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J.J. Hox1, G.G. Kreft2, P.L.J. Hermkens3 

Summary 

Factorial surveys constitute a specific technique for introducing 

experimental designs in sample surveys. Respondents are presented 

descriptions (vignettes) of a constructed world, in which 

important factors are built in experimentally. Using balanced 

designs well known from the multivariate experimental tradition, 

it is possible to build in a relatively large number of factors 

and levels. 

Factorial surveys are mostly used in research on social 

judgments. Within this context, the normal hypothesis is that 

such judgments are consistent on the individual level, but not 

totally idiosyncratic. In the analysis of these judgments, it is 

important to determine the influence of both the vignette and the 

respondent variables. Analysis models for this type of data 

should reflect the fact that factorial surveys produce data 

pertaining to two distinct levels: the individual level and the 

vignette level. Such models are available, and are general known 

as multilevel analysis models. 

This article discusses the properties of factorial survey 

designs and some analysis models which address the multilevel 

aspects of the data. An example is presented using data on 

judgments on the fairness of incomes. 
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A characteristic attribute of many problems in social research is 

that both the variables of interest and the explanatory variables 

may be realized at a number of different levels. 

As a rule, in multilevel research the data have a hierarchical 

nature because they reflect the properties of some hierarchical 

system in the social world. For instance, in most countries the 

educational system has a hierarchical structure; pupils are 

collected in social units, classes and schools, which are in turn 

part of larger units, such as school districts, and so on. 

Consequently, the multilevel problem has received much attention 

in educational research, where 'outcome' variables (such as 

school career, examination results, drop out) are often observed 

at the pupil level, and explanatory variables are sought at both 

the pupil level (e.g. IQ, parent's education) and the class or 

school level (e.g. resources, class size, teacher's attributes) 

(Burstein, 1980; Kreft, 1987). 

In the examples given above, the multilevel features of the data 

are forced upon the investigator by the hierarchical nature of 

the social system studied. There is, however, another class of 

multilevel problems, in which the multilevel structure is not so 

much given by the data, but designed into the research by the 

researchers. One example is found in experimental psychology, for 

instance in experiments where subjects react to a series of 

stimuli. In this case the multilevel nature of the data is no 

real problem. The stimuli are varied according to an experimental 

design, and important subject variables such as age or sex are 

also under experimental control. Since all variables are (nearly) 

orthogonal, and the number of subjects is generally small, 

repeated measures analysis of variance can readily be used (cf. 

Kirk, 1969; Hays, 1973). 

The multilevel problem becomes more prominent in designs where 

elements of experimental design are used in survey research. This 

occurs in facet research (cf. Guttman, 1954; Canter, 1985; 

Roskam, 1987), in methodological studies on questionnaire design 

(cf. Saris, 1987), and in factorial surveys (cf. Rossi & Nock, 

1982). 

Building an experimental design into a survey is a demanding 

exercise, which will be undertaken only when the research problem 
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clearly demands it. A good example is found in the research 

projects reported by Saris (1987), where the central hypothesis 

is that the responses to attitude items depend on an unobserved 

response function, which is approximately linear and which may be 

different for each respondent. Saris c.s. report a number of 

studies, where the format of the questions is carefully manipu¬ 

lated, and for each format individual response functions are 

estimated by linear regression. In a second step, the parameters 

of the individual response functions are analyzed, generally by 

analysis of variance or multiple regression analysis. 

Clearly, the problem here is a problem of statistical design, 

rather than a conceptual problem. The link between theory and 

analysis is straightforward. In this article, we will discuss the 

multilevel problems that occur in this type of research within 

the context of factorial surveys, which is more general than that 

of methodological research. We will use a data set analyzed 

previously by Hermkens (1986), both with a single level model and 

with a two step procedure. This example also highlights an 

important difference between multilevel models as they are 

generally used in educational research, and multilevel models in 

survey research. Because in factorial surveys the multilevel 

structure is there by design, the explanatory variables at the 

different levels are (nearly) orthogonal, which eliminates the 

multicollinearity problems often found in educational research. 

