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DETERMINING THE EFFECT OF A COMPOUND OF DUMMY VARIABLES OR 

POLYNOMIAL TERMS 

Rob Exsinga, Peer Scheepers and Leo van Snippenburg * 

Abstract 

This paper discusses a method to obtain the standardized 

regression coefficient for a composite variable made up of dummy 

variables or polynomial terms. The method to be described enables 

the researcher to compare the effect of the composite variable 

with the effect of other predictor variables. Forming a composite 

variable is particularly useful in polynomial regression where 

individual regression coefficients are hard to interpret. A second 

type of application is assessing the impact of a compound of dummy 

variables. An empirical example dealing with the curvilinear 

relationship between church involvement and prejudice is used to 

illustrate the approach. 

1 Introduction 

Linear regression is one of the most frequently used statistical 

methods in the social sciences. However, the assumption of linear 

regression that the relationships between variables conform to a 

linear equation is highly restrictive to much social science 

research. In social science practice, relationships often depart 

from linearity and in those cases the application of ordinary 

regression is unwarranted. Two alternatives to linear regression 

which are useful when the assumption of linearity does not hold 

are polynomial regression and dummy variable regression. While 

considerable attention has been directed to the application of 
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linear regression, the possibility of analyzing nonlinear 

relationships via polynomial regression or dummy variable 

regression has largely been neglected. The infrequent use of these 

models is unfortunate, but also understandable. Relatively little 

effort is required to estimate the regression coefficients for 

polynomial terms. Major difficulties arise, however, in 

interpreting these parameters. Likewise, the procedure for 

estimating the regression coefficients for individual dummy 

variables is straightforward. However, there is as yet no method 

ordinarily available to estimate the combined effect of a set of 

dummy variables. 

This paper addresses both problems. Its purpose is to present a 

method which determines the standardized regression coefficient 

for a composite variable made up of dummy variables or polynomial 

terms. The method outlined below can be used when dealing with 

linear and a variety of nonlinear relationships. The example 

presented here confines itself to a specific form that 

nonlinearity may assume, i.e., the parabolic form. 

To illustrate the method presented below, data were taken from the 

national survey "Social and cultural developments in the 

Netherlands", which was conducted in the autumn of 1985 (See 

Felling, et al., 1987). In the scientific study of religion it has 

been hypothesized that the relationship between church involvement 

and prejudice towards ethnic minorities is curvilinear, rather 

than linear. Prejudice, it has been postulated, increases as 

church involvement increases, but only to a certain point, after 

which a decline occurs. Another well-known predictor of prejudice 

is age. It is generally acknowledged that people become more 

prejudiced as they grow older. It is important to note that the 

interval variable labelled 'prejudice' contains standardized 

factor scores ranging from 0 to 1000, with the mean set at 500 

and the standard deviation at 100. The variable 'church 

involvement' contains the following four categories: nonmembers, 

marginal church members, modal church members, and core church 

members. Of course, strictly speaking church involvement should 

not be considered an interval variable. Nevertheless, for the sake 

of simplicity both polynomial regression and dummy variable 

regression were carried out on the same sample data. Therefore, in 
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the illustration of polynomial regression church involvement was 

treated as interval-scaled. 

2 Polynomial regression and dummy variable regression 

Scientists generally agree that the relationship between variables 

is often nonlinear. Obviously, there is a large number of 

different forms a nonlinear relationship can take. Some of these 

relationships can be dealt with by polynomial equations. The 

general functional form of the polynomial equation is 

Y = a + bjX + b2X2 +- + bk_1Xk-1 + e 

where Y is the dependent variable, X the independent variable, (a) 

the intercept, b the unstandardized regression coefficient, and e 

the error term. In the polynomial equation, the independent 

variable X is raised to a certain power. The highest order to 

which the independent variable is raised indicates the degree of 

the polynomial. The highest order that the polynomial may take is 

equal to k-1, where k is the number of categories of the 

independent variable X, although a lower degree equation may often 

give a reasonably good fit to the data. The 4-category variable 

church involvement, for example, may be raised to the third power. 

In this case, the polynomial equation will yield predicted Y 

values that are equal to the means of the different Y arrays, thus 

resulting in the smallest possible value for the residual sum of 

squares. 

