On a property of $x^{n} e^{-a x}$

```
GERRIT K. JANSSENS
Chair of Business Management
State University of Antwerp (RUCA)
Middelheimlaan 1
B-2020 Antwerp, Belgium
```

This short note concerns the extension of a property of the function $x^{n} e^{-x}$ by KLAMBAUER [1988].
We prove that the property can be generalized for $f(x)=x^{n} e^{-a x}$, where $x \geq 0, n \geq 2$ and $a>0$.

The function then coincides with the x-dependent part of the gamma density.

The question is to prove that
$f\left(\frac{n}{a}+h\right)>f\left(\frac{n}{a}-h\right)$, where $0<h<\frac{n}{a}$.
The function f is increasing in $\left(0, \frac{n}{a}\right)$ and decreasing in $\left(\frac{n}{a},+\infty\right)$.

Here again, the inequalities
$\left(\frac{n}{a}+n\right)^{n} \cdot e^{-a\left(\frac{n}{a}+n\right)}$ >1 and \ln

$$
\frac{n}{a}-n
$$

$\left(\frac{n}{a}-n\right)^{n} \cdot e^{-a\left(\frac{n}{a}-n\right)}$
are equivalent.

Put now $y=1 / x$, then is
$\int_{n / a-h}^{n / a+h} y(x) d x=\ln \frac{\frac{n}{a}+h}{\frac{n}{a}-h}$,
which can be interpreted as the surface below the curve $y=1 / x$ and above the interval $\left[\frac{n}{a}-h, \frac{n}{a}+h\right]$ on the x-axis.

$$
\begin{aligned}
& \text { The tangent line to } y=1 / x \text { at } x=n / a \text { is } \\
& y^{\prime}(x)=-\frac{a^{2}}{n^{2}} \cdot x+\frac{2 a}{n} \text {, and by this } \\
& \int_{n / a-h}^{n / a+h} y^{\prime}(x) d x=\frac{2 a h}{n} .
\end{aligned}
$$

So $2 a h / n$ is the surface below that tangent line and above the interval $\left[\frac{n}{a}-h, \frac{n}{a}+h\right]$ on the x-axis. As this tangent line lies below the curve $y=1 / x$ for every point in the interval considered, this latter surface is smaller than the former. By this, the inequality is proved. Putting $\mathrm{a}=1$, reduces our case to KLAMBAUER's property.

Reference

KLAMBAUER, G. 1988, On a property of $\mathrm{x}^{\mathrm{n}} \mathrm{e}^{-} \mathrm{x}$, American Mathematical Monthly, June-July, p. 551

Ontvangen: 11-05-1989
Geaccepteerd: 11-05-1989 (buiten refereeing)