However, since the data modeled are based on repeated measures 

collected in one session, the chances are that the dependencies 

in the data are substantial. 

THE FACTORIAL SURVEY 

Factorial surveys are a specific application of experimental 

design in survey research (Rossi & Nock, 1982). In a factorial 

survey, the respondents are presented questions based on 

descriptions of a hypothetical, or constructed, world. These 

descriptions, sometimes called vignettes, contain a sketch of a 

hypothetical object (e.g. a person or situation). The respondent 
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is asked to rate the objects on a specified dimension. The 

descriptions in the vignettes are constructed systematically, 

based on factors thought to be relevant to the judgment process. 

For example, in a study of the social status of households, Rossi 

(1974: 175) used vignettes in which the educational level and 

occupation of both husband and wife were systematically varied. A 

typical vignette from such a study would be: 

Wife Husband 

Architect 

College 

Artist 

High School 

The factorial survey approach combines the advantages of an 

experimental design with the advantages of the survey tradition. 

A large number of respondents can be sampled, following one of 

the well known survey sampling designs (Kish, 1987). These 

respondents can be presented with interview questions in which 

the factors underlying the vignettes are orthogonally varied, 

following one of the well known experimental designs (Kirk, 

1969). Generally, the respondents each judge a different subset 

of all possible vignettes; using random sampling of vignettes or 

a balanced design it is possible to build in a large number of 

factors and levels. 

Factorial surveys have been used in research on judgments of 

complex social objects, in which the vignettes vary on a great 

number of dimensions. Within this context, it is assumed that 

individuals select a relatively small number of factors to base 

their judgments on, and that individuals follow consistent rules 

to make those judgments. These rules may be partly idiosyncratic, 

but it is assumed that social judgments will be at least partly 

socially determined. That is: both individual characteristics and 

vignette variables are assumed to have an effect on the 

judgments. 
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ANALYSIS MODELS FOR FACTORIAL SURVEY DATA. 

Single level analysis 

The analysis method mostly used in factorial survey research is 

analysis of variance or multiple regression analysis. The factors 

underlying the vignette are the independent variables, and the 

judgment of the vignette is the dependent variable. Combining all 

judgments from all respondents, an analysis is made to determine 

the effect of the vignette factors on the judgments. This 

analysis is followed by an analysis which includes respondent 

characteristics. This is normally done either by repeating the 

analysis on different subsets of the sample, or by including 

respondent characteristics in the regression equation. 

In the simplest case, respondents are assumed to be completely 

interchangeable, and only vignette characteristics are entered in 

the regression equation: 

[1] 

Y^j is the judgment of person j on vignette i 

a is the intercept for the sample 

bj is the coefficient for vignette attribute 1 

where Y^j 

a 

is the value of vignette attribute 1 for vignette i 

e^j. is the error term 

This model can be expanded to include respondent characteristics 

and interactions between vignette and respondent characteristics, 

as follows: 
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where Y^j 

a 

b2 

ck 

Rk j 

dIk 

e 
ij 

is the judgment of person j on vignette i 

is the intercept for the sample 

is the coefficient for vignette attribute 2 

is the value of attribute 2 for vignette i 

is the coefficient for respondent attribute k 

is the value of attribute k for respondent j 

is the coefficient for the interaction between 

vignette attribute 2 and respondent attribute k 

is the error term 

Here, the beta coefficients for the vignette characteristics 

reflect effects that are common to all respondents in the sample. 

Rossi and Anderson (1986: 21) designate these as the social 

component of the judgments. The beta coefficients for the 

respondent characteristics predict the judgment thresholds of 

different subjects. The interaction terms reflect idiosyncratic 

judgment rules of different subsets of the sample. Another 

version of this model would be the analysis of covariance model, 

which omits the interaction terms and models a different judgment 

threshold for each respondent. 

