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A NOTE ON THE ROBUSTNESS OF THE NORMAL AND LOGNORMAL DENSITY 

FUNCTION IN QUANTITY RATIONING MODELS 

Harry Bierings and Joan Muysken*^ 

ABSTRACT 

In the literature on smooth quantity rationing models usually the normal 

density function or the log-normal density function is postulated ad hoc to 

derive an aggregate transaction function. This paper provides a way to test 

the empirical relevance of these density functions within the context of the 

Dutch labour market. The tests are carried out for the simple two-regime 

rationing model but can be extended to the multi-regime case. The data used in 

these tests refer to the Dutch labour market and cover the period 1960-1985. 
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1. INTRODUCTION 

This note is concerned with the statistical appropriateness of the normal or 

log-normal density function in deriving an aggregate employment function 

within a quantity rationing setting. The relevant method to derive such a 

function is known as "aggregation by integration". It demands a specific 

funtional form of the probability distribution of micro labour demands and 

micro labour supplies.^ In much of the applied work the normal p.d.f. [see 

Andrews and Nickel 1 (1984) and Kooiman and Kloek (1979)] and the log-normal 

p.d.f. [see Kooiman and Kloek (1979), Lambert (1988), Sneessens and Dreze 

(1986)] have been used. The log-normal density is certainly favourite because 
O 

of its intuitive plausibility and because of the empirically tractable 

employment function resulting from it. 

In this note we investigate the validity of the above intuitive argument 

by way of statistical inference. For this purpose we introduce a certain type 

of density function which has the normal (log-normal) density function as a 

special case. Since in the resulting aggregate employment function the 

employment function derived on the basis of the normal (log-normal) density 

function is nested as a special case, we are able to test for normality (log- 

normality). 

Section 2 shortly explains the "aggregation by integration" method and 

presents the functional forms of the aggregate employment functions which can 

be derived using this method assuming a normal (log-normal) p.d.f.. Section 3 

is devoted towards developing the method to test the assumptions of normality 

(log-normality). Section 4 presents the test results. Finally, Section 5 

contains the conclusions. 

2. AGGREGATE EMPLOYMENT 

2.1 Aggregation by integration method 

This method first has been applied by Muellbauer (1978) within the field of 

markets in "disequilibrium". It provides a formal aggregation technique over 

micro markets assuming: i) supplies of and demands for labour are distributed 

over micro markets according to some p.d.f., g(js(D,S), and ii) the employment 

on each micro market is determined by the minimum of micro labour demand and 

1 See Bierings and Muysken (1987) for an overview of the density func¬ 
tions which have been used, and the corresponding employment functions. 

2 
Many economic series display a lognormal structure - the income 

distribution is the most appealing example. 



57 

micro labour supply. The expectation of employment, E(L), then is defined as 

the expectation of the minimum of micro labour demand, D, and micro labour 

supply, S (both rescaled to the aggregate"^): 

E(L) = E[MIN(D,S)] (1) 

which can be rewritten as: 

L = J J S.gds(D,S) dDdS + / / D.gds(D,S) dSdD (2) 
S D 

The relation for aggregate employment can be derived by evaluating the 

integrals of (2). In what follows we replace E(L) by L which is usually done 

in applied work. This amounts to saying that the expectation of employment 

over markets can be approximated by observed aggregate employment. 

2.2 Functional form of employment 

In deriving the relationship for aggregate employment it has been more or less 

practice to assume gds(D,S) to be normal or log-normal. When gds(D,S) is the 

normal density function, the aggregate employment function can be shown to be 
[see Kooiman and Kloek (1979)]: 

L = LS.*(ED.Ox1) + LD.*(-ED.Oxl) - ox. (2TT)_>4.exp(-i4.ED2.Ox2) (3) 

where: L = employment, lD = labour demand, LS = labour supply, ED = LD-LS, 

ox = o(D-S), and 5 is the cumulative standard normal distribution. 