Power polynomials can be dealt with by ordinary least squares 

regression, provided the variables are redefined and the nonlinear 

equation is converted into standard regression form by the 

appropriate transformation. To illustrate, consider the third- 

degree polynomial 

Y = a + bjX + b2X2 +b3X3 + e (1) 

Because the original equation is difficult to deal with by means 

of ordinary least squares, we define two new variables and 
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substitute them into (1), in order to transform the nonlinear 

equation into linear form. If, in (1), we let 

Z = X2 

and K = x3 

then the polynomial model becomes the familiar linear regression 

of Y on X, Z and K. Hence, power polynomials are linearizable by a 

suitable transformation and thereby amenable to ordinary least 

squares regression. 

Another way of dealing with nonlinear relationships, particularly 

useful when the independent variables are discrete, is using dummy 

variables regression. In dummy variable regression, we let k-1 

dummy variables represent the k categories of the original 

independent variable. When the k-1 dummy variables are employed as 

a set of independent variables predicting the dependent variable 

Y, the following equation results 

Y = a + blDl + b2D2 + .... + b^D^, + e 

For example, to examine the relationship between church 

involvement and prejudice, the 4-category variable church 

involvement was broken down into the three dummy variables: Dj, 

D2, and D3. This breakdown was accomplished following the coding 

scheme given in Table 1. 

Table 1. Breakdown of church involvement into dummy variables 

dummy variables 

D 

core church members 0 
modal church members 0 
marginal church members 1 
nonmembers 0 

When the dummy variables are used as independent variables in a 

regression analysis, the equation is given by 



101 

Y = a + 5,0, + b2D2 + bjDj + e (2) 

The regression coefficients in equation (2) have to be interpreted 

as follows. The intercept (a) represents the mean prejudice score 

of the reference category nonmembers. The unstandardized 

regression coefficients b,, b2, and b3 represent the difference in 

mean score between nonmembers and marginal church members, 

nonmembers and modal church members, and nonmembers and core 

church members, respectively. According to equation (2), the 

relationship between church involvement and prejudice is not 

necessarily linear. The category means may occur in any pattern. 

To illustrate polynomial and dummy variable regression, the third- 

degree equation (1) and the dummy variable equation (2) were 

applied to the data. However, because the proportion of variance 

incremented by the cubic term over and above the quadratic term 

was not statistically significant at the .05 level, the second- 

degree polynomial was considered more appropriate to describe the 

data than the third-degree polynomial. The dummy variable equation 

as well as the second-degree polynomial are given below. The 

results of the analyses are presented in Table 2. 

Regression equations: 

Y = a + b,D, + b2D2 + bjDj + e 

Y = a + b,X + b2X2 + e 

where: Y = prejudice, D, = marginal church members, 
D2 = modal church members, Dj = core church members, 
X = church involvement, X2 = church involvement squared, 
a = intercept, e = error term. 

Table 2. Polynomial regression and dummy variable regression of 
prejudice on church involvement (a = intercept, 
b = unstandardized regression coefficient, and t = t- 
value, N=1566) 

equation variable a b t 

(2) D, 486 22.3 3.31 
D2 35.9 5.49 
D, 15.0* 1.84 

(3) X 438 58.2 4.42 
X2 -10.4 -3.73 

(2) 

(3) 

= coefficient is not significant at .05 level. 
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According to the unstandardized regression coefficients for the 

dummy variables in Table 2, nonmembers are less prejudiced when 

compared to marginal church members and modal church members. We 

also find that modal church members have a higher mean score than 

both marginal church members and core church members. The 

difference between nonmembers and core church members is not 

statistically significant. These findings support the argument 

that the relationship between church involvement and prejudice is 

curvilinear, rather than linear. Table 2 also reveals that the 

unstandardized regression coefficient for X2 in the second-degree 

polynomial is statistically significant at the .05 level 

(t > 1.96). This result indicates, once again, that the 

relationship between church involvement and prejudice is not 

linear, but parabolic. 

To determine whether the deviations from linearity are 

statistically significant, we compared the proportion of variance 

accounted for by regression equation (2) and regression equation 

(3), with the proportion of variance accounted for by the linear 

equation Y = a + bx + e. The observed F ratios reveal that the 

variance accounted for by the linear equation is significantly 

lower than the variance accounted for by both regression equation 

(2) and regression equation (3) (See Krishnan Namboodiri, Carter 

and Blalock, 1975). Hence, we decided that the relationship 

between church involvement and prejudice statistically deviates 

from linearity. 

