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Abstract. 

An algorithm is developed to optimize the conversion of trees into 

lumber. The algorithm is based on nested dynamic programming sub¬ 

algorithms. 

Although primarily developed for that purpose, applications in other fields 

are also possible because arbitrary shapes can be cut into rectangular pro¬ 

ducts in a near to optimal way. 
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Lumber production. 
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1. Introduction 

Wood is a raw material that is becoming increasingly scarce. Especially 

large high-quality logs are harder to get every year. So sawmills using trees as 

an input material for the production of lumber have to produce their products 

more and more from smaller trees (Hallock et al. 1976, 1979; Christensen 1986). 

As a result of this development, the process of producing lumber from trees 

needs better control in order to obtain a higher recovery. This process control 

can be improved by heightening the sawing accuracy, (Stern et al. 1979), and 

pattern optimization (Faalands 1984; Geerts 1984). 

The production of lumber can be considered roughly as a two-phase process: 

firstly the primary breakdown of timber, resulting in assortments cut from the 

tree, a process called crosscutting; secondly the sawing of assortments into 

boards of various sizes. 

The problem of finding an optimum sawing pattern can be stated as a three- 

dimensional knapsack problem. Non-guillotine cuts across the tree are not 

realistic, due to limitations of today's production technology. So a breakdown 

can be made into the well known one-dimensional knapsack problem representing 

the primary breakdown, and the two-dimensional knapsack problem modelling the 

breakdown of an assortment into boards. The latter problem can be stated as 

fitting rectangles of various dimensions and values into a circle in such a 

way that the total value of the circle is maximized. Optimizing the sawing 

patterns has been a subject of interest to various researchers (e.g. 

Faaland & Briggs 1984; Geerts 1984; Hallock et al. 1979). 

Algorithms to optimize the sawing of logs should be examined for both effec¬ 

tiveness and efficiency. Effectiveness is relevant in the long term continuity 

of the company and the scarcity of the raw material. Efficiency, however, is 

also relevant because of the on-line application of the algorithm of interest. 

In this paper, the emphasis will be on pattern generation and selection. The 

criterion used to select a typical sawing pattern will be maximization of the 

value of the timber on the basis of a given list of prices and dimensions of 

boards to be cut. Because of efficiency, much attention has been paid to 

speeding up the basic algorithm. 
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2. Basic assumptions 

A tree has to be cut into boards. The boards, in our case called final 

products, are fully characterized by their dimensions and their value. The 

quality aspect is not dealt with in this algorithm, although it can also be 

included by small extensions. 

A three-dimensional breakdown pattern has to be found in a way that the 

tree value is maximized according to the final product pricelist. We per¬ 

formed a decomposition of the problem into three levels. The decisions on 

each level interact with another to perform a global optimum. 

On level one a problem is to find positions to break the tree down into 

a number of logs. The cuts are perpendicular to the axis of the timber 

(cross-cutting). The prices of the saw logs are in fact the value of the 

logs when they are cut into lumber. This is the next step of the optimiza¬ 

tion. On level two the logs are cut into flitches, mother boards, in a way 

that the log is maximized according to the flitch values. The flitch 

values, however, are a result of the final products cut from it. To maxi¬ 

mize the value of these flitches, we have to perform a one-dimensional 

knapsack problem on level three. Figure one shows this way of breaking up a 

tree. 

When breaking up a log in this way, it must be realized that one does 

not use all degrees of freedom that come with a three-dimensional knapsack 

problem. When we call the length along the axis the z direction, and along 

the width, horizontally, the x direction, and the direction perpendicular 

to these two, the y direction, the following can be concluded. Cuts made 

perpendicular to the z direction divide the tree into logs. We cannot make 

end products longer than these logs. The guillotine character of these cuts 

sets limits on the end products to be cut. Although to our knowledge, a 

system with non-guillotine cuts in the z direction does not exist at this 
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moment, it would possibly lead to higher relative recovery. 

