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non-homogeneous loss functions 
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Abstract 

To study the properties of some robust loss functions a jack-knife 
experiment with generated data has been performed including four 
different functions. Special attention has been paid to the tuning 
constants. These constants were found to be of major importance for 
the performance of the applied loss functions. 
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1. Introduction 

In robust statistics one studies the behavior of a method under a broad range of 

circumstances. The technical term "robust" is usually accompanied by the term "resistant". 

From Andrews (1974) we quote: "Techniques of fitting are said to be resistant when the result 

is not greatly altered in the case a small fraction of the data is altered; techniques of fitting are 

said to be robust of efficiency when their statistical efficiency remains high for conditions more 

realistic than the utopian cases of Gaussian distributions with errors of equal variance. These 

properties are particularly important in the formative stages of model building when the form of 

the response is not known exactly". 

Loss functions that are designed to make the associated data analysis technique more robust 

and resistant frequently involve one or more so-called tuning constants (Hoaglin et. al., 1983, 
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p.346). These constants determine the shape of the loss function in such a way that the solution 

may critically depend on them. Therefore it is of interest to study systematic ways for choosing 

these constants (cf. Holland & Welsch, 1977). 

Most loss functions involving such tuning constants are non-homogeneous. A 

homogeneous function S of the residuals r/, i = l,...,n satisfies 

S( a r,-) = a S( r;) with a >0 (1) 

for the entire range of its argument r. This characteristic naturally leads to the property 

a argmin S( r;) = argmin S(a r;), (2) 

where "argmin" denotes the argument for which the minimum of the function is attained. This 

implies that it doesn't matter how the residuals are scaled, since it will always be possible to 

rescale the solution afterwards. This convenient property is no longer valid for non- 

homogeneous loss functions. 

In this paper three non-homogeneous loss functions are discussed: the Huber function and 

two so-called redescending functions. The term redescender points to the first derivative of 

such functions. We distinguish a hard redescender for which the derivative of the function 

becomes exactly zero beyond a finite bound and a soft redescender for which the derivative 

merely becomes asymptotically zero. 

The estimators based on the Huber function and on a hard redescender are often called M- 

estimators in the robust literature. (Hampel et. al., 1986). We have chosen for these functions 

because they are among the best known in the robust tradition. The soft redescender is included 

in our study as an example of a rather new approach. 

These three functions will be compared to the least squares and the least absolute residuals 

loss functions, which are the building blocks of the former ones, and which are homogeneous 

themselves. Our approach will be to determine the stability of parameter estimates under Jack¬ 

knifing and to examine whether an optimal value for the tuning constant can be found on the 

basis of this stability. In a Monte Carlo experiment it turns out that this procedure yields 

reasonable choices. Of course, these results can only be tentative due to the modest size of our 

experiment. 

2. Description of the loss functions 

In order to study the qualities of these loss functions, consider the well-known linear 

regression problem with the following model 

y = Xb, (3) 



wiih y as Ute dependent variable and X the matrix with independent variables, which are 

assumed to be fixed. The objective is to find the parameter vector b that minimizes some 

function of the residual vector r, which is defined as 
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r = y - Xb. (4) 

The most common way to tackle this problem is based on Least Squares (LS), which 

minimizes the following loss function: 

SLSlri) = L, r,2 . (5) 

The minimum of this function can directly be found by computing b = (X'X)“lX'y . In the 

following sections we will describe four alternative loss functions. These functions supposedly 

are more robust and resistant, which means that they are suited for data with long tailed 

distributions or when outliers are involved. 

Least Absolute Residuals loss function 

The first alternative loss function is based on the absolute values of r. Loss functions based 

on this so called Lj-norm already have a long tradition in robust estimation. The Least Absolute 

Residuals loss function (LAR) is written as 

SlarOv) = £; ir; I (6) 

To minimize this function we use the majorization method. In short this means that we are 

going to approach (6) iteratively from above by means of a simple weighted quadratic function. 

