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INCREASING PRECISION OR REDUCING EXPENSE IN REGRESSION EXPERIMENTS 

BX USING INFORMATION FROM A CONCOMITANT VARIABLE 

*) **) 
B. Engel , P. Walstra 

SUMMARY 

A method i3 presented- to increase precision or reduce expense in regression 

experiments by partly replacing expensive observations on the variable of 

interest by cheaper observations on a concomitant variable. An application to 

the prediction of the lean meat percentage of a pig carcass is given. 

1. INTRODUCTION 

A method to improve precision of estimates or reduce expense without loss of 

precision relative to direct regression is presented. The method is 

potentially useful when observations on the dependent variable are more 

expensive than observations on some related concomitant variable. It consists 

of collecting the expensive observations on the dependent variable for a 

subset of the experimental units only, while observing the concomitant 

variable for all units. Typically the subset will be considerably smaller than 

the entire sample. 

An important application is the prediction of the lean meat percentage of a 

pig carcass from objective carcass measurements. The actual lean meat content 

of a carcass may be determined by complete dissection, which is very 

expensive, or alternatively, by a less accurate but cheaper incomplete 

dissection method. 

A practical example will be discussed where carcass dissections were carried 

out in the Netherlands, mainly according to the standard method of the 

Research Institute for Animal Production 'Schoonoord* (incomplete dissection) 

and partly by the EC-reference method (complete dissection). A prediction 

formula for the EC-reference lean meat percentage with carcass measurements 

obtained with the Hennessy Grading Probe as explanatory variables was 
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constructed by linear regression. Both the information contained in the 

complete and incomplete dissections was used to estimate the regression 

coefficients and residual variance. 

2. ESTIMATION 

Suppose that for N independent experimental units a concomitant variable Y* 

and explanatory variables x1, x^. •••t x^ are observed. For n (n £ N) out of 

the N units additionally the variable of interest Y is observed. 

For notational convenience and without loss of generality it is mainly assumed 

that k»1 and x^x. 

Interest lies in the linear regression of Y on x: 

E(Yjx) = A ♦ Bx ...(1) 

Var(Yjx) = a2. 

It is further assumed that 

ElYjjjx) = a + bx, varCYjjjx) = Oq —(2) 

E(Y j x, Y*) = a + gx + YYjj, vartYjx.Y,) = o:J. 

Throughout this paper inference will be conditional upon the values of the 

explanatory variables. Consequently the explanatory variables may be subject 

to experimental control, i.e. the experimental units may be selected on the 

basis of these variables. In the following the conditional expectations 

E(YJx), E(Y#jx) and E(Yjx,Y,) will be denoted as E(Y), E(Y,) and E(y|y,). 

Error-terms 6 and e are defined by 

$ = Y* - ECYjj) , e - Y - E(y|y,) ...(3) 

With index 3=1,2,...^ for the experimental units and j=1,2,...,n 

corresponding to the sub-sample where Y is observed, we have from first 

principles: 

E(Sj) - 0, var(6^.) = 

E(ej) = 0, var(Ej) - 

Ej.Sj,, j ^ j' independent, cov(Ej,6j) - 0, 

Ej,e.,, j * j' independent, 6j, J ^ J' independent 

Furthermore 

A = a + Ya, B = g + Yb 

a2 - a 
1 

(5) 

(6) 
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P = YOg/O, ...(7) 

where p is the partial correlation between Y and Y# given x, i.e. the 

correlation between Y and Y„ conditional upon x. 

We will assume that the errors follow a normal distribution 

(e'.fi')' - N(0, diag(a^In, a£lN)) ...(8) 

where e' » (e-.-.e ) and 6' = 

Assumption (8) simplifies the discussion but may be replaced by less 

restrictive regularity conditions without loss of the essential asymptotic 

properties of the estimators presented in 2.1. 

Hence, the estimation procedure may be expected to be fairly robust against 

departures from normality. Non-linear exteasions of (1) and (2) are discussed 

in section 6. 

2.1 The estimators 

a, b, Og and a, B, Y, may be estimated from the regression of Y* on x and 

of Y on x and Y* respectively by the method of least squares. 