A second limitation occurs at the next processing step to cut a log 

into final products. We assume the cuts in the y direction to be of a 

guillotine type, with respect to the cross-section (we will call this 

parallel guillotine cuts, see figure 2b). This is a somewhat different 

approach from that usual in the literature. See for rectangles Gilmore et 

al. (1969). 

Technically a log breakdown pattern with guillotine cuts would be 

possible, but a serious drawback would be the number of rotations necessary 

to make the cuts (See figure 2a). 

Ul (M 

Z. (a) Gacdio-tcnecuXA 

(b) PaJiaZteZ giu£to£cne.ciLt& 

The first pattern can be made by classical production equipment but 

only by means of a number of rotations. The second pattern can also be made 

with classical production equipment. In this text, we will only allow pat¬ 

terns of type two. This is a considerable extension in comparison with 

Faaland et al. (1985) who presumed the distance between cuts parallel to 

the y axis fixed. 

To solve the three-level cutting stock problem, we will use a model 

that consists of three nested, one-dimensional dynamic programming routines 

(DP routines), that interact with each other for their value function and 

decisions at the various moments of decision, called stages in the dynamic 

programming literature. (Geerts, 1984). In our research the effect of the 

waney edge, being the waney part of the crosssection, is fully used in the 

optimization routine in contrast to the algorithm used by Geerts (1984) 

that dealt with the waney edge heuristically. A special problem is formed 

by the shape of the tree, that does not allow us to make all suggestions 

for speeding up made by Christofides & Whitlock (1977), in optimizing the 

cutting of rectangular motherboards. 
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3. Introduction to Effects of Sv—etrv2 »nd equality and sim-ilaritv 

When performing an algorithm based on nested one-dimensional DP rou¬ 

tines, we can use effects of symmetry to save time in finding the optimum 

pattern. At the first level, the z-axis, there is no symmetry whatsoever. 

On the xy-level there are two major effects. 

1) When "slicing" a circle, the value of a typical trial flitch on the 

left has the same value at the opposite position at the right side. 

This holds only for uniform quality. 

2) A second effect is the fact that a flitch containing a part that has 

been optimized before, does not need a new calculation. For instance 

if a flitch contains a rectangle that has been calculated before, we 

can skip the calculation of the rectangle in the flitch. We will 

call this an effect of equality and similarity. 

4. Geometry 

Let Lt be the length of a tree divided into intervals of length Az 

along the z-axis. If Lt is not an integer multiple of the unit length, then 

waste is formed at the top. The usable part of the tree is of length Le. 

(effective length). The diameter of the tree is a function of the distance 

from the stump, and can be denoted as D(z.Az) where z is the number of the 

unit interval. 

The moments when decisions can be made are symbolized by z and called 

the stages in the z direction. The states are the distances from the stump 

of the processed part of the tree, and can thus be denoted as z.Az. The 

decision is the length to cut off. To evaluate the quality of the decision, 

one has to know the value of the part of the tree to cut off at stage z. 

This length will be called \z. The value of the length \z can be calculated 

by means of two-dimensional dynamical programming (DP). 

At the x level, the stages can be defined as the number of the unit 

interval, with numbering starting on the left side of the circular cross- 

section. The state can thus be defined, analogous to the z direction, as 

2) Special thanks to the student M.A. Kramer who performed the programming 

of the effects of symmetry into the algorithm. 
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the distance from the left of the cross-section. As a result of these defi¬ 

nitions again, we have a one-to-one correspondence between stages and sta¬ 

tes. The decision to be made at stage x is the width of the flitch to cut 

off, we will denote this flitch width, at stage x, at position z in the 

shaft as <AZX (Figure 3). 

If the diameter is not an integer multiple of the unit interval length 

Ax, there is a small circle of waste at the exterior, the thickness of 

which depends on the grid width projected on the cross-section. 