Assuming, in stead, gds(D>S) to be the log-normal p.d.f., the expression 

for aggregate employment becomes [see Kooiman and Kloek (1979)]: 

L = LS.«(LED.0xl-i4.0xl) + ^.Jf-LED.o^-ii.Ox1) (4) 

where: LED = In L^-ln L^, ox = o(ln D-ln S), and ® is the cumulative standard 
normal distribution. 

Equations (3) and (4) have a convex shape and satisfy the common 

continuity properties. A major difference between (3) and (4) is, however, 

that (4) is homogeneous of degree one in LD and LS, whereas (3) is not. 

Testing the normality and the log-normality hypothesis (c.f. Section 4) in a 

way can elucidate on which homogeneity concept serves the data best. 

3 
That is, both multiplied by the number of markets. 
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3. METHOD TO TEST NORMALITY AND LOG-NORMALITY4 

In this section we develop a way to test the normality and the log-normality 

assumption. For that purpose we develop a weighted normal employment function 

and a weighted log-normal employment function, respectively. 

3.1 Weighted normal employment function 

First considering the normality assumption we define the following p.d.f., 

9ds(*>-)> which is a weighted sum of two normal density functions, which by 

definition is not normally distributed for values of n between zero and one: 

gds(*-*) ■ n.gi(D.S) + (i-n).g2(D.s) o<n<i (5) 

where gi(.,.) and g2(.».) have identical means, L1^ and L^, and a diagonal 
2 2 2 2 

covariance matrix with variances o^. °is> °2d> 02s- This implies that gi(.,.) 

and g2(.,.) only differ with respect to their variances. Concerning the 

variances we additionally assume that 024 = k.oid and °2s ' k,0ls (with k>l). 

The density gds(->*) 11es somewhere between the normal density function and 

the t-density function.5 In this respect note that the kurtosis of this p.d.f. 

for values of n between 0 and 1 indicates a longer-tailed density function 

than the normal density function. Symmetry, however, is guaranteed. 

Evaluating the integrals of (3) with gds('>*) specified according to (5) 

yields the following expression for aggregate employment: 

L = n-LS.«(ED.Ox1) + (l-n).LS.*(ED.k'1.Ox1) + n.LD.*(-ED.Ox‘) 

+ (l-nJ.L^f-ED.k^.Ox1) - 

- (l-n).k.ox.(2ir)_^.exp{-14.ED2.k_2.OxJ} °!n<l (6) 

where:6 ED = LD - LS, ax = 0(0! - = k.o(D2 - S2) 

4 
Proofs are available on request of the authors. 

c 
Note in this respect that for £< between one and zero and 

n n 
X ej = 1, the expression X ej’|l|(xi) with ()> is the normal density, is dis- 

j=l j=l 

tributed according to a t-density function when n is approaching infinity. 

6 The subscripts of D and S refer to the corresponding densities of 
equation (5). 
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Since equation (3) is nested in equation (6) one can test for normality using 

the familiar test apparatus for nested models. The test decides on the sig¬ 

nificance of n and k in equation (5): When n=0orl,ork=l, normality is 

accepted. 

3.2 Weighted Jog-normal employment function 

Repeating the above procedure for the log-normal case - i,e. with the same 

assumptions with respect to variances and covariances and using instead of the 

weighted normal p.d.f. the weighted log-normal p.d.f.7 - the aggregate 

employment function then shows: 

L = n.lAsUED.o^-a.ax1) + (l-n).LS.*(LED.k‘l.0x1-V5.0x1.k_1) + 

n.lA^-LED.o^-a.Ox1) + (l-n).LD.$(-LE0.k"1.Ox‘-14.ax1.k'1) 0<n<l (7) 

where:8 LED = In LD - In LS, 

ax = o(ln Di - In Sj) = k.a(ln D2 - In S2) 

Equally one can test for log-normality since equation (4) is nested in 

equation (7): When n = 0 or 1, or k = 1. log-normality is accepted. 