Hence, a and b are minimizing 

Sg(a, b) = ZCY^-a-bx)2 

and a, B and Y are minimizing 

S.| (a, B, Y) =* EU-a-Bx-YY*)2. 

The variance estimators are 

o2 - Sg(a, b)/N~2) and o2 = S1 (i, fj, Y)/(n-3). 

The following estimators for A, B and a2 are proposed: 

A-a+Ya, B = B-*-Yb 

..(9) 

2.2 Properties of the estimators 

Under the normality assumption (8) the logarithm of the (conditional) 

likelihood is 

L « - N log Og — n log a1 - V2 SQ/o2 - V2 S^a2 + log m 

where ai follows from the procedure adopted for selecting the subsample of size 

n out of the total of N experimental units. When for instance the subsample is 
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taken at random: ui = (^j**1* We will assume that w does not depend on the 

unknown location and scale parameters. 

It follows that L is maximised for a, b, a. I, f, -jj- and -jp as values 

for the parameters a, b, a, B, Y, Oq and o^. 

Consequently A and B from (9) are maximum likelihood estimators. The maximum 

likelihood estimator for a2 is 

Bli - 
n 1 

liri zz -z 
N O' 

The estimators a, bf a, B» T, A, B, Oq and are unbiased. Both the maximum 

likelihood estimator for a2 and the estimator proposed in (9) are biased with 

a bias of order 1/n. 

A bias corrected estimator for o2 is o2’"<>2 VarCT), where Var(Y) is the 

familiar estimator for the conditional variance of Y in the regression of Y on 

x and Y#. However, this estimator may be negative. Replacing negative values 

by zero, again introduces a bias of order 1/n. 

(a, b)' follows a normal distribution and o2 and o2 are independently 

distributed as o2 X^2/(N-2) and o2 respectively, where x2 denotes 

a chi-square distribution with v degrees of freedom. 

For the other properties discussed we will resort to large sample theory, some 

details are given in appendix A. 

Subject to regularity conditions, the distribution of (A, B) may be 

approximated by a normal distribution with mean (A, B) and variance-covariance 

matrix V, where 

fVA CAB, 

CAB VB J 

and 

AB 

= Var(a) 

= Var(B) 

“ COv(a, 

+ Y2Var(a) 

+ Y2Var(b) 

B)+ Y2 cov(a 

+ a2Var(Y) + 

+ b2Var(Y) + 

b) + ab Var(Y) 

2a cov(a, Y) 

2b cov(B, Y) ...(10) 

+ a cov(Y,I) + b cov(Y, o) 

Var(a), Var(a),... follow from-the regressions of Y on x and Y* and of Y* on 

x, respectively. 

It follows in particular that A and B are consistent (n -> ”). From the 

distributional properties of o^, o2 and Y it follows that o2 is a consistent 

estimator for o2(n -» Asymptotic normality may be derived for o2, but in 
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multiple of a chi-square distribution may be more appropriate: 
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o2/o2 - xf/v ...(11) 
v 

where v = o'"/{o^/(.n~3) * y‘’a^/(.N~2) + So^Y2 Var(Y)}. 

The denominator of the approximate degrees of freedom in (11) is half of the 

large sample variance of o2. (1-ct) confidence intervals will approximately be 

a factor v2/(v- - i-u)2 larger than intervals derived under the normal 

approximation, where u is the 1-o/2 percentile point of the standard normal 

distribution. 

3. EFFICIENCY RELATIVE TO DIRECT REGRESSION 

In the following sections the estimation procedure introduced in section 2 

will be referred to as 'double-regression'. In this section 

'double-regression' based on a sample and sub-sample of sizes N and n 

respectively will be compared with direct regression of Y on x based on a 

sample of size m. The comparison will be based on large-sample results, some 

details are given in appendix B. 

Under the following limiting conditions 

lira n/N = f, lim n/m = h 
n->® n-“ 

f and h constant, 0 < f,h < 1, 

the asymptotic relative efficiency for a parameter 8, denoted by ARE (8) will 

be defined as the ratio of the asymptotic variances of the unbiased estimators 

of 8 under direct regression and double-regression. 

