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Abstract 

In this paper we use the first-order autoregressive scheme in order to 

introduce dynamics into the AIDS model. We also consider the theoretical 

restrictions of additivity, homogeneity and symmetry, and use two different 

specifications of the covariance matrix. We estimate the models using import 

allocation data for the UK 1952-1979 of five EEC countries and test different 

specifications against each other. 

1. INTRODUCTION 

Winters (1984) applies the Almost Ideal Demand System (AIDS) in order to 

explain import allocation of the United Kingdom, 1952-1979. As usual, the 

theoretical homogeneity and symmetry restrictions from demand theory are 

rejected. One of the reasons that Winters advances to explain this phenomenon 

is dynamic misspecification. Deaton and Muelibauer (1980), who introduced this 

model, state: ”We also find that imposition of homogeneity generates positive 

serial correlation in the errors of those equations which reject the 

restrictions most strongly; this suggests that the now standard rejection of 

homogeneity in demand analysis may be due to insufficient attention to the 

dynamic aspects of consumer behavior.” 

Another reason advanced in literature on demand models (see for instance 

Laitinen (1978) and Meisner (1979)) is that asymptotic tests of homogeneity 

and symmetry are biased towards rejection of the null hypothesis when the 

number of budget categories (or import sources in the framework of import 

allocation) is large as compared with the number of observations, so that the 

number of degrees of freedom, i.e. the number of observations minus the total 

The authors are very much indebted to Prof. L. Allen Winters for putting 
his data at our disposal. 
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number of parameters to be estimated, is relatively small. In order to 

increase that number it may be worthwhile to impose restrictions on the 

contemporaneous covariance matrix of the disturbances. 

In this paper we pay attention to both problems: on the one hand we 

introduce dynamics by means of the first-order autoregressive scheme and on 

the other hand we consider not only the covariance matrix that - apart from 

additivity - is unrestricted, but also a restricted specification that 

appeared to perform well in the context of this model before (see De Boer, 

Harkema, and Van Heeswijk (1987)). 

In section 2 of this paper we discuss the different versions of the AIDS 

model that we estimate in the empirical part, section 3 deals with 

specifications of the covariance matrix and with some tests, whereas in 

section 4 we apply the models to import allocation data of the United Kingdom 

1952-1979 borrowed from Winters (1984). Presumably because of lack of degrees 

of freedom, we were unable to obtain convergence for the 10-country model of 

Winters in case of the most general dynamic structure dealt with in this 

paper. Therefore, we decided to restrict the analysis to a smaller number of 

countries, i.c. to imports from five EEC countries: Belgium, ERG, France, The 

Netherlands and Italy. 

2. SPECIFICATION OF THE MODELS 

For the explanation of the import allocation we follow Winters (1984) by 

adopting the simplified AIDS model including a dummy to measure the access of 

the United Kingdom to the EEC in 1972: 

n 
(2.1) 

with w^. : share of imports from country i (= 1, ..., n) in total 

imports at time t (= 1, ..., T), 

dd =0 l<t<T t i 
dd = 1 T < t < T 

t 

p^ : price of imports from country j, 

: total imports, 

T^ being the year of access to the EEC, 

: price of imports from country j, 

n 

log P* = J] Wti^°^ Pti’ ^tone-index, and 
i =1 

u a disturbance term, ti 



Economic theory imposes four types of restrictions three of which can be met 

with by imposing restrictions on the parameters: 

(i) additivity: 

E o = l, E 6 = E y = E Q = 0, 
i i ’ i i i'ij r i 1 

(ii) homogeneity: 

(2.2) rrjj = o, 

(iii) symmetry: 

(2.3) y = Y , and 
>j j» 

(iv) negativity: letting <5_ denote the Kronecker delta, the matrix K( 

with typical element: 

K = y +88 log(Y /P*) - w 6 + w w , 
tij ij i' j t t ti ij ti tj 

has to be negative semi-definite for all t = 1, T. This 

restriction cannot be imposed a priori, but has to be verified for 

each datapoint separately. 