The quality of a decision <t>zx can be examined by the value of the 

flitch resulting from this decision. The value of the flitch is defined as 

the sum of the values of the lumber products that are produced from it. To 

maximize this value, stages in the y direction are defined as the number of 

the interval unit with length Ay, starting in the x axis at y=0. The deci¬ 

sion to be made at each stage y is the number of the product to cut off at 

stage y, at position z,x, either rotated or not, called (n,p)2Xy, where n 

is the product number and p is the rotation factor, being 0 if no rotation 

occurs and 1 after rotation through 90°. The quality of this decision 

depends on the value of the product v((n,p)ZXy), and the value of the part 

of the flitch left after this decision (n,p)zxy. Figure 4 shows the rela¬ 

tionships. 



<-ig. 4. PoAA-cbte. dzc^i6-Loiu aX the. u-ZeveJL. 

A tree can be viewed as built up of unit elements Az, Ax, Ay, as done 

in figure 5. 

jig. 5. A lhait biuJLd an out ofi urUt elunerXi. 

Let us now consider the geometric aspects of breaking down a circular 

cross-section into rectangles. If at a stage x, at z interval distances 

from the stump, the decision is made to cut off a flitch of width ij>zx.Ax, 

then the functions as shown in Figure 6 have to be considered. The g- 

function is used for the calculation of the available flitch-height on a 

width x. The h-function has a similar role for calculating the flitch width 

at a height y. 

They can be expressed as: 

g(z,x): = /(Rfz.Az)2 - (x.Ax - R(z.Az))2) (4.6) 
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h(z,y): = /(R(z.Az)2 - (y.Ay - R(z.Az))2) (4.7) 

In these functions, R(z.Az) = HOlz.Az), the radius of the cross-section. 

Furthermore let Nz = [Lt/Az], Nxz = [D(z.Az)/Ax], Nyz = [D(z.Az)/Ay], where 

[.] means entier (.) x0 is the first x stage where a flitch can be pro¬ 

duced, x(jj the last. 

The definitions are shown in Figure 6. 

x“ := min (x|[2g(z,x)/Ay] > l| + 1 (4.8) 

Ux<Nxz 

x“ := max {x|(2g(z,x)/Ay] > l) (4.9) 

[Nxz/2]«x«Nxz 

The effective height of the flitch is a function of the decision <|>zx 

made at stage x. If a flitch width is bigger, the available shape of this 



flitch will become less rectangular, y1 and yu are the lower and the upper 

y stages, respectively, that can be used to make a decision which product 

should be produced from the flitch, dependent on the width of the flitch. 
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y1(<),2x).-= min ([(R(z.Az) - g(z,u))/Ay]} + 2 (4.10) 

x-^uCx-1 

yu(<(>zx>: max {[(R(z.Az) ♦ g(z,u))/Ay]} (4.11) 

x-*zx^u<x-1 

Because the flitch for large $zx is often not rectangular, the effec¬ 

tive x range is not (x-i(>zx) in most y stages. Therefore we define x1 and xr 

as the left and the right usable x coordinates, respectively, in order to 

determine the resulting flitch width at a position x if an overall width of 

^zx is cut off. 

(4.12) 

xy<$zx):= min{x, [(R(z.Az) - h(z,y))]/Ax} (4.13) 

On the y level, a decision is made whether to cut off a product with 

number n, and whether to rotate the product 90° or not. The decision is 

two-dimensional and can be stated as (n,p)zxy. The usable flitch width at a 

level y, when choosing a product with number n can be stated as: 

“(♦zx.y.n.p):* min{x^(*zx) - x^(*zx), x£, (4>zx) - x^.(<(>zx)) 

with 

y = y - (d-p)fy(n) - pjrX(n))/Ay 

where !x(n) and iy(n) represent the lengths in the x and y directions of 

product n. 
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5. The ■odel 

The model is here introduced more formally, based upon the definitions 

given in the previous sections. 

Consider a set of numbered products P. A product p(n) can be charac¬ 

terized as: 

p(n): = (iz(n), !x(n), iVfn), v(n)) (4.14) 

The numbers are given to the products in a way that the products are 

ordered lexicographically with respect to their dimensions. 

P : =■ {p(n)| (4.15) 

At the z and x level, lengths and widths have to be cut, respectively. 

These quantities are directly related to the product dimensions. 