Now suppose we have any known set of residuals r/, associated with some previous solution 

for b. As shown in Heiser(1986) the function Slar is majorized by a family of quadratic 

functions in the sense that we always have 

SLAR(r;) < 1/2 SlarIIj) + 1/2 I; m r;,2. (7) 

The Wj are variable weights defined as 

wj = 1 / Ir; I if Ir; I > e, (8a) 

w; = 1 / e if Ir; I < e, (8b) 

where e is some very small constant that is needed to make the algorithm converge smoothly 

(see Heiser 1987a). 

The majorization algorithm to minimize this function can actually be looked upon as a 

reweighted least squares algorithm. The parameter vector b is computed as : 

b = (X'WXj-'X'Wy and y = Xb. The matrix W is a diagonal matrix with weights w;, for 

the Slar defined in (8a,b). 
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The LAR loss function has a long history, but has not been applied too often. Heiser 

(1987b) formulated a LAR version for Correspondence Analysis. More applications and 

theoretical considerations about LAR can be found in Dodge (1987). 

Huber's Loss Function 

From 8a it is seen that the variable weight for point i becomes very large when the residual r/ 

is very small. To cope with this problem Huber(1973) introduced another loss function, which 

is a mixture of least squares and least absolute residuals. The function is actually a family of 

loss functions depending on the tuning constant c. For some constant c the Huber loss function 

is defined as: 

ShlO-!') = Si r,-2 for Ir,-1 < c (9a) 

Shl(Ii) = Si [2clr,-1 - c2] for Ir; I > c (9b) 

Note that for c -> 0 we obtain LAR and for c -> ~ we have LS (cf. Ekblom, 1987). The 

idea behind the Huber function is that small residuals (smaller than c) will relatively contribute 

more to the loss than large residuals. This will diminish the disturbing effects of outliers to 

some extent. In Figure 1 we show the first derivative of the Huber function, which is 

sometimes called the influence curve (Hampel et. al., 1986). From this Figure we leam that for 

the Huber function the influence of outliers is bounded 

Figure 1. First derivative of the Huber function. 

As shown in Heiser(1987a), we can still minimize this function by using a majorization 

function defined as 

for Ir,-1 < c (10a) K(r,) = S,' r, 2 

K(r,)= I,- [(c/ Ir,-1) r,-2 + clr,-1 - c2 ] for Ir,-1 > c (10b) 
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Again we will consider this as a reweighted least squares problem with variable weights 

computed as 

Wj = 1 for Ir,-1 < c. (1 la) 

w; = c / In I forlijl^c (11b) 

Note that 0 < w, < 1 and since c/lri I is always smaller than 1, the procedure amounts to 

degrading the weights when the residuals are large. Contrary to the straightforward reweighted 

approach to LAR fitting the weights now have an upper bound of 1, so they cannot become 

unreasonably large. 

A Hard Redescending Loss Function 

The effect of using a hard redescending loss function is shown in Figure 2a. For small 

residuals the function shown is quadratic. When the residuals exceed some constant ci the 

function becomes linear. So far we are dealing with the Huber function. When the residuals 

also exceed a constant C2 the function obtains, besides a linear part, a quadratic part with a 

negative second derivative. Finally for residuals exceeding a constant C3 the function becomes a 

constant function. 

Figure 2a. Example of a hard redescending loss function. 

The Figure clearly shows that for r; > C3 there is no further increase in loss. So large 

residuals will be treated like moderately large ones. This makes the hard redescender more 

radical than the Huber function. In Figure 2b the first derivative of the function is displayed. It 

clearly shows the four parts of the function and that the derivative becomes zero for large 

residuals. So we see that the hard redescender also has a bounded influence curve. 
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Figure 2b. First derivative of a hard redescender. 

In the first column of Table 1 a redescending function is described with equally spaced 

intervals for the different function parts. The second column gives the majorization function. A 

similar function has been described by Hampel (1980). 