Two step analysis 

A different approach to include respondent characteristics in the 

analysis is the two step procedure. In this procedure a separate 

multiple regression equation is computed for each respondent: 
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13 3jjvli '13 
[3] 

where 

li 

i j 

is the judgment of person j on vignette i 

is the intercept for individual j 

is the regression coefficient for respondent j of 

vignette attribute 1 

is the value of vignette attribute 1 for vignette i 

is the error term 

This creates as many regression eguations as there are respon¬ 

dents. Since the regression equation is computed for each 

separate individual, the regression parameters refer to his or 

her judgment process only. The individual R2 indicates the amount 

of structure in the judgment process; individuals making random 

judgments would have a R2 close to 0. In most applications, the 

term 1-R2 is used, indicating the amount of random error in the 

judgments of individual respondents. 

The second step in the procedure is to treat the individual 

vectors of regression parameters as characteristics describing 

the respondents that have generated them. For instance, Rossi and 

Anderson suggest factor analysis (Q-method) or cluster analysis 

on the individual regression parameters as a means of grouping 

respondents. Individual differences in the judgment process can 

be modeled by taking the regression parameters from the first 

step, and using them in a second regression analysis, in which 

they are regressed on respondent characteristics. Typically, in 

the second step, each first step parameter would be taken as a 

dependent variable in a separate regression analysis, but it is 

also possible to use a simultaneous procedure such as LISREL. 

Statistical considerations 

The regression models above are a specific case of the fixed 

effect linear model. Parameters are point estimates, estimated 

with a standard error. If the standard error is small, compared 

to the value of the parameter, we conclude that the estimated 
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value corresponds with a significant effect. This significance 

test is based on the assumptions of the model and is only valid 

in so far as these assumptions are approximately true, or at 

least not too badly violated. The assumptions of the model are: 

cases are independently sampled, from normally distributed 

populations, differing only in their means. Unmeasured effects 

and measurement errors are included in the error term e^j, which 

has a mean of zero and a variance equal to s2, which is the same 

for all subjects. The covariance between individual error terms 

is assumed to be zero. 

As a consequence of the nesting of the vignettes within respon¬ 

dents, the data in a vignette design does not follow the assump¬ 

tions of the traditional linear model. In fact, most of the 

assumptions above will be violated. The most critical assumptions 

are that error terms are uncorrelated and units of analysis are 

independently sampled. Since a number of judgments is given by 

each single subject, unmeasured subject variation will to an 

unknown extend cause correlated error terms within individuals. 

The assumption of independent sampling is violated, because 

vignettes judged by the same respondent will have values for 

respondent variables which are necessarily exactly equal. 

Both point estimates and standard errors will be biased. The 

standard errors will be underestimated, particularly for the 

respondent variables. Even the signs of the regression coeffi¬ 

cients may be misleading ((Kreft, 1987; Kreft & De Leeuw, 1988). 

The two step procedure, also known as the 'slopes-as-outcomes' 

approach, consists of a micro model (e.g. a regression analysis 

for the individual respondents) and a macro model, which relates 

the parameters of the micro models (generally regression 

coefficients and error variances) to the macro level variables. 

Thus, within respondents regression coefficients for vignette 

variables are predicted by respondent variables in the macro 

model. The error variances, or, conversely, the percentage of 

variance explained, can be included to give information about 

differences in the amount of stochastic error. 

The basic problem of the two step procedure is the use of 

identical assumptions and an identical error distribution in both 

steps, whereas the distribution of the parameter estimates in the 
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second step is fully determined by the assumptions of the first 

