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A COMPARISON OF THE STEEPEST 
DESCENT AND NEWTON-RAPHSON 

ALGORITHMS IN THE LINEAR LOGISTIC 
TEST MODEL 

Fons J.R. van de Vijver 

Abstract 

In the present Monte Carlo study three methods for the estimation of the basic 
parameters of the Linear logistic Test Model were compared, viz. Steepest Descent 
iterations, a Newton-Raphson procedure and a combination of both. It was found 
that the Newton-Raphson procedure needed the least computer time to reach 
convergence. As, additionally, this procedure easily allows for the computation 
of standard errors of the estimates, it was concluded that this method should be 
preferred. 
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In the Rasch model the probability that subject v (v = 1,..., n) with ability 0V will 

solve item » (i = 1,..., fc) with item difficulty 6; correctly is given by: 

exp(B„ — hi) 

1 + exp(9v — bi) 
(1) 

The estimation equation of the maximum likelihood estimation procedure is (cf. 

Fischer, 1974, [14.1.8]): 

“Oe, 

(a) 
«rfa7r-l 

7r 
(2) 

in which 

• a0fx = the number of correct answers at item a (a = 1,..., fc); 

• n, = vector representing the number of subjects with score r; 

• ca = —ln(ba), i.e., the item easiness of item alpha-, 

• = first derivative of the elementary symmetric function of order r without 

item a; 

• -yr = elementary symmetric function of the order r. 

From a computational viewpoint the most problematic aspect of (2) concerns the 

elementary symmetric functions. Two recursive sets of formulas for the computation 

of the elementary symmetric functions and their derivatives have been described by 

Fischer (1974, [14.3.3-14.3.4] and [14.3.11]). The first procedure, called the ‘Difference 

Algorithm’ by Gustafsson (1980, p. 381) is fast but will become inaccurate when applied 

to a large number of items, whereas the second procedure, called the ‘Summation 

Algorithm’ (Gustafsson, 1980, p. 382) is slower but numerically more stable. These 

numerical problems in the computations of the elementary symmetric functions also 

trouble the Linear Logistic Test Model (LLTM). 

In this model the item difficulty parameter of equation (1) is linearly decomposed 

in: 

bi = Y, QiMi + C (3) 
J=1 

in which 

• rjj = the basic parameter of the LLTM (j = 1,... ,m) and m < k (Fischer, 1974, 

1983; cf. also Formann, 1984); 

• qij = an element of the design matrix Q indicating the number of times operation 

j is presumably invoked in the solution of item i. The matrix Q has to be specified 

by the investigator prior to the data analysis; 

• c = an arbitrary constant. 
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The estimation equations for the LLTM are given by (cf. Fischer, 1974, [17.2.11a] 

and Fischer, 1983, the final equation at page 6): 

^2qia{si ~ s =0 for a = l,...,m (4) 
4=1 r 7r 

in which 

• Si = the sufficient statistic of the item parameter, i.e., the number of correct 

responses at item i. 

For the solution of this set of equations the first derivative of logarithm of the 

likelihood L of the data matrix with respect to the basic parameter (a = 1,..., m) 

is needed in some procedures. The first derivative is given by (cf. Fischer, 1983, p. 6): 

dlnL 

d.T]a 
- £ "’■TV 1 H 7^-1 £494= 

r i 

The second derivative of the logarithms of L with respect to ^ (a = 1, 

Vff {13 = l,...,m) is: 

(5) 

,m) and 

d? InL 
- Xy 94=94/3 X] —T-~ + X^ X] 94=9W E ei' 

(4) _(0 ^(0 _ _ ~(i.O 
7r-l7r-l 7>-7r-2 

(6) 

in which 

• 7r-2 = second derivative of the elementary symmetric functions without the 

items i and l. 

Two solution procedures are typically used to solve (4). The first is a Steepest De¬ 

scent Method, described by Fischer (1974, p. 255), who also gives a computer program. 

Essentially the method consists of the following steps: 

1. Choose a vector of initial estimates of the basic parameters r/i, >Vm and a 

step size ft. 

2. Compute the derivatives of the log-likelihood of the data matrix for the estimated 

values of the basic parameters according to (4) for a — 1,... ,m. Store the result 

in vector /. 

3. Normalize / and compute the descent for f. 

4. Compute the descent for the step size. 

5. Compute (by means of linear interpolation) a new step size fip (the index p refers 

to the number of the iteration): 

/(«,)-/(fip-O 

This is repeated until the change in step size becomes smaller than some arbitrary 

value. The step size obtained is designated floo- 
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6. A new ry-vector is computed from 

Vp — Vp-i “I" ^oofiVp-i) (8) 

7. The procedure is repeated from step 1 onwards until the absolute values of the 

derivatives of all parameter estimates axe smaller than some arbitrary value. 

