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A NOTE ON THE STANDARDIZATION OF A FIT STATISTIC CONDITIONAL ON TEST SCORE 

D.N.M. de Gruijter* 

Abstract 

In the last decade many person fit statistics or appropriateness indices have 

been suggested. A recent proposal by Molenaar and Hoijtink concerns a fit 

statistic for the Rasch model. Molenaar and Hoijtink obtain approximate condi¬ 

tional distributions using the method of moments. For large tests other ap¬ 

proaches are needed. Kogut resorted to simulations. In the present study the 

method of moments is used in connection with an intermediate distribution. 

Introduction 

Some examinees who take a test, may have an aberrant score pattern, a pattern 

which is very improbable considering the other score patterns. Such deviant 

patterns may arise by chance. They may, however, also arise from unwanted 

factors like cheating. For this reason it is important to find ways to measure 

deviance or fit of response patterns. In the last decade many proposals for 

person fit or appropriateness indices have been made. Several of these indices 

have been discussed and compared in studies by Harnisch & Linn (1981), Harnisch 

& Tatsuoka (1983), Rudner (1983), Drasgow, Levine & McLaughlin (1987), and 

Molenaar & Hoijtink (1989). Fit statistics proposed by Wright & Stone (1979), 

and Levine & Rubin (1979), Drasgow, Levine & Williams (1985), Drasgow, Levine & 

McLaughlin (1987), and Molenaar & Hoijtink (1989), are based on IRT. Other 

indices are Sato's caution index (Sato, 1975), Van der Flier's deviance index 

(1977), and a modified caution index (Harnisch & Linn, 1981). 

Drasgow et al. (1987) argue that an index should satisfy two criteria. First, 

an index should be standardized. An index distribution should not depend on 

ability level: there should be no confounding between ability level and 

typicality. Drasgow et al. suggest the possibility to obtain the distribution 

of an index conditional on ability level: this can be done in principle for 

all indices. They think, however, that the computation of conditional distribu¬ 

tions is too time consuming to be of practical relevance. This is true for 

exact computation with long tests, but Kogut's work (1987) demonstrates the 

feasibility of the estimation of a distribution through sampling. 
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The second criterion is relative power: given a particular rate of classifying 

response patterns of a normal group as deviant, which index has the highest 

rate of identifying patterns resulting from deviant response processes, 

correctly? 

Drasgow, Levine & Williams (1985) suggested standardized indices for dichotom¬ 

ous and polytoraous items based on IRT. Their index for dichotomous items can be 

written as 

z - [£q-M(6)]/s(Q)• (1) 

In this formula is the logarithm of the likelihood evaluated at the ML- 

estimate 9. Let us take a test with n items. With estimated proportion correct 

P^(9) for item i and with Q^(0)=“1-P^(0) mean and variance of the log likelihood 

conditional on 9=9 are approximated as 

M(9) = 2 [?i(^)log Pi(^)+Qi(^)log Q.(9)] 
i=l 

(2) 

and 

‘(e) Z Pi(«)Qi(«){log[Pi(«)/Qi(9)])2 
i-1 

(3) 

Drasgow et al. (1985) suggest that z is approximately normal. Molenaar and 

Hoijtink (1989) have raised two objections against z. First, they demonstrated 

that the normality assumption is not warranted, at least for small and medium 

sized tests. Secondly, they noted a conceptual problem with the choice of 

standardization in Equation 1. Equation 1 is based on the assumption that all 

response patterns are possible. For most of these response patterns estimated 

ability would be different from the obtained estimate $ on which the value of z 

is based. Another way of standardizing z might be more appropriate. 

Molenaar and Hoijtink suggested to condition the fit statistic on total score 

t. They did so in the context of the Rasch model in which total score is a 

sufficient statistic for 0. In this contribution it is argued that conditoning 

on total score might be the most appropriate thing to do for other IRT-models 

as well. In the next section the Molenaar statistic is introduced, and the 

computational problems are illuminated. Subsequently, a new computational 

procedure is discussed. 

Fit conditional on total score 

For the Rasch model the log likelihood Iq can be written as 

« - X x log[P (0)/Q (0)] + 2 logQ.(0) - X x.d.+C 
i-1 i-1 i=i 1 1 r 

(4) 
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where is the item response with f°r a correct response and x^=0 for an 

incorrect response, ^^~0^ where is the Rasch item parameter, and C is a 

constant given total score r; for fixed r all estimated abilities are equal. 