step. If the usual linear model assumptions are true in the first 

step, they will not be true in the second step. The error 

structure will generally be quite different from the error 

structure assumed by the linear model. Some specific problems 

with the slopes-as-outcomes approach are (Raudenbush & Bryk, 

1986; Kreft, 1987): 1) regression coefficients have a greater 

sampling variability than means; 2) the sampling variance of 

regression coefficients is dependent on both the sample size (in 

our case the number of vignettes used, which may vary across 

respondents due to missing values), and the error term for the 

individual respondent (which is certain to vary across individual 

respondents). Consequently, there is no simple sampling distri¬ 

bution for these parameters. What we have here is a mixture of as 

many sampling distributions as there are respondents in the 

sample. Using ordinary standard errors in the second stage is not 

only inefficient because of incomplete specification (Tate & 

Wonbundhit, 1983), but also wrong (De Leeuw & Kreft, 1986; Kreft, 

1987).4 

Random coefficient models 

The model presented here for the analysis of factorial surveys is 

a fairly general model, which is known under various names, such 

as the 'random coefficient' model (De Leeuw & Kreft, 1986), and 

'variance decomposition' or 'variance component' model (Aitkin & 

Longford, 1986). The variance component model, off course, is 

well-known. To highlight the fact that we are using a specific 

case of this model, one involving nested data, we will use the 

term 'random coefficient model' throughout this article. 

^ In a technical appendix Rossi & Anderson (1982) note that the 
error structure of the two step model may pose a problem. 
However, they assume that the ordinary linear model is robust 
against the type of violations incurred in a two step analysis of 
a factorial survey design. 
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If we substitute the respondent level model in the vignette level 

model we find: 

Yij = aj,0 + s aj,lRj + 

+ 2 bj,ovij + bj,lRjvij + 
+ Dj(1 + Dj ^VjLj + [4] 

This model is similar to the simple multiple regression model in 

which all parameters are specified at the vignette level. The 

important difference is the complicated error structure, incorpo¬ 

rating disturbance terms for each level and the ,Vj j distur- 

bance term. 

EXAMPLE I, COMPARING SINGLE LEVEL, TWO STEP, AND MULTILEVEL 

MODELS 

In this example we will use data from a study by Hermkens (1984A, 

1984B) on judgments about the fairness of the distribution of 

incomes. For simplicity, in the following example only a small 

selection of the variables is used: education and household size 

at the vignette level, and education, household size, and income 

at the respondent level. Also, vignettes describing single person 

households and single respondents were omitted from the analysis. 

This results in a sample of 107 respondents, each judging 16 

vignettes. 

Results multiple regression analysis 

The results of an ordinary multiple regression analysis, 

combining vignette and respondent variables in one analysis, are 

in Table 1 and Table 2. Table 1 presents the results of adding 

respondent and interaction variables to the vignette variables: 
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Table 1. Summary of stepwise regression analyses 

Level Cum. Per. Var. 'p' 

Vignette 18.5 .00 

Respondent 22.4 .00 

Interaction 22.5 .47 

The interaction term in Table 1 is clearly not significant. Since 

including the interaction variables in the multiple regression 

results in high multicollinearity, the regression coefficients in 

Table 2. were computed without the interaction terms. 

Table 2. Results multiple regression analysis 

Dependent Var.: Fair income. R = .47; 'df' = 5/1585 

Variable Level b beta 'p' 

V-Edu Vignette 

V-Size Vignette 

R-Edu Respondent 

R-Size Respondent 

R-Inc Respondent 

218 .39 .00 

106 .15 .00 

19 .04 .13 

-83 -.12 .00 

.21 .15 .00 

The results in Table 1. and Table 2. are clear. Vignette 

variables explain most of the variance. Respondents assign higher 

incomes to vignettes which describe earners with a high education 

and a large household. Respondent education is not important. 

Respondents with relatively large households and income assign 

higher incomes. There is no interaction, which implies that the 

judgment process itself does not depend on respondent education, 

household size, or income. 
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Results two step approach 

In the first step 107 separate regression equations were 

computed, one for each respondent, predicting the assigned 

incomes by vignette education and household size. The results are 

summarized in Table 3: 

Table 3. Summary of regression analyses 

Coefficient Mean St. Dev. Z 

Intercept 1250 185 27.0 

b-Edu 172 185 3.7 

b-Size 231 153 6.0 

If we take the distribution of the individual parameters to be 

normal, and compute the standard normal test statistic Z, all 

means differ significantly from zero. 