We introduce the dynamic aspect by means of the first-order autoregressive 

scheme: 

(2.4) u' = u' R + e' t = 2, ..., T 
t t-i t 

with u' = [u ... u 1 and R the matrix of autocorrelation parameters with 
t 1 ti tnJ 

typical element r . The vectors of disturbances e' = [e ... el are 
ki t 1 tl tnJ 

assumed to be independently distributed according to a normal distribution 

with zero mean and covariance matrix Q : 
n 

(2.5) e' = [e; ... eT] - N(0, 1,^ ® S2J, 

with ”(g)” denoting the Kronecker matrix product. 



Assuming in addition to (2.5) that E(u') = 0 (t = 1, T), it can be shown 

that additivity implies: 

(2.6) Ri = k* , 
n n 

where k is an arbitrary constant and i denotes the summation vector, i.e., 
n 

the vector with all elements equal to one and 

(2.7) e'l = 0 
t n 

(c.f. Berndt and Savin (1975)). 

As a consequence, the covariance matrix 12^ is singular. This singularity can 

easily be handled by deleting an arbitrary equation from system (2.1), say the 

nth one (c.f. Barten (1969) and Berndt and Savin (1975)). The covariance 

matrix that is obtained when the nth row and column of ft are deleted, will 
n 

be denoted by ft 
n-l 

In matrix notation, where the definition of the matrices easily follows from 

equations (2.1) and (2.4) (see the appendix), the dynamic AIDS model can be 

written as: 

(2.8) W(n) = X B(n) + U(n) 
(i) (i) (i) 

(2.9) U<n) = U R(n> + E*"’, 
(i) (T) ’ 

where the lower index (1) (respectively (T)) denotes that the first row 

(respectively the T ) has been deleted and the upper index (n) denotes the 

deletion of the n 1 column. 

Additivity implies: 

(2.10) U i = 0 
(T) n 

Hence, the matrix 1",^ is of order (T-l) x n with rank (n - 1); consequently 

the matrix ITU is singular. In order to handle this singularity Berndt 

and Savin (1975) define: 
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- r ) ... (r - r ) J 
n-1,1 nl n-l,n nn 

It easily follows from (2.6) that: 

(2.12) Ri = 0. 
n 

Using (2.10), (2.9) can be rewritten as: 

(2.13) Uj"| = U|“j R(n) + E(n), with: 

(2.14) U(n) = W(n> - X B(n). 
' ' (T) (T) (T) 

This type of dynamics is called ”R” in the sequel. 

Apart from ”R” we use in the empirical part of the paper two other 

specifications: 

(i) the ’’diag-R” model, 

where we assume the R-matrix to be diagonal. Because of (2.6) all 

autocorrelation parameters should be equal to each other: 

(2.15) R = kl, 

4 
(ii) the ’’static” model, where : 

(2.16) R = 0. 

As a summary, we have three different specifications of the AIDS model: 

’’additivity”, ’’homogeneity” and ’’symmetry”, and three different types of 

dynamics: ”R”, ”diag-R” and ’’static”. Consequently, we have 9 different 

specifications. In the appendix we present an iterative procedure to obtain 

the maximum likelihood estimates for the specification with symmetry and 

homogeneity constraints and with dynamical specification ”R”; the maximum 

(2.11) R = 

In this case there is no need to delete the first observation. However, 
for reasons of comparability, we nevertheless decided to do so. 
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likelihood estimates for all other specifications can be obtained in a similar 

way. 

3. SPECIFICATIONS OF THE COVARIANCE MATRIX AND SOME TESTS 

3.1. Specifications of the covariance matrix 

In the empirical part of this paper we consider two specifications of the 

covariance matrix (2 in (2.5): 

(i) a specification which (apart from ’’additivity”) is unrestricted, denoted 

by UNREST 

(ii) a restricted version proposed by de Boer and Harkema (1983), denoted by 

HARBO. 

UNREST: as is wellknown, the maximum likelihood estimator of (2 is given by 

Q = 1 E<n) E(n) n-l (T - 1) 

with 

The loglikelihood function evaluated at the optimum is: 

log L(’’UNREST”) = - {-T 2 1 ^(n - 1)(1 + log[27r]) 

HARBO: this specification reads: 

I? = D - 45 6' n n d n n 

with 
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d ... 0 -i 
i 

* * * 1 

0 ... d - 
n 

n 

6' = [d ... d 1 and d = T d . 
i =1 

De Boer and Harkema (1983) show that the maximum likelihood estimates of the 

parameters d. (i = 1, n) follow from the following system of equations: 

. d2 
(3.D d - ^ = rr_Ty (E'E)ii i = 1, ..., n 

where (E’E).. denotes the il diagonal element of the (n x n)-matrix E'E. 