An assured convergence, even with poor initial estimates, and a low computational 

load per iteration can be mentioned as the advantages of this procedure. During 

the first iterations large improvements of the estimates are typically found. However, 

when the estimates come nearer to the final maximum likelihood estimates, the rate 

of convergence often becomes painstakingly slow. 

The second method is the Newton-Raphson procedure (cf. Fischer, 1974, [14.4.12]). 

The general structure of this procedure is rather simple: 

For a set of estimates of the basic parameters the first and second drivatives 

are computed according to (5) and (6). A vector At/ is then computed by 

means of: 

At/i 
/ <P IriL d2 InL 

dVllm V1 
/ dlnL 

dm 

d? InL 
\ drimm 

d2 InL 
dv2* ) 

dlnL 
' d T)m 

(9) 

The values of At/ are added to the parameter estimates of the previous 

iteration, thereby constituting the parameter estimates of the following it¬ 

eration. This procedure is repeated until the absolute value of the changes 

in all estimates from one iteration to the next are smaller than some arbi¬ 

trary value. 

The iterative procedure is rather involved from a computational viewpoint; it entails 

the computation of the second derivatives of the elementary symmetric functions and 

of the inversion of this matrix. Per iteration the computational load is much larger 

than in the Steepest Descent Method. An advantage of this procedure is the small 

number of iterations needed to reach convergence. Also, on the basis of the inverted 

matrix of the second derivates confidence intervals of the parameter estimates can be 

easily computed. 

In the present Monte Carlo investigation the behaviour of both the gradient method 

and the Newton-Raphson method will be studied. Additionally, a combined procedure 

is developed, which will be called the Combination Method. In the first part of this pro¬ 

cedure the Steepest Descent METHOD is used until the absolute value of the gradient 

in all parameters to be estimated becomes smaller than some arbitrary, relatively large 

value. These parameters are then the starting values of a Newton-Raphson procedure, 

which is continued until convergence is reached. By doing so, an attempt is made to 

put the substantial improvements during the first iterations of the gradient method to 

an advantage, i.c. to speed up the convergence of the Newton-Raphson procedure. 
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Method 

The computations were carried out on a VAX 11/785 (Digital Equipment Corporation). 

The structure of the program written in FORTRAN-77, to generate and analyze the 

data was as follows: 

1. Generating the data. A vector of standard normally distributed item difficulties 

and person abilities were generated. A matrix P (n^k) was computed containing 

the probabilities at a correct answer under the Rasch model. Then a matrix R 

with the same dimensions was generated containing uniformly distributed ran¬ 

dom numbers at the interval (0,1). Finally, a dichotomous data matrix D, again 

with the same dimensions, was composed with elements dij was equal to zero 

if pij was smaller than rij and dij was equal to one, otherwise. If the matrix D 

contained any row or vector with only zeros or only ones, the data generating 

restarted from the beginning. 

2. Generating the design matrix. First, a design matrix (fc,ra) was filled with 

uniformly distributed random numbers on the interval (0,1). The entries of the 

matrix were then dichotomized; if the entry was greater than a constant (0.40 

throughout the study), it was set equal to 1; otherwise, a value of 0 was assigned. 

The generated matrix was checked for allowance of unique maximum likelihood 

estimates (cf. Fischer, 1983). If the conditions for uniqueness were not met, step 

2 was repeated. 

3. The analysis according to the LLTM^ A program has been developed based 

on the computer program described by Fischer (1974, pp. 538-548). For the 

computation of the basic symmetric functions and their first derivatives the al¬ 

gorithms mentioned previously were used. For small item numbers (up to 10) 

the ‘Difference Algorithm’ (Gustafsson, o.c., p. 381) was used, while for larger 

numbers of items the ‘Summation Algorithm’ was invoked. The three estimation 

procedures, viz. the Steepest Descent, the Newton-Raphson and the Combina¬ 

tion Method, were then used to estimate the parameters of the LLTM. 

In the Combination method the Steepest Descent Method was maintained until 

the absolute values of the derivatives of all parameter estimates were smaller than 

0.5, after which Newton-Raphson iterations were started. The number of itera¬ 

tions and the CPU-time needed by each of these were recorded. The CPU-time 

was determined by means of Run Time Library Routines, which are accurate in 

two decimals. 
The initial estimates were derived from the sufficent statistics of the basic pa¬ 

rameters; the ‘p-value’ of each operation, the classical difficulty index, was the 

starting value of each iterative procedure. 