Table 1. Class of hard redescenders. 

loss function majorization function interval 

li Tj2 I; Ti 2 ir,' I < c 

Z, [2c Ir; I - c2] % [(c/ Ir; I) r; 2 + c Ir; I - c2] c < Ir; I < 2c 

Hi [6clr; I - r;2 - 5c2] E;[(3c/ Ir; I ) r;2 - r;2 + 3c Ir; I - 5c2] 2c < Ir; I < 3c 

4Hi C2 4Hi c2 3c < la I 

The variable weights for la I < 2c are similar to the Huber function. For the other parts of the 

function the weights are defined as 

w; = (3c-la I)/lal for 2c < la I < 3c, (12a) 

Wj = 0 for la I > 3c. (12b) 

Now we have variable weights which are 1 for the positive quadratic part, between 1 and .5 

in the linear part, between .5 and 0 in the quadratic part with negative second derivative and 

finally which are 0 in the constant part of the function. 

In estimating the location of a distribution a well-known robust estimator is the trimmed 

mean. The trimmed mean can also be seen as a special kind of hard redescender. The large 



values of a distribution obtain weights 0 and the other values weights 1. The hard redescender, 

however, rejects more smoothly. 
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A Soft Redescending Loss Function 

As an example of a soft redescender we will take Eilers' adaptive weights approach (Eilers, 

1987). Here the loss function is a function of both the residuals and the weights: 

SsR(wi, r,) = Z, w;2 r,-2 + k2 X, (1 - w,)2 . (13) 

In this function two parts can be distinguished. The second part of the function prevents a 

trivial solution in which all weights are zero. The function yields small weights for large 

residuals and weights near 1 for small residuals. Again we use reweighted least squares to 

minimize this function. The variable weights are 

ffi = (l+r,-2M2)-1. (14) 

The k is a prefixed constant, which we will call the penalty constant. Notice that for large 

values of the penalty constant k the function will make all weights to be approximately equal to 

1, which reduces the function to LS. For very small k values the weights will approximately 

become 0. It's evident that this is not what we want, therefore we innoduce the restriction 

k > 1. 

3. Description of the data 

To study the robustness of the different loss functions, a dataset was generated by taking 

some vector of x-coordinates on the interval [1,40]. The dependent variable y was computed 

according to y = x + e, with e uncorrelated with x and ~U(0, .05cy2). Some y-coordinates 

(10%) were computed according to y = -x + 30 + e and another 10% according to y = .5x + e. 

Especially the first 10% are really heavy outliers. Various studies have shown, however, that 

the percentage of outliers in routine data can easily be up to 10% and sometimes even more. So 

the choice of 10% heavy outliers and 10% small outliers may not be too unrealistic. 

The outliers were not randomly divided over the x-values, but chosen in such a way as to 

make their influence large. Furthermore the y is considered a random variable, but the x is 

considered fixed. This implies that we are interested in outliers in the y-direction and not in so 

called leverage points (outliers in the x-direction). A scatterplot of the data is displayed in 

Figure 3. 
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Figure 3. Scatterplot of simulated data. 

4. Parameter estimates 

The data have been analyzed by each loss function. In the first place we are interested in the 

ability of each function to find the slope parameter of the largest part of the data, which has 

value 1. Besides the slope the intercept has been simultaneously computed, but this is of no 

further interest. The results are shown in Table 2.The slope estimates of LS and LAR don't 

depend on any constant and are shown below the dotted line in Table 2. The hard and soft 

redescenders are respectively denoted as HR and SR, the Huber function as HF. 

Table 2. Effects of the tuning and penalty constants on the slope estimates 

c or k 

function .25 1 5 10 20 40 

HR .466 .349 1.005 .892 .629 .526 

HF .934 .915 .858 .756 .629 .526 

SR .837 .960 .892 .763 .625 

LS .526 

LAR .935 

If there were no effect of outliers then the parameter estimate should be around 1.0. From 

Table 2 it can be seen that the HR closely approximates this value for values of the tuning 

constant that are around c = 5. With c = 5 the diagonal weights matrix of HR has values 0 for 
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the extreme and less extreme outliers. For large c values all weights are equal to 1 and the 

results become like LS, as it should. With small c values many weights become 0 and the slope 

depends on just a few points. 