Two ordered sets A and * containing the lengths and widths allowed to be 

cut at the various z and x stages are introduced: 

A: =(A | 3 n[ A.Az = lz(n)]| (4.16) 

♦ : ={c|> | 3 n[ <(>.Ax = lx(n) or ip.Ay = i^fn)]! (4.17) 

When making a decision in the z direction, at a stage z, lengths A.Az 

greater than the length z.Az cannot be used. So we introduce 

(A)z: = A\{A | A>z( (4.18) 

The same is true for the decision at stage x, at position z from the 

stump end. The decision has to be made which width <|> to use, but i)> values 

greater than the width of the cross-section at stage x cannot be used. 

Also widths <|> that only occur with products that have a length Jlz(n) 

greater than the z.Az at this moment of decision are not usable. In conclu¬ 

sion, we can state 

(*>Azx:= ♦'({‘f’ | V n[(ix(n) = 4>.Ax or lYfn) = *.Ay) and !z(n) > Az.Az]} 
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U {<(> | 4»x}) (4.19) 

At the y level, we have to decide which product to cut off and whether 

to rotate the product or not, once decisions \z and ij>zx have been 

suggested. The set of possible combinations of product number and rotation 

can be stated as: 

(NR*Az<|>zxy:= f(n>P) I V ' (1-P)!y(n)/Ay ~ pix(n)>0 and 

(1-p) (W(4>zx,y,n,p) - Jx(n)/Ax) + p(W(<f>zx,y,n,p) - iy(n)/Ax)>0 and 

!z(n) = Az( (4.20) 

Furthermore we define: 

G2(Az) 

GZX<XZ' ■f’zx) 

XF(Az)zx 

: The maximum reachable value added after a decision 

Az. It is the value of a knotted cone of length Az 

and a top diameter 0{z.Az) and foot diameter 

D((z.Az)') where (z.Az)' = (z-Az)Az 

: Value function of the system at stage z, if at all 

relevant previous stages optimum decisions Az have 

been made. It can be considered as the value of the 

processed part of the tree. 

: The value of a part of the cross-section with width 

4>zx starting at position x. 

: Value function of the section in stage x, if at all 

relevant previous stages optimum decisions 4>zx have 

been made. 

Gzx(*z' 4>Zx'<n>P)zxy): The va1ue added after a decision (n,p)zxy at stage y. 

It can be the value v(n) of product n. 

YF(AZ, <(>Zx)zxy : valuefunction of the system at stages y, if at 

all relevant previous stages optimum decisions 

(n'P)zxy have been made. 
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With the definition given in this paragraph and the information in the 

previous section, the model can be summarized as: 

| D ZFz = (GZ(XZ) + ZFz.Xz} 

Xze(A)z 

1 < z « Nz 

GZ(XZ) = XF(XZ) u 
ZXZ 

2) XF(*Z)ZX = max + 

1>zxe(*hzx 

Xz < X < xz 

Gzx(Az'*zx) = YF(^Z'^zx) ,, . 
zxy ($zx) 

3) fF(Xz2Xy = max i^zxy^z'^zx'(n'P)zxyJ+Y^(^Z'l(,zx)zxyl I 

(n, p) £ <NR)Xz*zxy 

y’ = Y - (1-P)fy(f>zxy)/Ay - pix(nzxy)/Ay 

yi(‘*’Zx) < y < yu(,<,zx) 

The model described in the previous section can be turned into an 

algorithm that performs the optimum primary and secondary breakdown. 

However we can speed up such an algorithm by using the effects of symmetry 

described in Section 3. 

6. Symmetry 

At a level x, suppose that different values for <t>zx are checked. For x 

greater than [Nxz/2], a great chance occurs that the trial flitch has 

already been optimally cut into final products at a stage before x. 

If x - [ipzx/2] is greater than [Nxz/2], the flitch has already been 

optimised at stage Nxz - x + <t>zx . 
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Hence, 

V<|.Zx[x-[«>zx/2] > £N*z/21 YF<XZ',<,zX>zxyu(,»zx) = YF^z.1>za)zayu(<(>2a)] <4-21) 

with a: = Nxz - x + <)>zx and 0za = <(>zx. 