In the second step, the individual regression parameters are 

predicted by the respondent variables education, household size, 

and income: 

Table 4. Second step regression analysis 

Predicting: b-Edu b-Size Intercept 

Predictor beta 

R-Edu .04 

R-Size .08 

R-Inc .27 

R = 

'p' beta 

.71 -.06 

.42 -.07 

.00 -.13 

29 R = 

'p' beta 'p' 

.56 .09 .40 

.47 -.14 .15 

.18 -.03 .76 

17 R = .18 
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One interaction seems to be significant: respondents with a high 

income have steeper slopes for the vignette variable education. 

The nonsignificant effects for the intercept imply that the 

respondent variables education, household size, and income, do 

not influence the assigned income. 

The results from the two step analysis are, again, clear. 

Unfortunately, they are inconsistent with the results obtained in 

the combined multiple regression analysis (cf. Table 2). 

Results random coefficient model 

For the random coefficient model we will use the following 

notation: 

ve: vignette education 

vs: vignette household size 

re: respondent education 

rs: respondent household size 

ri: respondent household income 

Subscript i is used for vignettes; j is used for respondents; 

bold, upper case letters are used for random variables; lower 

case letters are used for fixed constants. 

The vignette level model is: 

[5] 

Dlj, [6] 

D2-J, [7] 

D3 j. [8] 

Yi,j Aj + Bjvei,j + cjvsi,j + Ei , j • 

Respondent level model: 

Aj = aj o + aj,lrej + aj,2rsj 

Bj = bj 0 + bj^rej + bj 2rsj 

Cj Cj^Q + c j ^ ^re j + Cj 2^"Sj 

+ aj,3rij + 

+ bj,3rij + 

+ cj,3rij + 

If we substitute the respondent level model in the vignette level 

model we obtain: 
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‘1,3 aj g + aj ^rej + aj 2rsj + 

+ bj,Ovei,j + bj,lrejvei,j 

a3,3rij + 
+ b.: 0rs^ve^ ^ + bj ,ri-:vej ^ 

J I ^ J ± f J J -L/J 
+ c j,ovsi,j Cj »lrejvsi,j + cj,2rsjvsi/j + cj , 3rljvsi,j 

Dl.: + D2-iVe; + D3-1VS; + 
J J-L/J JJ-zJ i, j ' 

[9] 

+ 

+ 

This model is similar to the multiple regression model presented 

above in formula [2]. The estimated coefficients, corresponding 

to the coefficients in formula [9], are given in Table 5: 

Table 5. Results full random coefficient model 

Coefficient Estimated value Significance 

aO 

al 

a2 

a3 

bO 

bl 

b2 

b3 

cO 

cl 

c2 

C3 
dl 
d2 

d3 
e 

2002 * 

-12 

-151 * 

.05 

-7 

5 

19 

.07 * 

108 * 

.70 

13 

-.02 

483 * 
177 * 

75 * 

679 

The full model has many parameters which do not differ signifi¬ 

cantly from zero. A more specific model may fit almost as well. 

Such a model may be chosen based on apriori statistical conside¬ 

rations, on substantive knowledge of the subject area or the 

research design, and a posteriori by assessing the goodness-of- 

fit of the model. A model fitting procedure, based on the full 

set of variables used in the study, is discussed in the next 

section. 
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EXAMPLE II: MULTILEVEL MODELS 

In this example we will again use data from the study by Hermkens 

(1984A, 1984B, 1986) on judgments about the fairness of the 

distribution of incomes. In this study, hypothetical households 

were described by combinations of attributes noted in previous 

research on distributive justice. The following attributes were 

used: occupation, educational level, source of income, sex, 

household size, and age. 127 respondents were presented with a 

random sample of 24 vignettes, and were reguested to assign the 

income which they judged to be 'fair' for this specific 

household. Some of the respondent variables were: occupation, 

educational level, marital status, sex, number of persons in the 

household, age, and income. 