For k=l, both for the intercept A and slope B: 

ARE(A) = ARE(B) = h/(l - (l-f)p2), ...(12) 

where the partial correlation p is given in (7). 

For the pair (A, B) we define ARE(A,B) as the square root of the ratio of the 

determinants of the asymptotic.variance-covariance matrices under direct- and 

double-regression. ARE(A,B) is also given by (12). 

For k > 2 we take the (k+l)th root of the ratio of the determinants as a 

definition for ARE(A, B^, ..., B ). Again we find expression (12). 

Obviously for h=l, i.e. n-m, the double-regression method will be the most 

efficient for large samples. For small samples however, this does not 

necessarily hold. For the particular case that $=b=0, a small-sample theory 
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based on maximum likelihood under normality has been developed by Conniffe and 

Moran 0 972). The efficiency for the remaining parameter A is 

h/{l - 0-f)p2 ♦ (1-f)0-P2)/(n-3)t, ...03) 

where h = n/m. 

For h=1 the direct method will be better when p2 < 1/(n-2). So for moderately 

sized n and small |p| the direct method may be more efficient, because the 

observations on the concomitant variable may introduce more noise than 

'information'. 

Simulation results in section 5 indicate that in practice this will be 

uncommon. 

Expression (12) may be used to see how much there is too be gained in increase 

of precision at equal cost or in reduction of expense at equal precision, by 

replacing a direct regression experiment by a double'-regression experiment. 

u. APPLICATION TO THE PREDICTION OF LEAN MEAT PERCENTAGES 

To establish a regression formula to predict the percentage of lean meat of 

pig carcasses in the Netherlands, an experiment was conducted where 200 

carcasses were dissected by the IVO^standard method (Y#). From these 200 

carcasses 20 were chosen to proceed dissection from the joints to the 

EC-reference method (Y). For all carcasses the backfat and muscle thickness at 

the third to fourth from last rib position, 6 cm from the dorsal midline, were 

obtained with the Hennesy Grading Probe (x^nd x2). Some of the results are: 

(a, b1, b2) - (65.6H, -0.6762, 0.0903), o2 = 3-20 with 197 degrees of 
freedom 

(o, B , I2, Y) = (-12.3, -0.056A, 0.0711, 1.079), o2 = 0.699 with 16 degrees 

of freedom 

p = 0.92. 

From (9): 

(A, B1. B2) - (58.53, -0.79, 0.17) 

o2 - 9.92 with v = 26.35. approximate degrees of freedom. 

The bias corrected estimate for o2 is 9.08. 

The coefficients 51 and B2 with standard errors 0.09 and 0.09 respectively are 

not significantly different from zero. 



Replacing the regression of Y on f,, x1 and 

only we have: 

by the regression of Y on Y, 

63 

(A, Br B2) = (61 .33, -0.76, 0.10) 

a2 - i.82 with 127.2^ approximate degrees of freedom. 

The bias corrected estimate for a2 is *1.81. 

Dropping x^ and x2 from the regression of Y on Y,, and x2 has some effect 

on the coefficient B2 for muscle thickness. We return to this point later on 

in section 6. 

From (12) we see that for a direct regression experiment with about equal 

precision, m=83 carcasses should be fully dissected according to the 

EC-reference method. This result follows by putting (12) equal to one with 

f = 20/200 =0.1, h = n/m = 20/m and p = 0.92. 

5. SOME MONTE CARLO RESULTS 

To see how the asymptotic results from sections 2 and 3 stand up for small 

samples a simulation study was performed. Some of the results will be 

discussed briefly in this section. 

In the simulation k=1, N=200, n=20. For the explanatory variable x the values 

for backfat-thickness from the lean meat data were used. For each of four 

configurations of the parameters (see table 1) 1000 experiments were simulated 

with Genstat (Alvey et al., 1982). 

Configuration I resembles the practical problem from section A except that 

muscle thickness was not included as an explanatory variable. 

Configuration II has a large value for R, to study the effect of dropping x 

from the regression of Y on x and Y4. 

Ill and IV represent configurations with a fairly low and an almost negligible 

value for the partial correlation p. 