3 The standardized solution 

The estimation of the regression coefficients in the second-degree 

polynomial (3) is quite straightforward. However, polynomial 

regression analysis yields parameters that are not readily 

interpretable. The usual interpretation of the unstandardized 

regression coefficient as the change in Y associated with a one- 

unit change in X, controlling for the other independent variables, 

does not make sense in polynomial regression, because it is 

impossible for X to change its value while its powers are held 

constant. In polynomial regression, neither the coefficient for X 

nor the coefficients for the higher order terms can be interpreted 
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separately. In the second-degree polynomial, for instance, both X 

and X2 have to be considered simultaneously. 

However, there is another topic important to the interpretation of 

polynomial regression. The method of least squares depends on the 

calculation of the inverse of the correlation matrix. It is well- 

known that computational difficulties arise if the correlation 

matrix is singular or ill-conditioned. Ill-conditioned data occur 

if the correlation between the independent variables is near 

unity. The consequences of this situation, which is referred to as 

collinearity, can be severe. In particular, the unstandardized 

regression coefficients tend to be "inflated" so that predicted Y 

values may be unreasonable. Moreover, the standardized regression 

coefficients may exceed unity and have an incorrect sign. As 

collinearity increases, the standard errors for the regression 

coefficients tend to become larger and the confidence intervals 

tend to become wider (e.g., Farrar and Glauber, 1967; Mason, Gunst 

and Webster, 1975). 

In polynomial regression, collinearity of the predictor variables 

is, in a sense, self-induced. Powered terms, especially when they 

are made up of positive values, tend to be highly correlated. 

The question what should be done with collinearity in polynomal 

regression does not have a simple answer. One prescription, 

recommended by several authors, is substracting the mean from the 

independent variable X (e.g., Marquardt and Snee, 1975; Cohen and 

Cohen, 1975: 227; Opp and Schmidt, 1976: 198-199; Bradley and 

Srivastava, 1979). Centering X attenuates the correlation between 

X and its powers, and thereby reduces the inflation of the 

unstandardized regression coefficients. 

Centering X leaves the coefficient of determination and the tests 

for statistical significance unaffected. This should not be 

surprising. It refers to the property of the method of least 

squares called scale invariance, indicating that if any of the 

independent variables are scaled by addition of a constant or by 

multiplication by a constant, scale-free quantities such as R2 and 

test statistics (t and F-values) will remain unchanged. 

In the linear equation, both the standardized and the 

unstandardized regression coefficients are also invariant under 

centering. This pleasant property, however, does not apply to 

power polynomials. To be sure, substracting the mean from X has no 
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effect on the unstandardized regression coefficient for the 

highest order term, for instance, X2 in the second-degree 

polynomial. However, as we will see, in the second-degree 

equation, centering X causes both the unstandardized and the 

standardized regression coefficient for X, and the standardized 

regression coefficients for X2 to change (e.g., Cohen, 1978; 

Jagodzinski and Weede, 1980: 141; Pedhazur, 1982: 414). This 

illustrates, once again, that in polynomial regression, the 

regression coefficients do not lend themselves to clear-cut 

interpretations. 

As indicated earlier, because it is impossible to conceive the 

unstandardized regression coefficients in the polynomial equation 

as expressing the effect of one regressor, while the others are 

fixed, X and its powers have to be considered simultaneously. 

Therefore, it may be desirable to find some measure for the effect 

of X and the higher order terms considered as a single variable, 

but in practice left as a set of distinct regressors. Thus, our 

intention is to obtain the effect on Y for X and its powers taken 

together. The method to be explicated here has occasionally been 

proposed by Coleman (1976), and Jagodzinski and Weede (1980: 141; 

1981). This paper, however, clarifies the key statements and 

extends the approach. 

In order to obtain the combined effect of X and its powers, a 

composite variable T is defined, that replaces X and the higher 

order terms. This composite variable T is computed as the weighted 

sum of X and its powers, using the previously estimated 

unstandardized regression coefficients for X and the higher order 

terms as weights. This composite variable is subsequently used in 

a second regression run. To illustrate, if we call the parenthetic 

component in 

Y = a + b(b,X + b2X2 +-+ b^X*-1) + e (4) 

T, equation (4) simplifies to 

Y=a+bT+e (5) 

where T represents the composite polynomial and b the 

unstandardized regression coefficient for T. The regression of Y 
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on T is identical to the regression of Y on X and its powers, with 

respect to the intercept (a) and the proportion of variance 

accounted for. Furthermore, as we will show, in designs including 

predictor variables Zj linearly related to Y, as in 

K J 
Y = a + b(Sb. .X*'1) + SbjZi + e 

k=r j=f 1 

estimating the parameters afresh in a second regression run has no 

effect on both the unstandardized and the standardized regression 

coefficients for Zj. 