A second case of symmetry occurs if part of a flitch is rectangular and 

has been optimized before. 

A flitch can only be a rectangle if the following two equations hold; 

this situation is expressed in figure 6a. 

R(1) : Xy!(*zx) = xNyz/2 £^zx) (4-22) 

R<2) : XF1(<(.ZX) = XNyz/2 (<l>zx) (4.23) 

Suppose Xt and x2 with x2 > x-j are both stages, at which a decision 

ij>zXl = 4>zx2 can be made> for which R(1) and R(2) hold, then at stage x2 one 

can skip the calculations until y - y^('(lZX2) becomes greater than 

yU Mzx,) - 

Hence, 

Vxivx2>xi£ ♦zx^ ^zx2 ■* £‘£,zx2^+yu£‘*’zx1 ("y*£<^zx1) cYF(^z'<*izx2)zx2y = 

YF(Az,4.ZXl)ZXiyl(^zXi) + y]] (4.24) 

Implementing the effects of both symmetry and equality and similarity, 

the adjusted model is as follows. 
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1) ZFz = max {GZ(XZ> + ZFz.x } 

^Ze(^)z 

1 « Z < NZ 

GZ(XZ) = XF(Az)zxu 

2) XF(Xz)zx = max {Gzx(Az,<|>Zx) + XF(XZ) 

’frzxel^lXzx 

a) Gzx(Xz.4>zx) = YF(Xz,i(>Zx)zxyu(4izx) 

xz $ X ^ xz and x - < [Nxz/2] 

b) GZx(Az,4>zx) = YF(Xz,<^a)zayU(,(iza) 

xz « x ^ xz and x - <frzx/2 ? [Nxz/2], 

a = Nxz - x + (j)Zx 

3) YF(Xz,((>Zx)zxy " max {Gzxy(Xzf<frzx* (n'i 

(n. P) zxy e (NR) X^^y 

y^zx) < y < yu(|*zx) 

not (R(1) and R(2)), 

y,=y-(l-p)iy(nZxy)/Ay-plx{nZXy)/Ay 

YF(X2,02X2)ZX2V" YFf^z.^zx-])zXTyZ(<(iZx1) + y 

yi('<,zx2) < y < y^f^zx-,) - yi(‘t|zx1) 

for 

for 

with 

zxy) +-YFzxy' 

and 

for. 

(R( 1) and R(2)) for x-| and x2 

‘I’zxi = It>zx2 

and. 



7. Computational results 

The algorithm including the symmetry aspects, has been used to develop 

software for a VAX/8600 computer. The code for the algorithm was written in 

FORTRAN 77. Furthermore a SAS-procedure was developed in order to display 

the patterns graphically (see fig. 7). 

PlzpAz! 

Fig. 7. An vumpll oj poiA-ibli oiUpu£ a{ thi oigMithm. 
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Sawing patterns are influenced by many factors, such as size of log and 

products, product prices, saw kerf, log quality, size tolerances. The soft¬ 

ware did not include all these factors. Saw kerf, quality and dimension 

tolerances have not been taken into account. Main goal of this research was 

to analyse the possibilities for on-line optimization of sawing patterns, 

and thus "details" like sawkerf have not been taken into account. 

Timber with a length from 200 up to 1400 cm has been evaluated with 

different software parameters. 

The trees used in the experiments are cones with a diameter of 30 cm at 

10 cm from the foot end, and a diameter of 10 cm at 10 cm from the top end. 

Of course trees with more realistic shapes can be optimally cut too, 

however, for the sake of simplicity in these experiments it is of no use to 

make more realistic assumptions. 

The grid, superimposed on the circular cross-section of the trees 

varies from 5 mm up to 20 mm for its unit width. 

The products used for these computations are divided into two length 

classes of 50 and 100 cm, respectively. Every class consists of 21 pro¬ 

ducts, the characteristics of which are displayed in Table 1. 