Apart from one special case that occurs with probability zero, there is a 

unique solution to (3.1) that can be found by means of a one-dimensional 

search procedure that works very quickly. 

The algorithm is described in de Boer and Harkema (1986). 

The loglikelihood function evaluated at the optimum is shown to be: 

log L(’’HARBO”) = - -(T-^-1-^n - 1)(1 + log[27r]) - (T ~ ^logld^ff d.j. 
L i =1 -I 

3.2. Testing some specifications 

In this paper we consider three different types of specifications of the 

model, viz., specifications according to 

(i) theoretical restrictions: additivity, homogeneity and symmetry, 

(ii) dynamics: ”R”, ’’diag-R” and ’’static”, 

(iii) covariance matrix: UNREST and HARBO 

Within each type, the specifications are nested into each other, so that we 

may apply the likelihood ratio test. In table 1 we specify the (asymptotic) 

distributions of the test statistics. 
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Table 1. Asymptotic distributions of the test statistics. 

additivity 

”R” 

UNREST 

—-- homogeneity 

X (n<n-2>) ”diag-R” 

X (^n(n - 3)) HARBQ 

X2(j(n-l)(n-2)) symmetry 

X2(1) static 

As is wellknown from consumer demand theory (see Laitinen (1978) and Meisner 

(1979)) the likelihood ratio test statistic is biased towards rejection of 

the null hypothesis when the number of observations is small as compared to 

the number of budget categories distinguished. In the empirical part of this 

study we apply a small sample correction factor that has been proposed by 

Italianer (1985). He decomposes the correction factor that Anderson (1958) 

derived for a specific testing problem into two factors and proposes to use 

this decomposition for more general problems such as the tests we described 

above. 

Italianer’s correction factor can be written as: 

i(df + df ) 
2 v o i7 

total number of observations 

with dfQ: the number of degrees of freedom under the null hypothesis, and 

df^: idem, under the alternative hypothesis, 

where the number of degrees of freedom is defined as the total number of 

observations minus the total number of parameters to be estimated. 

4. RESULTS 

4.1. Introduction 

As mentioned before, we applied the models described above to explain import 

allocation of the United Kingdom for the period 1952-1979. We confined 

ourselves to imports from the following EEC countries: Belgium, France, 



FRG, the Netherlands and Italy. For a description of the data we refer to 

Winters (1984). 

In table 2 we summarize the loglikelihood values of the 18 models that we 

have estimated. 

Table 2. Loglikelihood values of the models. 

4.2. Testing theoretical restrictions 

From table 2 the values of the L.R. test statistics for testing homogeneity 

against additivity and symmetry against homogeneity can be calculated right 

away. The values that are presented in table 3 are those that result from the 

application of Italianer’s correction in order to countervail the bias of the 

L.R. test statistic. 



30 
Table 3. Corrected values of the L.R. test statistics for testing theoretical 

restrictions. 

Homogeneity vs. Additivity 

(critical value at 5% : 9.49) 

Symmetry vs. Homogeneity 

(critical value at 5% : 12.59) 

HARBO UNREST HARBO UNREST 

Static 10.96* 9.36 25.47* 18.83* 

Diag-R 3.98 5.45 12.35 12.65* 

7.27 7.35 3.37 3.03 

* Rejected at a 5% level of significance. 

We observe that in the static model all theoretical restrictions are rejected 

except for homogeneity in case of UNREST. In the dynamic models, however, all 

theoretical restrictions are accepted except for symmetry in case of UNREST 

and a diagonal R matrix. Obviously, we find support for Winters’ assertion 

that the common rejection of the theoretical restrictions is, among others, 

due to dynamic misspecification. 