It should be pointed out that the unstandardized regression 

coefficient for T in equation (5) is not identical to the 

standardized regression coefficient, as Coleman (1976: 15) 

suggested, but, of course, always equals 1. It is also important 

to note that the standardized regression coefficient for T differs 

from an ordinary standardized regression coefficient. Usually, the 

standardized regression coefficient (|3) for X is equal to 

|3 = b . oX/oY 

Because the unstandardized regression coefficient for T is equal 

to 1, however, the standardized regression coefficient for T is 

simply the standard error of T (oT) divided by the standard error 

of Y (oY). This implies that the standardized regression 

coefficient for T will always have a positive value. Consequently, 

the sign of the standardized regression coefficient for T is a 

technical artifice. 

Recall that centering X in power polynomials affects the 

standardized regression coefficients for X and the higher order 

terms. The standardized regression coefficient for T, however, 

remains unchanged under linear transformation. Hence, this 

coefficient can be interpreted as the effect of T with respect to 

the effect of other predictor variables. 

Let us now turn to dummy variable regression. When dummy variables 

are used in a regression analysis, the result is a set of 

regression coefficients for many individual dummy variables. Dummy 

variable regression provides measures for the relationship between 



106 

one aspect of the original independent variable X and the 

dependent variable Y. Therefore, it might be useful to obtain a 

measure for the effect of all the dummy variables taken together. 

This effect may then be compared with the effect of other 

independent variables. 

The construction of the composite variable can, again, be 

accomplished by defining a new variable from the weighted sum of 

the distinct dummy variables. If we call the linear combination 

(bjDj + bjDj + .... + bi^jD^i) composite variable T, the new 

regression equation is given by 

Y = a + bCbjD, + b2D2 + .... + b^.,) + e = a + bT + e 

Again, the regression of Y on T is identical to the regression of 

Y on the original dummy variables, in the intercept (a) and in the 

proportion of variance accounted for. 

In order to fully explain the procedure outlined above, the 

variable age (Z), which is linearly related to prejudice, was 

added to the earlier reported regression equations (2) and (3). 

Six regression analyses were applied to the data. The equations 

are listed below. The regression summaries are given in Table 3. 

To illustrate the effect of centering, in equation (8) and 

equation (9) the mean was substracted from X prior to the squaring 

operation. 

Regression equations: 

Y = a + bjX + b2X2 + b3Z + e (6) 

Y = a + b4(b,X +^b2X2) + b3Z + e = a + b4T + b3Z + e (7) 

Y = a + bj (X - X) + b2(X - X)2 + b3Z + e (8) 

Y = a + b4(b,(X - X) + b2(X - X)2) + b3Z + e = 

a + b4T + b3Z + e (9) 

Y = a + bjD, + b2D2 + b3D3 + b4z + e (10) 

Y = a + bj (bjD, + b2D2 + b3D3) + b4Z + e = 

a + b5T + b4Z + e 
(ll) 
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where: Y = prejudice, X = church involvement, 
X = church involvement mean, 
X2 = church involvement squared, 
Z = age, Dj = marginal church members, 
D2 = modal church members, D3 = core church members, 
T = weighted sum of polynomial terms or dummy variables, 
a = intercept, e = error term. 

Table 3. Polynomial regression and dummy variable regression of 
prejudice on church involvement and age (a = intercept, 
b = unstandardized regression coefficient, beta = 
standardized regression coefficient, t = t-value, and R2 
= proportion of explained variance, N=1566) 

equation variable a b beta t R 2 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

361 52.3 
-10.4 

2.2 
361 1.0 

2.2 
424 10.5 

-10.4 
2.2 

424 1.0 
2.2 

403 19.4 
22.1 
-0.7 
2.2 

403 1.0 
2.2 

56 4.16 
53 -3.90 
31 12.51 
10 4.30 
31 12.74 
11 3.75 
12 -3.90 
31 12.51 
10 4.30 
31 12.74 
08 3.02 
09 3.50 
00* -0.09 
30 12.47 
10 4.31 
30 12.71 

.10936 

.10936 

.10936 

.10936 

.10943 

.10943 

* = coefficient is not significant at .05 level 

What can we conclude with respect to the polynomial regressions of 

prejudice on church involvement and age? Well, first of all, from 

equation (6) and equation (8) we can conclude that substracting 

the mean from X affects both the unstandardized and the 

standardized regression coefficients for X, as well as the 

standardized regression coefficient for X2. However, the 

unstandardized and the standardized regression coefficients for Z, 

the unstandardized regression coefficient for X2, and the t-values 

for Z and X2, remain unchanged under centering. Further, centering 

X prior to the squaring operation has no effect on the t-value and 

the standardized regression coefficient for the weighted sum of X 

and X2. The standardized regression coefficient for T indicates 
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the effect of the curvilinear predictor church involvement with 

respect to the effect of the variable age (Z). 