The second function, HF, runs from the LAR results for small tuning constants to the LS 

results for large ones. 

The SR has an optimal result for k = 5. For larger penalty values the results will also go to 

the LS ones but this proces will be slower than for the other functions. 

Table 2 has given us an indication about the range of the tuning constant within which the 

optimal slope values are estimated. The next step is to study the stability of the estimates for 

some values of the tuning constant. 

5. Determination of stability by Jack-knifing 

In the present example the optimal solution was known and therefore we could easily decide 

upon which technique and constant showed the best result, but of course usually there is no 

such extern validation criterion present. 

For this reason a jack-knife study has been done to test the stability of the loss function for 

different values of the tuning and penalty constants respectively. The idea is that for "too large" 

values of the tuning constant the functions behave like least squares, which is known to be non- 

robust in the presence of outliers. The spread of parameter estimates under Jack-knifing will 

then become large. On the other hand, for "too small" values of the tuning constant the 

functions essentially assign uniform loss to the majority of the residuals, so that their behavior 

may become erratic under dropping parts of data. This erratic behavior will also be reflected in a 

large spread of the parameter estimates. The data were analyzed forty times, each time leaving 

out another point. 

One way to define spread is as the standard deviation of the estimated parameter, 

% = (X, (b(j)- 6)2/ n j'/2, (15) 

where the summation is over the n points. The notation b(;) indicates the estimate of the 

slope parameter when point i has been left out. A technique will be stable if its slope parameter 

is relatively little influenced by individual points. The standard deviations of the redescending 

and Huber's estimates for different values of k and c are shown in Table 3. Notice that the 

constants for both techniques have different meanings. 
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Table 3. Standard deviations of HR. HF and HR for different constants 

c or k 

function 1 5 10 20 40 

HR .206 .010 .013 .027 .029 

HF .005 .017 .017 .027 .029 

SR .116 .008 .013 .020 .027 

LS .029 

LAR .002 

Table 3 shows the instability of the redecenders for small constants. These functions have 

the least spread when they compute the optimal solution. Consistent with former results HF 

tends towards LAR for small tuning constants. 

Another statistic to measure spread is the Median Absolute Deviation (MAD), defined as 

MAD = med{lb(l')-med{b(i')}l }. (16) 

The MAD first requires the computation of the median of the estimates b(,). Next the by) are 

taken in deviance of this median and finally the median of these values is called the MAD. 

Contrary to the spread the MAD is highly resistant to outlying observations, i.e. in this case the 

outlying parameter estimates. Table 4 shows the other results. For esthetic reasons all values in 

the Table are multiplied by 100. 

Table 4, MAD of HR. HF and HR for different constants 

c or k 

function 1 5 10 20 40 

HR .001 .441 .436 .835 .612 

HF .349 .805 .663 .835 .612 

SR 2.553 .491 .730 .775 .871 

LS .612 

LAR .088 

Comparing the MAD and the Ob we notice the similar patterns of both measures for the SR. 

Both measures show a clear minimum dispersion for k=5. For the other techniques the patterns 

are not the same. The apparent conflicting results for the HR with c=l is probably due to the 
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fact that the estimates are rather stable except when one of the outliers is left out. Leaving out an 

outlier causes the slope estimate to become highly deviant from the others. The MAD however 

is resistant to these "outliers". 

Because of its property of resistance the MAD isn't completely suited for a measure of 

dispersion of parameter estimates, since the interest is actually in outlying parameter estimates. 

In addition to the 05 however the MAD gives insight into the distribution of the slope estimates. 

For instance if a particular technique with tuning constant c comes up with both a large MAD 

and a large (%, the technique could be resistant after all. In this case the technique is not able to 

provide a proper fit to the data, which is obviously something quite different than being non- 

resistant. 

In general when both measures yield low values, it is still not possible to draw inferences 

about the resistance of the technique. Such a result could only tell us that there are no outliers in 

the data. In this study however, since we know that there are outliers, low values for both of 

the spread measures indeed indicate resistance of a technique for a given constant. 