Table 1. Characteristics for the products used in the computations. 
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The results of these experiments are displayed in Table 2. 

Le 
(cm) 

Ax 
(mm) 

Ay 
(mm) 

profit 
(Dfl.) 

Cpu 
(sec.) 

effectiveness efficiency 
(%) (%) 

400 
400 
400 
800 
800 
800 

1200 
1200 
1200 
1400 
1400 
1400 

5 
10 
20 
5 

10 
20 
5 

10 
20 
5 

10 
20 

5 
10 
20 
5 

10 
20 
5 

10 
20 
5 

10 
20 

207.65 
207.60 
199.90 
484.35 
478.05 
458.15 
763.95 
759.90 
727.85 
908.35 
891.70 
854.70 

22.53 
2.88 
0.43 

47.31 
5.95 
0.80 

73.91 
9.89 
1.41 

88.71 
11.40 
1.76 

100 
100 
96 
100 
99 
95 

100 
99 
95 
100 
98 
94 

1.9 
15 

100 
1.7 
13 

100 
1.9 
14 

100 
2 

15 
100 

Table 2. Effectiveness and efficiency as functions of tree length and grid 
width. 

Effectiveness: = % largest value 
Efficiency : = (% smallest cpu time)-! 

Although not developed for the purpose, the algorithm can also be used 

to cut rectangular plates of material, such as steel and plastics. We 

programmed the algorithm suggested by Gilmore & Gomory (1969) including 

the speed up suggestions made by Christofides & Witlock (1976). 

The algorithm based on dynamical programming as suggested in the pre¬ 

vious sections can only make parallel guillotine, based on Gilmore & 

Gomory. While the algorithm can make guillotine cuts in a general way, it 

thus gives upperlimits to effectiveness for our algorithm. We performed 

many computational tests in order to compare the algorithms, some of them 

are included in this text. Table 3 shows the products used are displayed 

and in Table 4 the computational results. 
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Product length (mm) width (mm) value (Dfl) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

10 

20 

20 

20 

30 

30 

40 

40 

40 

40 

40 

50 

60 

70 

80 

80 

90 

110 

120 

160 

40 

20 

50 

110 

30 

50 

20 

30 

40 

50 

130 

50 

50 

20 

40 

80 

50 

60 

130 

110 

0.60 

0.40 

1 .60 

3.50 

1.10 

2.50 

0.90 

1.50 

2.45 

3.20 

8.00 

3.25 

4.40 

2.05 

5.10 

10.75 

2.80 

9.50 

12.00 

15.00 

Table 3. Product dimensions and values. 

Effectiveness: = % maximum value 

Efficiency : = (% minumum cpu time)-1 

GG : = Gilmore and Gomary 

DPB : = Algoritm based on Dynamical Programming 
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It is very hard to draw general conclusions from these results, because 

the shape of the initial rectangle and the product characteristics all 

influence the patterns in a specific way. In all tests, our algorithm beats 

the GG algorithm in efficiency, specially with large initial rectangles, 

but of course the GG algorithm was always more effective, on average about 

1 % more. The fact that our algorithm reaches a higher efficiency than the 

GG algorithm was predictable because of the fact that it needs less com¬ 

putations. 

8. Conclusions 

The algorithm developed has great potential in optimizing the conver¬ 

sion of trees into lumber, when using a technique based on cross-cutting 

and sawing with a numerically controlled headrig-saw. The software deve¬ 

loped is very fast and very effective. In fact, when using a programmable 

headrig saw, the resulting patterns are optimum. In our examples we con¬ 

verted whole trees. In practice often the conversionprocess is divided in a 

primary and secondary breakdown. Of course our algorithm will also function 

in this situation although a maxim recovery percentage is only attainable 

when integrating the two breakdown processes. 

Both efficiency and effectiveness make this algorithm and the 

corresponding software useful for on-line application. If the need for 

efficiency predominates over the need for effectiveness, the algorithm can 

be used for the cutting-stock problem as defined for rectangular plates. 
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