As stated before, a number of different models may be chosen 

from the general class of random coefficient models. It should be 

observed, however, that the choice of model will generally have 

implications for the quantitative assessment of the effects 

estimated. Therefore, models should be chosen carefully, and the 

choice should be based as much as possible on substantive 

knowledge of the subject area or the design of the study. In 

factorial surveys the usual assumption is that individual 

judgments are composed of an individual, idiosyncratic component, 

and a social component. The social component of judgments can be 

modeled by aggregating judgments of respondents and estimating 

regression coefficients for vignette attributes. The individual 

component of social judgments includes several different effects 

(Rossi & Anderson, 1982). An important distinction is that 

between judgment threshold and judgment process. Subgroups or 

individuals may differ in their thresholds; in the terminology of 

the random coefficient model this means that subjects have 

different intercepts. Differences in the judgment process imply 

variations in the slopes of the regression equations for 

subgroups or individuals. 

Following Hermkens (1986) vignettes describing married and 

singles were analyzed separately, using the VARCL program 

(Longford, 1986). Table 6. presents the result for the full 

model, with fixed effects estimates. 
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Table 6. All variables fixed, random intercept. 

Variable Estimate St. Error 

G. MEAN 892 
V-age 3.2 

V-size 111.5 
V-edu 21.4 
V-paid work 229.0 

V-sources inc. 309.7 
V-SES . 6 

V-size x R-size 12.1 
V-edu x R-size 5.0 
V-SES x R-size .7 

V-size x R-inc -.0 
V-edu x R-inc .0 
V-SES x R-inc .0 

R-sex -24.6 

R-married 116.4 
R-edu -40.71 
R-paid work -109.1 
R-SES 45.9 

R-age -.6 

R-size -153.0 
R-inc .1 

R-fair income -13.8 

1.34 * 

42.49 * 
55.24 
39.49 * 
23.04 * 

5.64 
8.64 

10.44 
1.07 

.02 

.02 

.00 

111.71 

45.22 * 
43.18 

121.12 

46.71 

3.81 
55.11 * 

.11 

52.61 

In Table 6. four variables are significant at the vignette level: 

age, household size, receiving pay for work (versus receiving 

money from social security), and number of income sources (e.g. 

two wage earners in the household). Apparently, our respondents 

assign larger incomes to older people with larger households. 

There are no interaction effects, and only two judge 

characteristics have an effect: being married or not, and the 

respondents own household size. The variance components for the 

model in Table 6 are: 
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Table 7. Variance component estimates (cf. Table 6). 

Level Variance Sigma 

Vignettes 469843.4 685.45 

Respondents 

G. Mean 184393.8 429.41 

Deviance 26757.58 

The next model, in which we do not assume that the slopes are 

equal for all judges, shows partially different results. In this 

model some variables are dropped, and random intercepts are 

specified for three vignette characteristics: household size, 

SES, and education. Six interactions are tested with these 

vignette characteristics and the respondents characteristics 

household size and income. The slope of vignette age is fixed. 

This model has a deviance of 26830. The comparable model with all 

slopes fixed and only a random intercept has a deviance of 27034. 

With a difference of 204, with only nine more parameters to 

estimate, the random model fits the data much better than the 

fixed slopes model. The results of the random model are reported 

below in Table 8: 
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Table 8. Mixed model, random intercept. 

Variable Estimate St. Error 

G. MEAN 
V-age 

V-size 
V-edu 
V-SES 

V-size x R-size 

V-edu x R-size 
V-SES x R-size 
V-size x R-inc 
V-edu x R-inc 

V-SES x R-inc 
R-size 
R-inc 

2085 
-2.0 

93.2 

13.2 
.1 

12.4 

13.8 
.1 

-.0 

.0 

.005 
-140.8 

-.1 

1.26 

50.67 
64.36 
5.89 

10.21 

12.44 
1.14 
.02 

.03 

.0023 * 
63.72 * 

.13 

In the random model all vignette effects disappear. The only 

significant effects are the respondents household size and an 

interesting interaction effect of the income of the respondent on 

the SES of the vignette. The higher the income of the respondents 

is, the steeper the slope for the effect of vignette SES on 

assigned income. Respondents with a lower income are more 

egalitarian in this respect than respondents with a higher 

income. 