Second, the regression summaries indicate that running regression 

with the composite variable T has no effect whatsoever on the 

intercept (a) and the (rather low) proportion of variance 

accounted for (R2) . The intercept and the coefficient of 

determination for equation (6) and equation (7), as well as for 

equation (8) and equation (9), correspond. In passing, it might be 

noted that the composite variable T in equation (7) has been 

derived from regression equation (6) and not from regression 

equation (3). The relative weights of X and X2 should not only be 

determined by the polynomial terms themselves, but also by the 

other independent variables in the regression equation, in our 

example, the variable age (Z) (e.g., Igra, 1979; Jagodzinski and 

Weede, 19 81) . 

And what can we conclude with respect to the dummy variable 

regressions of prejudice on church involvement and age? First of 

all, from equation (10) we can conclude that nonmembers are still 

less prejudiced than both marginal church members and modal church 

members. The difference in prejudice between nonmembers and core 

church members is not statistically significant. 

Second, as in polynomial regression, the intercept (a) and the 

proportion of variance accounted for by regression equation (11), 

remain as they were in equation (10). The proportion of variance 

explained by the dummy variables is somewhat higher than the 

proportions of variance explained by the second-degree polynomial 

because the former incorporates more predictor variables. Further, 

comparison of the results for equation (10) with the results for 

equation (11) demonstrates, once more, that forming a composite 

variable has no effect on the regression coefficients for the 

variable not belonging to the composite, that is, the variable age 

(Z) . 

Last, the standardized regression coefficient for T assesses the 

effect of the dummy variable set on prejudice. This effect can be 

compared with the effect of Z in equation (11). Table 3 shows that 

the variable age (Z) is more important to prejudice than the 

composite variable T. 
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A final point should be made regarding the interpretation of the 

regression coefficients for the composite variable T. The 

unstandardized regression coefficient b for T does not permit 

meaningful interpretation, because b can be manipulated almost at 

will. To explain this we have to recall that the composite 

variabele T in the second-degree polynomial, for instance, is a 

weighted linear combination of X and X2. The weights bj and b2 

represent, in fact, the ratio of the effects of X and X2. Running 

regression with any linear transformation of these weights, will 

yield exactly the same intercept, coefficient of determination, 

and standardized regression coefficient for T. However, the 

unstandardized regression coefficient for T is sensitive to linear 

transformation. Hence, the solution for b is not unique. 

With respect to the standardized regression coefficient for T, we 

have to point out that in our example this coefficient indicates 

the effect of a nonmonotonic predictor variable T on Y. It 

represents the combined effect of the set of discrete dummy 

variables or polynomial terms. The actual form of the relationship 

between X and Y, however, is described by the unstandardized 

regression coefficients for the individual dummy variables or 

polynomial terms. In dummy variable regression, the unstandardized 

regression coefficients indicate the difference in mean scores 

between any particular category of X and the reference category. 

In polynomial regression, differential calculus may be used to 

obtain the minima and the maxima of the polynomial. The derivate 

of the polynomial equation provides the unstandardized conditional 

effect of X on Y at any particular value of X, for instance, the 

value of X at which the curve bends. 

4 Conclusions 

The purpose of this paper was to present a method to obtain the 

standardized regression coefficient for a composite variable made 

up of dummy variables or polynomial terms. In closing, we iterate 

the suggested procedure. After first carrying out a full 

regression on the dummy variables or polynomial terms, along with 

other predictor variables, a composite variable is created, using 

the previously estimated regression coefficients for the dummy 
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variables or the polynomial terms as weights. This newly-defined 

variable replaces the dummy variables or the polynomial terms in a 

second regression run. The results for the second regression are 

identical to the results for the first regression with respect to 

the intercept, the proportion of variance accounted for, and the 

regression coefficients for the variables not belonging to the 

composite variable. The standardized regression coefficient for 

the composite variable reveals the effect of the composite 

variable with respect to the effect of the other predictor 

variables in the equation. 
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