Table 1: Four configurations of parameter values. 

configuration a b o0 a B Y o1 A B o2 p 

I 

II 

III 

IV 

65.64 -0.68 1.7.9 -12.3 0.06 1.08 0.83 58.6 -0.674 4.43 0.92 

65.64 -0.68 1.79 -12.3 0.60 1.08 0.83 58.6 -0.134 4.43 0.92 

65.64 -0.68 0.57 -12.3 0.06 1.08 1.53 58.6 -0.674 2.72 0.37 

65.64 -0.68 0.57 -12.3 0.06 0.108 1.53 -5.21 -0.001 2.34 0.04 

To see if the approximations for variances and covariances derived from 

asymptotic arguments give a fair impression of the accuracy of the estimators 

A and B for small samples, the actual coverage probabilities were determined 
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for the 95%-confidence intervals A ± 1.96 B ± 1.96 /Vg and for the 

95J-confidence ellipsoid (A-A, B-BIV*1 (A-A, B-B)' < 5.99. For each run the 

elements of the variance-covariance matrix V were determined from (10). 

The actual levels attained varied (standard errors between brackets) from 93•4 

(0.79)J to 96.5 (0.58)t for the intervals and from 92.1 (0.85)$ to 95.0 

(0.69)$ for the ellipsoid. Although results may be liberal, for all practical 

purposes the actual levels attained are satisfactory and the large-sample 

approximations give a reasonable impression of the accuracy of the 

estimators. 

Defining the small sample efficiency of direct regression on the subsample 

only relative to double-regression as the ratio of sample variance and sample 

mean square error, results for A and B were of comparable size. Average values 

for configurations I, II, III and IV were 2.7, 3-6, 1.0 and 0.98 respectively. 

So even for p - 0.04 the double-regression method seems to be only slightly 

less efficient. For larger values of the partial correlation double-regression 

may be considerably more efficient. 

Dropping x from the regression of Y on x and Y* in configuration II, where B 

is substantially different from zero, results in poor coverage probabilities 

(below 75$) and a considerable bias in the estimators for A and B. 

For configuration I from 2000 simulations coverage probabilities were 

determined.for the large sample confidence interval for oz under the normal 

and chi-square approximation respectively. The results were 92.8 (0.6)$ and 

94.0 (0.5)$, the chi-square approximation performing slightly better. Dropping 

x from the regression of Y on x and Y* in configuration II results in a bias 

of -28.3$ of the true value for the estimator of a2! 

6. DISCUSSION 

In this paper a method is presented, refered to as 'double-regression', to 

estimate regression coefficients, using additional information contained in a 

concomitant variable. When observations on the variable of interest are 

considerably more expensive than observations on the concomitant variable, the 

method allows: 

- to cut down on the cost of the experiment without loss of efficiency 

relative to direct regression, or 

- to increase the efficiency at the same cost. 

The double-regression estimates and the approximate variances and co-variances 

are easily obtained from the output of any regression-package such as those 

contained in GENSTAT, GLIM, SAS, SPSS or BMD. 

The double-regression procedure may be generalised by allowing the explanatory 

variables to enter the conditional expectations in (1) and (2) non-linearly. 

A product term of an explanatory variable and the concomitant variable Y^ may 
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be added to the conditional expectation of Y in (2). 

In general a routine for non-linear regression will then be needed. These are 

supplied by many statistical computer-packages. 

It seems crucial to the simplicity and robustness with respect to 

distributional assumptions of the double regression method that Y* enters the 

conditional expectation of Y in (2) linearly. Since in practice Y and Y, will 

often be measuring the same phenomenon, their close relationship will usually 

allow for a linear approximation, possibly after a suitable transformation of 

V 

In Cook et al. (1983) analytical expressions for the optimal sample and 

subsample sizes for the estimators of Conniffe and Moran (1972) are derived. 

Similar (asymptotic) results may be derived for double-regression. An easy 

alternative is to simulate experiments for various sample sizes and a priori 

values of the parameters, to evaluate cost and precision and compromise 

between the two. 