DISCUSSION 

A comparison of the results of the different models above leads 

to the conclusion that they give results which would lead to 

quite different substantive conclusions. One obvious recommen¬ 

dation is that if one uses factorial surveys, one should recog¬ 

nize that this involves a complex hierarchical research design. 

The statistical model used to analyze the results should reflect 

this complexity, and be specified as such. The data reported here 

clearly show that in this case one cannot rely on the 'robust- 
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ness' of a simplified model. 

The design of a factorial surveys leads to hierarchical, or 

nested data. In principle, such data can readily be analyzed by 

standard ANOVA techniques (cf. Kirk, 1969; Searle, 1971; Hays, 

1973). However, in practice, problems will arise. Since in 

factorial surveys each respondent judges his/her individual set 

of stimuli, the design is not a simple repeated measurements 

factorial design, but a nested design. Also, following the survey 

tradition, the sample size is generally large. As consequence, 

standard ANOVA programs will generally not do to analyze the 

data. The analysis of hierarchical data is complicated, and only 

recently computer programs have become available, which are both 

statistically correct and sufficiently powerful to be useful in 

actual research (Raudenbush & Bryk, 1986; Aitkin & Longford, 

1986; DeLeeuw & Kreft, 1986). 

Random coefficient models seem to be a good choice for this 

kind of data. They are parsimonious and based on realistic 

assumptions about the structure of the data. Both main effects 

and interactions can be tested for significance. If models are 

nested, the significance of their difference can be tested in the 

usual way by a chi-square statistic. The partitioning of the 

variance in between respondents and within respondents/between 

vignettes will give information on the feasibility of improving 

the model by including other variables. For instance, the 

significance of the respondent level disturbance terms dl to d3 

in the first example suggests ample room for improvement of the 

model. In this case, we know this to be true, because the data 

come from a vignette study in which more vignette variables were 

manipulated than have been included in this example. 

The conclusion that random coefficient models are a natural 

choice for this type of data, does not mean that they are the 

only possibility. For one thing, it is attractive to apply the 

principles set forth by Cronbach et al. (1972) to develop indices 

for the generalizability of factorial survey results over diffe¬ 

rent sources of error variance. Coefficients of generalizability 

or replicability have been applied to a variety of designs 

(Mellenbergh, 1977; Mellenbergh & Saris, 1982; DeLeeuw & Hox, 

1983); in a factorial survey variance components estimated by 

multilevel procedures should be used to calculate these 
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coefficients. 

Other models that could be used to analyze factorial survey 

data include item response models, such as the linear logistic 

trait model (Fisher, 1974) or the models used in multiple matrix 

sampling of test items (Bock, Mislevy & Woodson, 1982; Mislevy, 

1983). However, the restrictive nature of most item response 

models makes them less attractive for our purpose. Also, they are 

generally geared toward problems of test equating, while in 

factorial surveys one is generally interested in the size and 

direction vignette and respondent effects. 

Since in factorial surveys the data structure is multilevel by 

design, the explanatory variables at the different levels are not 

correlated. In contrast to educational research, multicollinea- 

rity is not a problem. Additionally, in multilevel models repor¬ 

ted in educational research, the amount of variance explained by 

the 'higher' levels is usually small. In our application, the 

amount of variance on the respondents level is sizable. This 

points to another specific feature of this type of data; the 

respondent variance, which is not controlled in our design, is 

large compared to the vignette variance. Finally, the large 

difference between the single level analysis and the multilevel 

analysis in the first example indicates highly correlated errors. 

In the multilevel analysis, this is correctly modeled. However, 

if the covariance between the repeated measures is high, the 

power for uncovering vignette effects may be very low. Factorial 

survey design has often been used to combine a large number of 

vignette characteristics in one study. This may be good in 

exploratory research, but for theory testing it is probably 

advisable to use a large number of vignettes together with a 

small number of vignette characteristics. 
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