Molenaar and Hoijtink propose to evaluate response patterns conditional on 

total score r. The conditional probability of a response pattern in the Rasch 

model can be written as 

n x. 
P(X - x|£X -r) - n c 1/y(c), (5) 

i-1 

where £^-exp(d^) and 7r(f) is the elementary symmetric function of order r, the 

sum of Ile^i over all patterns with 2x.-r. 

In order to measure deviance of a response pattern, the probabilities of 

Equation 5 should be ordered from low to high which is equivalent to an 

ordering of Hx^d^ in Equation 4 from low to high: Equation 5 gives the 

probabilities corresponding to Equation 4. On basis of this ordering the 

cumulative distribution for patterns can be computed. Next, one can determine 

whether a pattern falls below the lOOa-percentile, where, for example, a is 

.05. Patterns below the lOOa-percentile are denoted aberrant. 

Complete enumeration of all response patterns is feasible when the number of 

items n is not too large. For large n the number of patterns (^) becomes 

unwieldy for a large range of values r. Molenaar and Hoijtink therefore decided 

to find an approximate solution for the distribution of M=Sx.d. conditional on 
i i 

r. Using the first moments of M they approximate the distribution of Af by a 

distribution based on the chi-square. They suggest to use this approximation 

except for r=l, n-1, and, possibly r=*2,n-2. For the computations they need the 

ele- mentary symmetric functions 7 (e), 7^(£>, 7^1*^ (c) and 7^’*,'^(£), 

where the notation 7^ (c) indicates the elementary symmetric function of order 

r on basis of item parameters e, except the parameter with the index between 

parentheses. The chi-square approximation is adequate in most cases with 

'reasonable' distributions of item parameters. 

The computation of all elementary symmetric functions also becomes a formidable 

task with increasing n, and the accuracy of the computations diminishes. One of 

the alternatives, used by Kogut (1987), is simulation. Kogut simulated response 

patterns based on item parameter estimates £ in such a way that at least 200 

patterns were obtained for each score level r(r=l,...,n-l). Conditional on r 

the patterns were ordered on basis of M and an approximate cumulative distribu¬ 

tion was obtained. 

Simulation studies like Kogut's might be very useful. It is quite possible that 

computation time can be kept within reasonable limits through sampling design 

optimization. One possibility is to search explicitly for a distribution of 0 
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which minimizes expected sample size under the constraint that there are at 

least patterns for total score r(r—l,...n-1). 

Up to this point we have restricted ourselves to the computation of the fit 

statistic within the context of the Rasch model. The criticism of Molenaar and 

Hoijtink with respect to the standardization of in Equation 1, is valid for 

other IRT-models as well. Their alternative - conditioning on total score - is 

attractive with other models as well because the question 'Is this response 

pattern extreme given total score' has relevance independently of the underly¬ 

ing response model. Instead of grouping examinees with respect to estimated 

ability one may group them according to total score (Yen, 1984). For tests of 

reasonable length this will also result in groups relatively homogeneous 

w.r.t. estimated ability. Actually, this idea was put forward by Van der Flier 

(1980) who formulated deviance of a pattern in terms of its probability of 

exceedence conditional on score level. However, he failed to distinguish 

between conditional and unconditional probabilities. He did not elaborate his 

ideas because he expected the computational problems to be unsurmountable. 

Molenaar and Hoijtink were the first to apply the conditional method. 

In the Rasch model the probability of a response pattern given total score r 

does not depend on latent ability 0, and the item parameters c can be 

estimated conditional on total scores. It seems possible to apply the results 

of Molenaar and Hoijtink as an approximation in the context of other IRT-models 

when item parameters are adequately estimated and test length is large. In such 

a situation the probabilities correct might be approximated locally, i.e. given 

total score r, by Rasch item parameters. In the two-parameter model, for 

example, one can approximate the probability of a correct response to item i 

given estimated ability corresponding to total score r, 6^, (Yen, 1984) by 

£ir/(1+£lr)~ i-1.n« <6> 

where ^ is the cumulative logistic, and and are the item parameters. 

Next, Rasch-parameter estimates can be rescaled so that their product 

equals one. One should remain aware of the fact that the approximation is not 

based on a conditional estimation method for item parameters. However, MML- 

estimation might also result in good item parameter estimates and with long 

tests even UML can provide adequate estimates. In the two-parameter model n-1 

different Rasch models are possible. With the three-parameter model a complica¬ 

tion arises as there may be scores below the pseudo-chance level. 