6. Economical aspects 

Another interesting aspect of robust algorithms is the cpu-time needed to reach the solution. 

For HR, HF and SR the values in Table 5 are the average over 30 analyses with different 

tuning constants. Besides the cpu-time the mean number of iterations to reach convergence has 

been given. 

Table 5. Mean cnu-time and number of iterations 

cpu iterations 

LS .009 1 

LAR .236 42 

HR .098 10.0 

HF .065 9.1 

SR .396 17.9 

The low value of LS is obvious, because LS is computed in one step only. Furthermore we 

see that LAR and SR need considerably more time than HR and HF. The long cpu time for 

LAR is caused by the large number of iterations it takes to reach convergence. The SR on the 

contrary needs more computing time within each separate step. 
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7. Discussion 

First of all it should be noticed that the robust functions from this study indeed appear to be 

robust to outliers if a proper choice can be made for the tuning constant. This finding is 

consistent with most literature on robust methods. From this example and others that we did 

not present here, it seemed that after Jack-knifing for a series of different tuning values, the 

variances of the estimates (in combination with the MAD) can be used to determine an 

optimal value for the tuning constant. More specific: a minimal spread of the estimated 

parameter yields a good choice of the tuning constant, in the sense that for this tuning 

constant the best estimation of the parameter is found. 

It would be necessary to study whether these findings are consistent over a wide variety of 

data and whether they could be applied in more practical situations. For instance if one wants 

to analyze a data set with the Huber function, a jack-knife could be done for different tuning 

constants, which would yield something like Figure 4. 

Now it can immediately be seen for which tuning constant the results are optimal. Plots 

like Figure 4 would indeed be a helpful tool in robust estimation. 

Figure 4. Possible result of jack-knife study for the Huber function. 

Further research will be necessary to study whether a stability experiment to determine the 

optimal tuning constant can be applied to other techniques as well. In particular we are 

planning to look at some techniques for multivariate analysis. We already found some 

promising results for the orthogonal Procrustes problem, i.e. the rotation of a configuration of 

points towards a fixed target. 



173 

References 

Andrews, D.F. (1974). A robust method for multiple linear regression. Technometrics, 16, 

523-531. 

Dodge, Y (ed.). (1987). Statistical Data Analysis. New York: North-Holland. 

Filers, P.H.C. (1987). Adaptieve gewichten, een exploratieve techniek voor uitbijters en 

mengsels van regressie modellen. Kwantitatieve Methoden, 23, 63-83. 

Ekblom, H. (1987). The Li-estimate as limiting case of an Lp- or Huber-estimate. In: Y. 

Dodge(ed). Statistical Data Analysis. New York: Wiley. 

Hampel, F.R. (1980). Optimally bounding the gross-error sensitivity and the influence of 

position in factor space. Proc. Statist. Comput. Sect., Amer. Stastist. Assoc., 59-64. 

Hampel, F.R., Ronchetti, G.M., Rousseeuw, P.J., Stahel, W.A. (1986). Robust Statistics: 

The approach based on influence functions. New York: Wiley. 

Heiser, W.J. (1986). A majorization algorithm for the reciprocal location problem. Internal 

Report RR-86-12, Department of Data Theory, University of Leiden 

Heiser, W.J. (1987a). Notes on the LARAMP Algorithm. Internal Report RR-87-04, 

Department of Data Theory, University of Leiden. 

Heiser, W.J. (1987b). Correspondence analysis with least absolute residuals. Comp. Statist, 

and Data Analysis, 5(4), 337-356. 

Hoaglin, C.H., Mosteller, F.,Tukey, J.W. (1983). Understanding robust and exploratory data 

analysis. New York, Wiley. 

Holland, P.W. and Welsch, R.E. (1977). Robust regression using iteratively reweighted least- 

squares. Commun. statist.-theor. meth., A6(9), 813-827. 

Huber, P.J. (1973). Robust regression: Asymptotics, conjectures and Monte Carlo. Ann. 

Statist., 1, 799-821. 

Ontvangen: 08-12-1988 
Geaccepteerd: 26-10-1989 