In the context of the static Rotterdam model of consumer expenditure, 

Laitinen (1978) has derived the exact distribution of the Wald test statistic 

for testing homogeneity against additivity in case of UNREST so that we are 

able to compare the conclusion that results from the corrected L.R. test with 

that from an exact test. Adapting Laitinen’s proof to cope with the constant 

term and the dummy in (2.1), it can be shown that the distribution of the Wald 

test statistic is Hotelling’s T2 which is itself distributed as a multiple 

(n - 1)(T - n - 3)/(T - 2n - 1) of a F-distributed random variable with 

(n - 1) and (T - 2n - 1) degrees of freedom, i.e. 4.75 x F(4,16). At a size of 

5% the critical value is 14.28, whereas the value of the test statistic turns 

out to be 13.95, so that the null hypothesis homogeneity is only marginally 

accepted. This is exactly the same conclusion as drawn from the corrected L.R. 

test, where the realization was 9.36 as compared with the critical value at 5% 

of 9.49. This result fully agrees with recent simulation results (see de Boer 

and Harkema (1988)), which also point out that Italianer’s correction factor 
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performs remarkably well. As a final remark, we mentioned in section 2 that 

the theoretical restriction of ’’negativity” can only be verified for each 

datapoint separately. It turned out that only for the year 1973 the symmetric 

R-model in case of HARBO yielded a negative semi-definite K-matrix. 

4.3. Testing dynamic specifications 

In table 4 we present the corrected values of the L.R. test statistics for 

testing the dynamic specifications. 

Table 4. Corrected values of the L.R. test statistics for testing dynamic 

specifications. 

Static vs. Diag-R Diag-R vs. R 

(critical value at 5% : 3.84) (critical value at 5% : 25.00) 

HARBO UNREST HARBO UNREST 

Additivity 

Homogeneity 

Symmetry 

13.32* 10.32* 

21.15* 14.86* 

36.22* 22.35* 

25.15* 19.12 

21.95 16.76 

31.62* 26.67* 

* Rejected at a 5% level of significance. 

We find that the static model is always strongly rejected against the most 

simple dynamic specification, i.e. the ”diag-R” specification. For HARBO the 

”diag-R” model is marginally rejected against the more general ”R” model in 

case of additivity, accepted for homogeneity and strongly rejected against the 

”R”-model when symmetry is imposed (at a 0.5% level of significance the 

critical value is 32.8). For UNREST, finally, the ”dia.g-R” model is strongly 

accepted for additivity and homogeneity, whereas it is just rejected for 

symmetry. Only for HARBO under the symmetry restriction, the ”R”-model clearly 

performs better than the ”diag-R” model. 
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4.4. Testing specifications of the covariance matrix 

Finally, we derive from table 2 the corrected values of the L.R. test 

statistics for testing the different specifications of the covariance matrix. 

The values involved are presented in table 5. 

Table 5. Corrected values of the L.R. test statistics for testing HARBO 

against UNREST (critical value at 5% : 11.07). 

Additivity Homogeneity Symmetry 

Static 14.59* 16.36* 23.09* 

Diag-R 12.26* 11.12* 10.86 

R 5.87 5.53 6.19 

* Rejected at a 5% level of significance. 

We observe that for the simplest models, i.e. the static ones, HARBO is 

strongly rejected against UNREST. For the intermediate models, i.e. the diag-R 

ones, there is no clear preference at a 5% level of significance, but for the 

most general models, i.e. the R-models, HARBO is strongly accepted against 

UNREST. We conclude that, as could be expected, HARBO performs better as 

compared with UNREST according as the dynamic specification of the model is 

less rigid. 

5. CONCLUSION 

Summarizing our main findings, we observe that under the most general dynamic 

specification considered in this paper, i.e. the R-model, all theoretical 

restrictions as well as the HARBO specification of the covariance matrix are 

accepted. But even under an inflexible dynamic specification like the diag-R 

model, it appears that all theoretical restrictions are accepted except for 
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symmetry in case of UNREST, which is only marginally rejected. Moreover, it 

appears that under this specification no clear preference exists for either 

the HARBO or the UNREST specification of the covariance matrix. Evidently, the 

results of our analysis lend support to the hypothesis that the common 

rejection of the theoretical restrictions in demand models is due to dynamic 

misspecification as well as the bias towards rejection of the null hypothesis 

in asymptotic tests. In addition, we conclude that restricting the 

contemporaneous covariance matrix of the disturbances provides an acceptable 

way of enlarging the number of degrees of freedom when the number of demand 

categories is large as compared with the number of observations. 