Snijders (1988) suggested to simulate patterns with equal probabilities of 

occurrence for all patterns with a given value r. The sampled patterns must be 
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reweighted afterwards. With the method the lower tail of the target distribu¬ 

tion might be approximated reasonably well. 

The method requires the computation of 7^.(0. Therefor an alternative was 

investigated. Patterns were generated for a fixed value r. Only the first 

occurrence of a pattern was computed: Sampling was done without replacement 

from the finite set of all possible patterns. The patterns were reweighted, and 

mean and standard deviation were computed. Computation of the elementary 

symmetric function was not needed because both the numerator and denominator in 

the evaluation of mean and variance contained this factor. 

Several simulations with the proposed procedure were done in the context of the 

present study. Unfortunately, the results were not very promising. Due to the 

fact that the patterns are sampled with equal weights, the part of the 

distribution with the highest frequencies is underrepresented. It might be 

stated that sampling patterns results in an inaccurate estimate of the pattern 

distribution before reweighting, and the errors can be enlarged by the 

reweighting procedure. A possibly more accurate procedure is explored in the 

next section. 

The distribution of M given r 

Let us designate the target distribution frW ; fr(M) is the distribution of M 

given r. This distribution can be rewritten as 

frW-gr(M)hr(M) (7) 

with 

grW- ("> exp(M)/7r(e) 

and 

h^(M): a discrete distribution which gives at M the proportion of vectors 

x for which equals M; when each pattern corresponds to a different value 

M, hr(M) equals l/(n). 

So, h^(M) is the distribution in which all patterns have the same probability 

and allowance is made for the possibility that several response patterns have 

identical values M. The computational problems arises from the fact that h^(M) 

is a discrete distribution with a large number of values M. The computational 

task is alleviated when can be approximated by a parametric distribution 

with a low number of parameters a, ^(/f). In that case the target distribu¬ 

tion can be approximated by 

■fr(M)a , (8) 

and its moments can be obtained by numerical integration. 
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Which families of distribution should be considered? The distribution family 

should be flexible. The approximation of the true distribution should satisfy 

even higher requirements than the approximation used by Molenaar and Hoijtink. 

For, this distribution is not the target distribution itself and accuracies in 

its approximation might show up enlarged in the approximation of the target 

distribution. Misspecification of the distribution's right tail can have large 

consequences for the accuracy of the approximation, due to the influence of the 

factor exp(M). Therefore, it was decided to take a distributional family with 

a finite range of values. The family of beta distributions (3(p,q) was chosen 

for the demonstration in this study. The distribution has a lower limit of zero 

and an upper limit of one, but this restriction can be circumvented easily 

using the four-parameter form 

hr-p,q,i,hW (9) 

It was decided to obtain the lower and upper limit directly from the original 

distribution of M: 

r 

*- s V* (10a) 
i-1 1 

n 
h- S dfS (10b) 

i=n-r+l 

where 5 is a small constant, equal to half the step size used in the numerical 

integration. The first moment of the distribution is 

Mr(W)=(r/n)Sdi. (11) 

Here we will always equal EcL to zero in order to constrain the latent Rasch 

scale; so /x^(/l)=*0. The variance, , is also obtained easily using well- 

known results from sampling theory. Sampling without replacement from a finite 

population of size n gives 

a2(H/r) - (d ) n-r (12) 
r n-1 

and the wanted variance is obtained through multiplication of a2 (M/r) with r2. 

With 2cL-0 scores r and n-r give identical means and variances. Further one 

should notice that, due to the restriction 2d.«0> results for score level r are 

equivalent with results for score level n-r in connection with a test with 

d'.—d.. 
i i 

Given the mean and variance, the remaining two parameters, p and q, can be 

obtained. Using Equation 8 one can obtain f (M). 
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A computational example is given in Table 1. Due to the small number of items 

the example serves as a demonstration only. 

Table 1. A computational example with two out of five items correct 

I. distribution of d. 

n-5, r-2, d—1.0, -.4, 0.0., .2, 1.2 

M(di)-0.0 o2(di)-.528 

II. h2(M) 

2—1.4 

M 

-1.4 
-1.0 
-.8 
-.4 
-.2 
.2 
.8 

1.2 
1.4 

h-1.4 

h2W 

T" 

.1 

.1 

.1 

.1 

.2 

.1 

.1 

.1 

pattern 

11000 
10100 
10010 
01100 
01010 
10001+00110 
01001 
00101 
00011 

^2(M)-0.0 <72(M)-rx .528 x (n-r)/(n-l)-.792 

III. approximation of h^CM) by a four-parameter beta-distribution (5-0.0) 

M2(M)=0.0 - (h-2)p/t+2 

(TO-. 792 - (h- £)2 p(t-p) / {t2 (t+1)} 

t-p+q 

p/t-,5 p(t-p)/{t2(t+1))—1.01 

t- .25/.101-1.0-1.475 p-q -.7375 

This is a symmetrical I/-shaped beta-distribution. 