In the present Monte Carlo study three different test lengths were used, namely 10, 

20 and 40 items. In each of these structure matrices the number of basic parameters 

to be estimated was systematically varied from 2,4, ...,& — 2; that is, for each test 

length it/2 — 1 different number basic parameters were estimated. A sample size of 

500 subjects was maintained throughout. For each combination of the number of 
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Number of parameters 
2 
4 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 

10 items 
SD 1 CM 
0.8 0.5 
2.6 1.5 
21.6 9.6 
41.5 17.5 

Test Length 

NR SD 
0.2 
0.3 
0.5 
0.8 

4.9 
8.7 

11.2 
25.7 
50.0 
77.3 

201.4 
215.9 
268.2 

20 items 
CM 
3.4 
5.3 
6.2 

13.5 
22.1 
35.4 
78.0 

111.6 
164.9 

NR 
1.7 
2.4 
2.6 
3.1 
3.6 
4.3 
6.6 
9.4 

24.1 

SD 
11.8 
25.0 
42.3 
52.6 
77.0 
97.3 

175.9 
292.3 
468.5 
243.1 
377.9 
800.3 

1186.0 
2232.0 
1811.8 
2782.1 
2252.7 
2996.5 
1520.9 

40 items 
CM NR~ 
17.8 18.3 
21.2 18.6 
34.7 25.6 
36.2 30.1 
45.2 27.8 
57.1 29.6 
89.7 35.4 

155.5 37.9 
228.0 76.5 
118.1 44.4 
181.5 48.6 
369.2 52.9 
526.0 78.2 

1145.6 146.0 
794.6 105.9 

2117.4 173.3 
1606.0 179.4 
2167.3 211.0 
1139.0 387.1 

Table 1: CPU Time Needed to Reach Convergence (in sec.) 

basic parameters and items new data and design matrices were generated. Three 
independent replications were carried out for each combination. 

The number of basic parameters was not set equal to the number of items - i.e., 
when the design matrix of the LLTM is an identity matrix and the LLTM is the Rasch 
model - as the efficiency of algorithms in the Rasch model is dealt with elsewhere (e.g., 
Gustafsson, 1980; Wainer, Morgan &: Gustafsson, 1980). 

Results and Discussion 

In Table 1 the CPU time is given which was needed to reach convergence in each of the 
experimental conditions. The most remarkable and clear-cut result from this Table is 
the overall superiority of the Newton-Raphson procedure; the Steepest Descent Method 
nearly always consumes the most CPU time. The difference in CPU time is most 
pronounced in small data sets, in which the Newt on-Raphson procedure can be ten 
times faster than the Steepest Descent Method. The difference in performance of the 
iterative procedures is also affected by the number of parameters to be estimated. The 
superiority of the Newton-Raphson method is most pronounced with a large number 
of parameters to be estimated. The results of the Combination Method always fell 

^ SD = Steepest Descent Method; CM =■ Combination Method; 
NR = Newton Raphson Method 



105 

between the results of the two other procedures. 

It could be argued that the generalizability of the present study is limited for two rea¬ 

sons. First, in the Combination Method the switch from Steepest Descent to Newton- 

Raphson iterations was always made when the absolute values of the derivatives of all 

parameter estimates were less than 0.5. It is obvious that other values of the ‘switch 

parameter’ would lead to different results. In fact, provided the present outcomes, a 

substantially larger value of this parameter should be preferable. Even for these val¬ 

ues, however, it remains doubtful whether the Combination Method would be able to 

outperform the Newton-Raphson procedure. From the present results it is clear that 

in a combined algorithm the Steepest Descent Method should only be used for a few 

iterations, before the computations should switch to Newton-Raphson iterations. 

Second, in the Steepest Descent Method the step size was always fixed in the first 

iteration. A value of 3, such as used here, can be a less than optimal choice. If the step 

size is taken too large, the parameter estimates will oscillate around their true values; 

if the step size is taken too small the improvement of the estimates from one iteration 

to the other will be marginal. In both cases too many iterations will be needed. There 

is no rationale for the choice of the initial step size, which substantially hampers the 

suitability of the method. 
The major reason for the weak performance of the Steepest Descent algorithm is 

the poor estimation of the derivatives of the parameters. Although the likelihood of 

the data matrix increases during subsequent iterations, the accuracy of the separate 

parameter estimates does not always increase. 

It has been found in the Rasch model, which is an LLTM with an identity ma¬ 

trix as the structure matrix, that the convergence can be speeded up considerably by 

Aitken extrapolations (cf. Fischer, 1974; Gustafsson, 1980). Although the extrapola¬ 

tion method can also be used in the LLTM, its feasability will be limited. On the one 

hand, in the Steepest Descent Method the estimates often behave irregularly which 

will prohibit an adequate extrapolation; in fact, any extrapolation will involve a real 

danger of divergence of the estimates. On the other hand, in the Newton-Raphson 

procedure the number of iterations is usually small, thereby rendering the feasability 

of extrapolations. 
It can be concluded form the present study that there is little reason to use the 

Steepest Descent Method. In the estimation of the basic parameters, the Newton- 

Raphson method appears to offer two advantages; first, the method reaches convergence 

relatively quickly and second, on the basis of its results confidence intervals of the 

estimated parameters can be easily computed. 
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