Appendix 

In order to write the model in matrix notation, we define: 

W = 

(A.l) X = 

0T logtY^P*] log[pu] ... l°g[p|n] 

tT_T +l l°g[YT/P*] l°g[PT1] - log[PTnl 

with 0 a (T -l)-vector with all elements equal to zero, and l t 
T -i ' i ' T T-T +1 

i i 

vectors with all elements equal to one of orders T and (T-T^+l), respectively; 

(A.2) B = 

6 ... S 
1 n 

^ 
T ••• T ' 1 1 1 n 
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, and E 

e 
21 

e 
2 n 

e 
Tl 

e 
Tn 

The model to be estimated (compare (2.8), (2.13) and (2.14)) can then be 

written in vector notation as: 

(A.3) vec W|"| = [Io j ® X(i)] vec B(n) + vec 

(A.4) vec Uj"j = [(R(n))' ® IT i] vec + vec E(n) 

(A.5) vec = vec W^j - (1^ ® X(T)) vec B(n), 

with 

(A.6) vec E(n) - N(0, , ® IT ,)• 

From (A.3) - (A.6), it follows that the likelihood function may be written as: 

(A.7) L(V"J] = (27r)'i("'1)(T'1)|f?n J‘i(T'1). 

expf-iz'^’j ® IT_,]z} 

with 

(A.8) z = vec W<"! - [I ® X Ivec B(n) + 
(1) Ln-1 (l)-l 

® lr-} {vec - Pn-r ® X(T,]vec Bln)} 

The homogeneity and symmetry constraints can be written as a system of linear 

constraints on vec 1 ii '11: 

(A.9) A vec B(n) = 0 

where A is a matrix of order [4n(n - 1)] x [(n - l)(n + 3)] . 



The maximum likelihood estimates are obtained from the following iterative 

procedure: 

(1) specify initial estimates for and ^ for example, R(n) = 0 

and Q — I ; 
n-l n-1 

A ^ A 

(2) estimate B(n), given R(u) and ^ 

(3) calculate a new estimate for R*n>, given B(ll) and Q ; 
n-l 

A A & 

(4) calculate a new estimate for ft ^ given and R^n ; 

(5) repeate steps (2), (3), and (4) until convergence. 

In order to derive the maximum likelihood estimator B(n* in step 2, we rewrite 

z as defined in (A.8) as 

(A.10) z = vec [Wj"j - R(n)] - D vec B(n) 

with 

D = Pn-l ® X(1,] * P*(n,'®X,T,] 

From (A. 10), it is easily seen that the unconstrained maximum likelihood 

estimator, vec B^n\ is given by 

(A.11) vec B<n) = [D'C^ ® IJDJ-'PD- ( IT*,® 1^ )vec(W^ - R(n))]. 

The constrained maximum likelihood estimator, vec B*n), is equal to: 

(A.12) vec B(,l) = vec B(n) - CA'(ACA’)_1A vec B(n> 
c u u 

with 

(A.i3) c = [D'cir^ ® it i)d]-1 

The maximum likelihood estimator R<n^ in step 3 is obtained by rewriting z as: 

35 
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(A.14) vec[W(n) - X B(n)l - (l ® fW(n) - X B<")1 \vcc R(n) L (i) (i) J ln-i ^ L (T) (T) J/ 

Then, it easily follows that R'"' is given by 

(A.15) ,(n) 

where and are obtained by substituting B*n* into (2.14) and (2.8), 

respectively. Finally, the derivation of the maximum likelihood estimator f} 
n-l 

in step 4, has already been dealt with in section 3. 

Special cases 

Additivity: use the unconstrained maximum likelihood estimator vec B'n) 
-, . u 

instead of vec Ir . 
c 

Homogeneity: redefine the matrix A such that only the homogeneity constraints 

are taken along. Note that the order of A becomes [n - 1] x [(n - l)(n + 3)]. 

A 

Static model: replace by the zero matrix. 

Diag-R model: replace R(n* by kl^ ^ the maximum likelihood estimator k being 

given by 

tr(u(n) U(n) Q~ 

k = 
t (T) (i) 

tr(u(n) U<n) h~' \ 
\ (T) (T) n-lJ 

(A.16) 
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