4. EMPIRICAL RESULTS 

In this section 

are subsequently 

We used data on 

economy covering 

non-linear full 

we present the results of our empirical work. These results 

used to test the normality and the log-normality hypothesis, 

labour demand, labour supply and employment for the Dutch 

the period 1960-1985.8 The estimations were carried out using 

information maximum likelihood techniques. Additive (normally 

For convenience we use the same symbols for the parameters as in the 
normal case. For values of q equal to zero or one the weighted log-normal 
p.d.f. has the log-normal p.d.f. as a special case. The weighted log-normal 
p.d.f. as well as the log-normal p.d.f. are not symmetric. 

g 
The subscripts of D and S refer to the corresponding densities of 

equation (5), now assuming g^ and g2 to be log-normal densities. 
9 

Labour demand is computed as the sum of employment and vacancies wheras 
labour supply is the sum of employment and unemployment. The data on employ¬ 
ment and unemployment were obtained from the "Centraal Economisch Plan" pub¬ 
lished by the Central Planning Bureau. Data on vacancies are from the 
"Sociale Maandstatistiek" published by the Central Bureau for Statistics. 
Employment is measured in manyears; vacancies and unemployment are in numbers, 
but converted to manyears - cf. Gelauff, Wennekers and de Jong (1985). 
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distributed) disturbance terms were assumed to account for aggregation or 

misspecification errors of the structural equations (3), (4), (6) and (7). 

In Table 1 the results of our estimations are displayed. The results 

indicated by number 1 stem from the estimation of equation (3) for the normal 

case and equation (4) for the log-normal case. As can be seen from the table 

these specifications suffer from severe first-order autocorrelation. This 

situation hardly improves when estimating equations (6) and (7) (not reported 

in the table). Since no decisive test on nested hypotheses exists when errors 

are serially correlated, we had to respecify equations (6) and (7) in order to 

dispose of the autocorrelated errors. The table shows the various alternatives 

we experimented with. 

The first alternative specification, indicated by number 2, defines the 

parameter ox of equations (6) and (7) to be a linear function of a constant, 

lagged unemployment, U_i, and of time. Hence:1® 

°x = °0 + °t • t - Ou.i . (1/U.i) 

(+) (+) 

(8) 

where U_i is assumed to capture ''discouragement11 and "selectivity" effects. To 

be more specific, rising aggregate unemployment (with a lag of one year) 

discourages workers to search for a job and makes employers more selective in 

their recruitment of new workers. Consequently the level of structural un¬ 

employment is increasing. The trend-term accounts for technological in¬ 

novation influences. Expected signs of first derivatives are indicated between 

brackets.11 

As is evident from the table, serial correlation remains a problem. To 

solve this we subsequently imposed an AR(1) structure on the disturbance terms 

(?): 

€t = P • St-l + ut (9) 

with ut - N(0,1) 

10 It can be shown that the parameter ox uniquely determines the level of 
structural unemployment, i.e. the level of unemployment for which labour 
demand equals labour supply [Lambert (1988)]. 

11 In theory a negative coefficient of 0^ can also be justified. This 
is the case when the so called "added worker effect" exceeds the "discouraged 
worker effect". The "added worker effect" points to compensating family labour 
supply effects when one member becomes unemployed. 



61 

Table 1: Results for equations (3) to (7) 

(t-values between parentheses) 

parameter(s) 
estimated °0 °u-l °t DW 1og L 

NORMAL CASE 

l.OQ 

Z.OQ.Ou.j, 
°t 

229.1 
(15.5) 

107.8 
(14.2) 

3-oq,Ou-i, 0.53 87.4 
Ot>P (5.4) (7.7) 

0.110 
(2.3) 

-0.035 
(-0.6) 

11.4 

(11.2) 

15.7 
(10.4) 

- 0.07 97.7 

- 0.70 136.4 

- 1.87 143.6 

^.oq.Ou.j 0.60 72.7 -0.160 

°t.P. (7.2) (4.5) (-1.9) 
k,n 

17.2 46.0 0.99 1.87 145.6 
(6.7) (0.03) (15.6) 

LOG-NORMAL 
CASE 

l.OQ 

2.oo,ou_i, 
°t 

0.059 
(16.6) 

0.020 
(13.0) 

0.0000200 
(1.8) 

0.0029 

(12.1) 

- 0.08 -108.1 

- 0.87 - 64.0 

- 1.96 - 56.5 3.oo,ou> 0.52 0.020 0.0000002 0.0032 

°t.P (5.2) (8.6) (0.05) (9.9) 