IV. computation of (M) 

h h 

Compute A - f exp(x)(x-i)p"1(h-x)9'1dx B- J xexp(x)(x-2)p‘1(h-x)q'1dx 

2 2 

h 

C - f x2exp(x)(x-2)p ^(h-x)9 ^dx 

2 

approximated mean and variance of the target distribution f2(M): 

M - B/A, s2(M) - C/A~(B/A)2 
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In the present study it was decided to compute mean fi and standard deviation 

s(M) for the distribution f^iM) on the basis of Equation 8 and to compare the 

values M and M-2s(M) with the corresponding values obtained by an application 

of Kogut's sampling approach. The demonstration was based on a hypothetical 

forty-item test with the following d's: -2.0, -1.5, -1.4, -1.3, -1.2, 

-1.0(.l)-.l, 0.0 (2x) , . 05 (. 05). 7, .75 (2x), .8 (2x), .85 (2x) , .9, .95, 1.0, 

where the notation -1.0(.l)-.l designates the values -1.0, -.9, -.8,...,-.!. 

This distribution has a disadvantage in that several d's and distances between 

d's are equal (see Molenaar & Hoijtink, 1989). The results were, however, close 

to those for a set of more irregularly spaced, but in other respect similar 

d's. In the simulation at least 200 patterns were generated for l<r<n-l. For 

r-1 and r=n-l simulation outcomes were replaced by exact outcomes. The results 

are given in Figure 1. 

Figure 1. Estimates of means (M) and lower limits (W-2s) for the proposed 

method A, and the simulation method B. 

The sampling results show small irregularities due to sampling error. It is 

clear that the sampling approach has its own drawbacks. The proposed ap¬ 

proximation corresponds roughly with the sampling results. However, from the 

figure it is clear that the proposed method overestimates M for a large range 

of r. When accurate results are needed, the proposed method needs to be 

improved upon. One might think of using more moments in the determination of 

the parameters of distribution (9) or of using another distributional family 

like the generalized lambda distribution (Ramberg, Tadikamalla, Dudewicz and 

Mykytka, 1979). In a final test a variety of distributions should be used. 

From the figure it is also clear that M varies less for more extreme values of 

r. One should already have suspected this from the relation between o2(M) and 
r 

r, derived from Equation 12. With relatively few or many correct responses 

there is less variation between values M and between pattern probabilities. In 

those cases one might wonder whether it is wise to order the patterns according 

to appropriateness - aside from possible problems with the accuracy of the 
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ordering due to inaccurate item parameter estimates - and to label the least 

probable patterns deviant. The least probable patterns might differ only 

slightly in probability from the most probable patterns. Appropriateness 

measurement should be extended with a procedure by which to decide in which 

cases it is reasonable to order patterns according to deviance. One might 

borrow the mathematical approach from information theory. A relatively high 

redundancy (meaning that there is variation in probabilities) seems to be 

called for. Instead of redundancy one might use an index derived from a2(M)■ if 
r 

this variance is low, there is less variance in the conditional probabilities. 

Discussion 

Molenaar and Hoijtink (1989) have argued that the deviance of a response 

pattern should be considered conditional on the total score corresponding to 

the pattern. They restricted their arguments to the Rasch model. This author 

believes, with Van der Flier (1980), that conditioning on total score is 

sensible in other situations as well. In the present study a new approach to 

the estimation of the distribution of patterns was tried out. In this prelimin¬ 

ary investigation only one set of item parameters was used. The results 

indicated that it might be worthwhile to try to improve the technique. The new 

approach might be useful as an alternative to simulations with large tests 

where it gives an approximation very fast. With small test exact results should 

be used, while at intermediate lengths the Molenaar-Hoijtink results are 

indicated. 

Further, it was pointed out that blind computation of deviance might be 

misleading. The investigation should verify first whether patterns differ 

enough in probability. For small and large total scores the variation in 

pattern probabilities might be too small. 
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