The Monte Carlo study indicates that combining the regressions of Ys on 

x^,...,xkand of Y on Y, (dropping x.,...,x ) may give very poor results since 

the estimators for the regression coefficients and the residual variance may 

be seriously biased. So, although the procedure is an attractive one when the 

relationship between Y and Y* has been established in the past and only 

'cheap' observations on Y, and x1,...,xk have to be collected, one should be 

very careful in replacing the regression of Y on Y, and x by Y on Y, only. 
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APPENDICES 

For a detailed account aee Engel (1987) (available from the authors). 

A Large sample distribution of A and B 

1 n 
and v - — 1 

" " J-1 

(x. 
1 n 

Let m = — Z > 

" " j-1 
respectively). 

Assume that: lim m « m and lim v 
n->“ n n->“ n 

(positive definite for k ^ 2). 

■x)2 (for k 2 a vector and a matrix 

= v exist and are finite with v > 0 

Let X. be the design matrix for the regression of Y on x and Y-. Then 
1 1 
- X|X1 converges in probability to a positive definite matrix, say 

l^m X|Xj = • [jet Xq 8® the design matrix for the regression of Y, on 

x. From similar assumptions: ^im — X^X^ = 

Collect the random elements of — X!X,, - X'Y and 7: X'Y- in a vector Z. 
niini n u * ~ 

Take any linear combination A'Z with A ^ 0. 

Asymptotic normality (n-*”) of A'Z follows from additional regularity 

conditions. For instance when the explanatory variable x is restricted to 

a bounded set, the Lindberg-condition for asymptotic (univariate) 

normality of a sum of independent random variables is met (see Feller 

(1966)). It follows that Z is asymptotically (multivariate) normally 

distributed. 

0 = (Bq, 9j)', with 0O = (a, b)' and 0^ = (a, 1, Y)1, may be related to Z 

by a first order approximation. From a Taylor series expansion for 

(^ XjXj )'"1 it may be shown that 

/n ^(e.-O,) = H, /n(Z-E(Z)) + 0 (n”V2), 
•“I ~ I 1 ~ ~ P 

where ¥ =E(- X'X,) and H, is a matrix of constants, 
nil 1 

Furthermore /n(i X'Xr.)(0--0-) = H. /n(Z-E(Z)), where H. is a matrix of 
N00-0~0 0 -J - — 0 _ 

constants. From lim f = Q, and lim -r, it follows that /n(0-e) is 
n->“ 1 a-*00 N 0 0 0 - - 

asymptotically normally distributed (n-*“). 

Since Var(/n(0^-0^) j Y,) = (-^ X|X^)”l0j ->■ n^“ and 0^, 01 are 

uncorrelated, the variance of the asymptotic distribution of /n(0-0) is 

diag (f Qq‘o2, 
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The asymptotic distribution of (A, B)'follows from: 

/ 7 0 1 0 a \ _ 
✓n (A-A, B-B)' - ) /n (0-0) + 0 (n 2) 

\0 V 0 1 b/ 

Replacing a, B, y, a, b and the elements of Q0 and Q1 by consistent 

estimators results in (10). 

B Efficiency 

The general result is derived for k ^ 1. 

Let E(y|yit(n)) = My + Y,(n)y 

E(?*> - x0 2o 
E(Y) = M £ 

where £ = y + ygg. jJ contains the intercept and coefficients for 

and Y., , denotes the vector of values of the concomitant variable for the 
-*(n) 

subsample. So X1 » (M, Y,^^). g1 =■ (p'. Y)' and £ = (A,B1 ,... ,6^) '. 

Let ^m I M'M - Jim I XJXg = Pg, lim ^ = f, 0 < f < 1. 

Then the asymptotic variance (n-»") of £ is 

(1 - (1-f)p2)SJg‘ o2. 

For direct regression with m observations let the design matrix be X^. 

Let lim - - h, 0 < h < 1, lira - XiX. = Qn. 
n->® in — m-*00 ra 3 3 ^ 

Then for direct regression the asymptotic variance is 

h Pg* a2 

The product of the inverse of the first asymptotic variance and the second 

asymptotic variance is hl/O'-O-Dp2). Expression (12) follows by taking 

determinants on both sides of the equation and taking the (k+1)-th root. 
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