4.O0.°u-l> °-62 0-020 -0.0000280 0.0037 24.0 0.99 1.86 - 55.2 
Ot.P- (6-9) (2.3) (-1.3) (5.7) (0.12) (48.4) 
k »n 
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Autocorrelation then completely disappears. One can verify this from the table 

by looking at the results indicated by numbers 3 and 4. The results presented 

under number 3 refer to equation (3) for the normal case and to equation (4) 

for the log-normal case. The results indicated by number 4 represent those for 

equation (6) (the normal case) and for equation (7) for the (log-normal case). 

The overall picture emerging from the table is that the estimated 

parameter values are roughly of the same order of magnitude over the alterna¬ 

tive specifications tested. The relative great jump in the value of og from 1 

to 2 in both cases mainly is the result of the significant influence of the 

trend-term in ox. Moreover, the results on ox are consistent with those of 

Kooiman and Kloek (1979) using data of the Dutch economy for the period 1948- 

1973. Their employment function not corrected for autocorrelation yields a 

value of og equal to 181.7 in the normal case and 0.048 in the log-normal 

case. In their specification with autocorrelation the estimated value of the 

parameter p of the AR(l) specification of the disturbances equals 0.54. 

Now we have settled the serial correlation problem we are able to test 

the normality and log-normality hypothesis. The nested test is applied to 

specifications (3) and (6), and (4) and (7) for the normal and log-normal 

case, respectively. In particular we used a likelihood ratio test to test the 

overal1 significance of the normality and log-normality hypothesis. Let L(u) 

and L(r) be the values of the likelihood function for the unrestricted model 

[equation (6) or (7), both extended with equations (8) and (9)] and the 

restricted model [equation (3) and (4), both extended with equations (8) and 

(9)], respectively. Then asymptotically holds: 

2 [log(L(u)) - log(L(r))] - x2(j) 

2 

where x (j) is a chi-squared distribution with j degrees of freedom; j is the 

number of restrictions on the parameters. 

In Table 2 the values of x are presented together with the resulting 

conclusions about acceptance or rejection of the normality or log-normality 

hypothesis. The results indicate that normality as well as log-normality is 

accepted at the 1% level. The results, however, tend to be slightly more in 

favour of the log-normal density due to the relatively low value of the log- 
likelihood ratio. 



Table 2: Likelihood 
ratio test 

equation tested — 
against 

1 

—¥ 6 7 

l 

3 X* = 4.0 

4 X2 = 2.6 

Conclusion 3 

Not 
Rejected 

4 

Not 
Rejected 

degrees of 
freedom 
(Wlevel) 

2 2 
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5. CONCLUSIONS 

Using data for the Dutch labour market for the period 1960-1985, diagnostic 

testing substantiated the plausibility of the normality (or log-normality) 

assumption in deriving an aggregate employment function. Since both hypotheses 

are not rejected, no decisive argument can be given as regards to the likely 

degree of homogeneity of the aggregate employment function. 

It should, however, be kept in mind that this result is conditional on 

the method of statistical discrimination. It should be further investigated 

whether the general p.d.f. embedding the normal (log-normal) p.d.f. as a 

special case can provide a "hard" test of normality or log-normality. As long 

as the proof to the contrary is not provided, our results support the view 

that the assumption of log-normality or normality does not turn out to be a 

leap in the dark after all.12 

In this note we only considered the two-regime case. The method of 

statistical discrimination developed here, however, is easily transferred to 
1 *3 

the three-regime case. As a matter of fact in our future work we will check 

whether the normality (log-normality) assumption also stands up in the three- 

regime case. 

12 Of course, a test to discriminate between normality and log-normality 
would be desirable. 

13 
The three regimes distinguished at the micro level are the capacity 

labour demand regime, the Keynesian demand regime and the labour supply 
regime. In the first regime capacity labour demand is the minimum of capacity 
labour demand, Keynesian labour demand and labour supply and determines 
employment. In the second regime and third regime this is Keynesian demand and 
labour supply respectively. 
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