i = 1,2), so that SSuj = SSujAXi. The table also shows results for SSujAX (compare section 5.3 
and Figure 6), as well as the ratio's SSu;AX/SSujAXj. Remember that the objective of LGRV is to 
maximize this ratio which then becomes identical to the squared largest canonical correlation 
between VAX and YAXj. 

Table 9 Weights for yj in the solutions 
described in section 6 

MR on 2SLS LGRV 
Xj and yj 

.2909 .3789 .3833 

.2540 .2975 .2990 

Table 10 Some criterion results for the numerical example in section 6 

SSujAX, 
SSu] AX 

SSU2AX2 
SSu2AX 

ratio 

y; on X yj on Xj yi on 
_(Xj, yj) 

.7169 .7552 .6808 

.7169 .7169 .6712 

.6682 .6846 .6290 

.6682 .6682 .6252 

1 .9493 .9860 
1 .9760 .9940 

2SLS LGRV 

.6876 .6883 

.6797 .6804 

.6306 .6307 

.6271 .6271 

.988498 .988504 

.994418 .994438 

6.3 Comments 

The most striking result in this example is that 2SLS and LGRV lead to almost identical results. The 
reason is that u^AX and ujAX; are already highly correlated even in the multiple regression solution 
C. In fact, the ratio's in table 10 are all very close to unity (to such an extent that for 2SLS and 
LGRV we need six decimals to find a difference). 

The remaining comments refer to minor technical details. 
(i) Firstly, let us go back to the conditions for channeling as described in section 1.2. Those 

conditions were phrased in terms of squared multiple correlations. In this example, for yj 
predicted from X! alone we find a value of .2448. It is improved to .3192 if yj is predicted 
from (Xi, y2). It also is improved if yj is predicted from X = (Xj, X2) : .2831. But 
prediction from (X, y2) - with value .3293 - is not really better than prediction from (X], y2). 
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Similarly for prediction of yi- From X2 alone: .3154. From (X2, yj): .3711. From X: .3318. 
From (X, y^): .3736. 
Results above are not very impressive: all differences between squared multiple correlations 
are rather small. Nevertheless they serve to illustrate what was meant with the conditions 
described in section 1.2. 
Results also show that y^ is more than just a substitute for X2 in predicting yj : prediction 
from (Xj, y2) is better than prediction from X (similarly for prediction of y2). 

(ii) In solution A it is found that SSujAXj = SSu;AX. The reason is simple enough: in this 
multiple regression solution it will be true that U; = u^AX, and therefore that u,AX; = UjAX. 

(iii) Solution C minimizes SSujAXj unconditionally. On the other hand, solution E maximizes the 
ratio SSujAX/SSujAX,. 

(iv) Finally, Figure 1C gives the path diagram. It could be specified for the 2SLS solution by 
writing the 2SLS weights for Xj (.1276 .2540 .1558) along the arrows from Xj towards V] , 
and the weights (.1798 .3347 .1142) along the arrows from X2 to y2 - these weights can be 
found in the second 2SLS column of Table 8. In addition, the arrow from y2 to yj obtains 
numerical value .3789, whereas the arrow from yi to y2 has value .2975 - see Table 9. 
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1. The notation SSZ is used for the matrix of sums of squares and cross-products of a given 

matrix Z: 
SSZ = Z'Z. 

2. Variables are standardized in such a way that SSZ has a diagonal with unit elements. 

3. Given two sets of variables X and Y. 
(i) We define YPX = X(X'X)'X'Y. 

For YPX read: "Y projected on X". In fact, YPX is just shorthand for the expression 

above, in which (X'X)‘ stands for the (generalized) inverse of X'X. One may also say: 
YPX is the result of application to Y of the operator X(X’X)~X'. Geometrically this 
corresponds to projecting the vectors in Y on the space spanned by the vectors in X. 

(ii) We define: YAX = Y - YPX = (I-X(X’X)'X')Y. 

For YAX read: "anti-projections of Y". It is shorthand for application of the operator 
(I-X(X'X)"X') to Y. Geometrically YAX gives components of Y (in the joint space of 
Y and X) which are orthogonal to all vectors in the space spanned by X. 

(iii) In the text the following basic theorem is used: 
SSY = SS(YPX) + SS(YAX) 

(iv) Also the following two theorems are often used. Let X be partitioned as X = (Xj, X2). 
Then: 

YPX = YPX! + YP(X2AX!) 
SS(YPX) =SS(YPXi) + SSfYPfXjAXj)). 
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